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From Chapter 9:

» Pricing Rules:
Market complete+nonarbitrage=—> Asset prices

» The idea is based on perfect hedge:

T T
H= v0+/ ¢td5t+/ #0dS?
0 0

» With completeness, any contingent claim can be
perfectly hedged.

» With nonarbitrage, V{ could pin down.
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Also From Chapter 9:

» Market completeness breaks down when there
are even small jumps

» So without perfect hedges, the risk to do
hedging can’'t be completely ruled out, we have
to find ways out.
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In this chapter:

» Merton's approach(10.1): ignore the extra
risks=>pin down pricing and hedging

» Superhedging (10.2): leads to a bound for
prices(preference-free, but the bound is too
wide)

» Expected utility max(10.3): choosing hedge by
min some measure of hedging errors=—-utility
indifference price

» Special case of the above where the loss
function is quadratic (10.4)
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Merton's Approach:

» In Merton:
N,

ut + oW, + Z Yi
i=1

W;: SBM: N;:Poisson process with

A Y~ N(m7 52)

St = 50 exp

» He assigns a choice from many risk-neutral

measures:
N:
Qu : St = Spexp th+0WtM+Z Y;
i=1
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Merton's Approach:

» Qu just shift the drift of the BM, and left the
jumps unchanged

» Rationale: jump risks are diversifiable, so no risk
premium /no change of measure upon it.

» Application: Euro option with H(S7) has price
process:

NV = e (T-OEQ[H(S)|F]
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Merton's Approach:

» Furthermore, since S; is a Markov process(under
Qwm), so F; contains as much info as S;, thus:

Ny = e "TOEW[(Sr — K)Y|S, = 9]

» Then by conditioning on the # of jumps N;, we
can express MY as a weighted sum of B-S
prices, finally, we get(set 7 = T — t):

N(r,S;0) = e TE[H(Selr /AW
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Merton's Approach:

» For call and put options ,apply Ito to
e "C(t,S;).

NV = e "NM = EW[e~T (St — K)T|F

» the discounted value is a martingale under Qy,
o)

A

N7 — 1" = A(Sr) = E2[H(ST)]

> Merton gives the hedging portfolio (¢?, ¢;):
or = A(t, S, ) and ¢2 = :S; — [y ¢dS
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Merton's Approach:

» From this self-financing strategy, the risk from
the diffusion part is hedged, but the discounted
hedging error is:

£ T AM M a”M
H—e " V(o) =N7-My"— (u S,.)dS,
0

» Go back to Merton's rational, how could we
hedge jump risk: he assumes the jumps across
the stocks are indenp, so in a large market a
diversified portfolios such as market index would
not have jumps, 'coz they cancel out each other.
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Superhedging:
» A conservative approach to hedge:
P(Vr(¢) = Vo + [y 9dS > H) =1
Here ¢ is said to superhedge against the claim

H.

» Defn:The cost of superhedging: the cheapest
superhedging strategy,

.
MP(H) = inf{Vp, 36 € S, P(Vp+ / 6dS > H) = 1
0
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Superhedging:

» Intuition: When some option writer/seller is
willing to take the risk at some certain price, it
means he can at least partially hedge the option
with a cheaper cost, thus the this price
represents an upper bound for the option.

» Similarly, the cost of superhedging a short
position in H, given by —IN*“P(—H) gives a lower
bound on the price.

» Henceforth, we pin down an interval:

[=MPP(=H), % (H)]
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Superhedging:

Prop10.1 Cost of superhedging:

» Consider a European option with a positive
payoff H on an underlying asset described by a
semimartingale (S;):cjo, 7] and assume that

sup EQ[H] < o0
QeM(S)

Then the following duality relation holds:

inf (Vi(0). B(V7(6) > H) = 1} = esssupE [
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Superhedging:

Prop10.1 Cost of superhedging(con'd):

» In particular, the cost of the cheapest
superhedging strategy for H is given by

[M*“P(H) = esssUPQem,(s) E@[/:I]

where M,(S) is the set of martingale measure
absolutely continuous wrt to P
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Superhedging:

Prop10.1 Cost of superhedging(comments):

» preference-free method: no subjective risk
aversion parameter nor ad hoc choice of a
martingale measure

» in terms of equivalent martingale measures,
superhedging cost corresponds to the value of
the option under the least favorable martingale
measure
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Superhedging:
Application of Prop 10.1: Superhedging in
exponential-Levy processes: Propl0.2

» So we have S; = SpexpX; where (X;) is a Levy
process, if X has infinite variation, no Brownian
component, negative jumps of arbitrary size and
Levy measure v : fo dy) = 400 and

f—1 v(dy) = +oo then the range of prices is:

inf E@[(ST — K)T], sup E9[(S7—K)"
QeM(S) QeM(S)
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Superhedging:

Application of Prop 10.1: Superhedging in
exponential-Levy processes: Propl0.2

» If X is a jump-diffusion process with diffusion
coefficient o and compound Poisson jumps then
the price range for a call option is:

[CBS(Oa 50; T7 K1 0)7 50]
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Superhedging: Comments

» From the above, the superhedging cost is too
high. Consider S; = Soexp(oW; + aN;), apply
propl0.1, we find that the superhedging cost is
given by Sy, so however small the jump is, the
cheapest superhedging strategy for a call option
is a complete hedge.

Chapter 10: Pricing and hedging in incomplete markets



Utility Maximization

» “As if" method: the agent is picking some
strategy to max utility level:

max EF[U(2)]

usually, U : R — R is concave, increasing, and
P could be seen either as a prob distribution
objectively or subjectively describe future events.

» The concavity of U is related to risk aversion of
the agent. say U(x) = In(x), U(x) = 2=

l—«
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Utility Maximization: Certainty equivalent

» Another way to measure risk aversion: c¢(x, H)

» U(x + c(x,H)) = E[U(x+ H)] = c(x, H) =
U Y E[U(x + H)]) — x

» Intuition: at the same level x, faced with the
same H, the higher compensation you require,
the more risk averse you are

» Notice: c is not linear in H, ¢ depends on x
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Utility Maximization: Utility indifference price

» The agent wants to max his final wealth:
T
VT =X+ fO (btdSt:

;
u(x,0) = sup EF[U(x + / ¢:dSt)]
PeS 0

» Suppose now it buys an option, with terminal
payoff H, at price p, then

-
u(x —p, H) = sup EF[U(x — p+ H+/ $:dS;)]
PES 0
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Utility Maximization: Utility indifference price

» The utility indifference price is defined as price
mu(x, H):

u(x,0) = u(x — my(x, H), H)

» Notice:
1.7y is not linear in H
2.my depends on initial wealth, except for
special utility like: U(x) =1 — e
3.To same U, same x, same H, buying and
selling derives different price:
u(x,0) = u(x + p, —H)
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Utility Maximization: More comments

» The "As if" method: from vNM, Savage

» Hard to identify U and P, and there is
homogeneity among agents

» Attack to nonlinearity: remedies—quadratic
hedging(where the utility is : U(x) = —x?

Chapter 10: Pricing and hedging in incomplete markets



Utility Maximization: Quadratic hedging

» As if the agent is choosing so to min the
hedging error in a mean square sense.

» Different criterion to be min in a least squares
sense can be:
1.hedging error at maturity = “Mean-variance
hedging”;
2.hedging error measure locally in time —
local risk min.

» The two approaches are equivalent if the
discounted price is a martingale measure.
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Going Further: “Optimal” martingale measures

» By fund theorem , choosing an arbitrage-free
pricing is choosing a martingale measure Q ~ P

» More general, we're choosing prob measures
according to:

Q) =€ 150

dP

where f : [0,00) — R is str convex, Jr a
measure of deviation from the prior P
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Going Further: “Optimal” martingale measures

» Some example: relative entropy:

9,9

_ P
HQ.F) = E [d]P’nd]P’

» quadratic distance:
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Going Further: “Optimal” martingale measures

» More on relative entropy: here f = xIn x

_ dQ dQ| o, dQ
H(Q,P)_Eplﬁlnﬁ]_E [n ]

dP

» So given (S;) the minimal entropy martingale
model is defined as a martingale (S;) such that
the Q* of $* minimizes the relative entropy wrt
P among all martingale process:

inf  HQ.P
@ell\r)la(S) @P)
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Going Further: “Optimal” martingale measures

» Interpretation for min entropy martingale model:
minimizing relative entropy corresponds to
choosing a martingale measure by adding the
least amount of info to the prior model.

» Existence: 7 But for exp-Levy, nice
result(analytic computable ) in Prop10.7
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