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Stopping Times

@ Stopping time:
{7' S t} € ft
@ Indicator process:
NT(t) = 1{T§t}
@ Predictable stopping time: it has an announcing sequence.

(]

Totally inaccessible stopping time: No predictable stopping
time can give any information.

P(r=7"<o)=0

for any 7/ predictable.
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Hazard Rate

@ Let 7 be a stopping time and F(T) its distribution function.
Its hazard rate is defined as.

f(t, T)

T =1 F e T

where F(t, T) = P(7 < T|F;)
@ Interpretation:
. 1
h(t, T) = /’mAt—>OEP(T < T+ At|r > t)
@ Or, by looking at:

F(t,T) =1 — e~ Ji hes)ds

we see that, again, it is like forward rates.
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Point Processes

{T,', I € N} = {Tl,TQ,...}

Counting Process
N(E) = 1<y
Predictable Compensator Process
M(t) = N(t) — A(t) is a martingale

If A is differentiable we define the intensity as:

A(t) = /0 “A(s)ds
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Point Processes ||

@ Assume that A is differentiable.
@ These type of models are called intensity models (chapter 7).

o All the models in chapter 9 don't satisfy this.
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Hazard /Intensity

Hazard rates and intensity are related, under some conditions:

A(t) = h(t,t)
There are two ways of viewing a counting process:

@ As a stochastic process (predictable compensator, intensities,
etc.)

@ By looking at the distribution of the next jump time (using
hazard rates)
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Hazard/Intensity I

o If we know P(t, T) and it is differentiable wrt T (at T = t)
then (under conditions of theorem 4.1) :

dA(t)
dt
@ Converse is not true.

0
= —87T’T:tp(t, T) = h(t, t)

@ Starting from the intensity does not always give easy access to
the survival probability.

v
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Marked Point Processes and the Jump Measure

@ A marked point process is a point process in which the jumps
are stochastic:

{(7i,Y7),i € N} = {11, 7, ...}

@ One way to generalize the counting process is:
X(t) == Z Yilir<ty
i

@ However, sometimes Y could take values that are not
numbers (the name of the defaulting company, jumps in the
rating classes etc.)

@ Because of this we use a different approach: the jump
measure.
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Marked Point Processes and the Jump Measure Il

@ We first define the concept of random measure:
v: QxExB(Ry)— > Ry is a random measure if for every
w € Q,v(w,-,-) is a measure on ((ExR),& ® B(Ry)) and
v(w, E,0) = 0 identically.

@ We can use random measures to construct stochastic
processes by integrating.

@ The jump measure of a marked point process is a random

measure:
1w, E, [0, 1]) = // oyl 65)

Z Lnw) <oy lviw)eery
i=1
o By integrating against the jump measure we can represent
functionals of the marked point process.
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The Compensator Measure

@ The idea here is that, given a random measure, there exists a
predictable random measure so that for every predictable
stochastic function f(w, e, t) the process defined by:

M(w, t) := /Ot/Ef(w, e, s)u(w, de, ds)—

/ot /E f(w, e,s)v(w, de, ds)

is a local martingale.

@ Many times we can separate the probability that an event
occurs from the conditional distribution of the marker given
that an event has occurred.

v(de, dt) = K(t, de)dA(t) with / K(t,de) =1
E
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The Compensator Measure |l

In discrete time:

@ Suppose

X(w, t) = / ot /E (s, e)u(de, ds)

@ In discrete time:

X(t) = X(tr-1) = [ F(tr ehn(de)

@ f has to be adapted (for X to be).

@ We will ask it to be predictable: at time t,_1 we will know
what f will be at time t, conditioned on Y.

o Define vy(de) = P(Y € de and 7 = t,|F})
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The Compensator Measure Il

e So:

E((X(tn)—X(tn—l))\fn—l)—/f(tn,e)l/n(de)

E
@ We can now construct the compensator:

A(tn) — Atn_1) :/Ef(tn,e)u,,(de)

@ Then A is predictable and X — A is a martingale.
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The Compensator Measure 1V

Examples

@ Poisson Process N(t) with intensity A (constant)

o Compensator measure v(de, dt) = dy—1(de)Adt
o Conditional distribution dA(t) = Adt, K(de) = dy—1(de)

@ Poisson Process N(t) with intensity A(t) (stochastic)

o Compensator measure v(de, dt) = dy—1(de)\(t)dt

o Conditional distribution dA(t) = A(t)dt, K(de) = dy—_1(de)
@ Marked inhomogeneous Poisson Process |

o Marker: Y ~ N(0,1).

o Compensator measure v(de, dt) = \/%efl/%z)\(t)dedt

o Conditional distribution

dA(t) = A(t)dt, K(de) = A=e~1/%"de
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The Compensator Measure V

More Examples

@ Marked Poisson process Il

o Marker Y is the value of a geometric brownian motion at time
t (the time of the jump).

o Compensator measure v(de, dt) = dy—_g(;—)(de)A(t)dt

o Conditional distribution
dA(t) = A(t)dt, K(de) = dy—_s(:—)(de)

@ Lognormal Jump Diffusion

e Jump times triggered by a Poisson process with parameter \.
o Marker Y (log of the jump size) is N(0,1).
o Compensator measure v(de, dt) = \/%efl/2e2)\(t)dedt
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The Compensator Measure VI

More Examples

o First hitting time process

e Arrival time is the first time that a geometric brownian motion
S(t) hits a barrier.

o No marker

o Compensator measure v(dt) = dA(t) where

_ [ 1 if the barrier is hit S(t) = K
dA(x) = { 0 otherwise

@ Since the default arrival is predictable its compensator is the
process itself.
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The Compensator Measure VII

More Examples

@ A (maybe not so) unusual process

o Compensator measure v(de, dt) = %dedt for 0 ¢ de where

e This process has an infinite number of very small jumps and a
few larger ones.

o If [a, b] is an interval away from zero then jumps of a size in
[a, b] occur with an intensity of

b
1
A[a’b]:/a @de

e So, the process can be viewed as a collection of Poisson
processes, one Poisson process per interval in R. The intensity
converges to infinity the closer we get to zero.

@ In the book he assumes that the processes have a finite
number of jumps in any finite interval. So, processes like this
are excluded.
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The Compensator Measure VIII

More Examples

@ A very simple process

e Jumps occurat, =2, =4,73 =38, ...

e This is known at the beginning.

e This is known at the beginning so it is predictable and then its
compensator is the jump measure itself:

v(de, dt) = §;—,(dt)
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[t6's Lemma For Jump Processes

@ The processes considered have RCLL paths.

o Notation AX(t) := X(t) — X_(t), X9(t) := Y, AX(s),
Xe(t) :== X(t) — X9(¢).

o Let X = (X1,..., X") be an n—dimensional semi-martingale

with a finite number of jumps and f a teice differentiable
function on RY. Then f(X) is also a semi-martingale and:

FX(8) — Z / OIS i)+
2 . .
Z / 9 gx, axj < XS X > (s)+

D Af(X(s

s<t
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[t6's Lemma For Jump Processes I

@ The jump times 7; and the jump sizes AX(7;) define a
marked point process.

@ This marked point process has a jump measure py (which
puts mass 1 on the jump times and sizes of the jumps). and a
compensator measure Vy.

@ The process X can be rewritten:

dX () = dX<(t) + / xii(dx, dt)

X
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[t6's Lemma For Jump Processes Il

@ Using the jump measure:

fxo) - fx) = 3 [ axeis)
i=1 !

n

1 £ 2F(X_(s)) o
— N N 77 XC,I XC,_]
> ,;/0 B d < XS XY > (s)+

/t f(X_(S) 4 X) — f(X_(S))ﬂx(dxa C/S)
0 JRn
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Applications of 1t6's Lemma

@ In a lot of applications X can be written as a jump diffusion
process

K
dX' = aidt + Y oudW + / hi(x)px (dx, dt)
k=1 e

@ And the compensator measure v can be decomposed as

vx(dx, dt) = K(t, dx)dA(t)
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Applications of 1t6's Lemma I

@ Can do It6 to find f(X) and its compensator.

@ In this case the predictable compensator is the sum of the
usual drift and:

/ ( / FX_(5) + x)K (s, dx) — F(X_(5)))dA(s)
s

which compensates for the influence of the jumps.

/ F(XC () + 0K (s, )

represents the expected value of f after a jump at time s.
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Applications of 1t6's Lemma Il

I1t6 product and quotient rule.

@ Let Y and Z be

K
dY
v = o + kg_l oy dWi(s) + /]R" R (x)px(dx, dt)
dz o
— =a"+ E o dWi(s) +/ h* (x)x (dx, dt)
Z- k=1 e

@ so, the jumps of both processes are driven by the jumps of a
third process X.

@ So doing It6 can find the process g(Y,Z) = YZ.
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Applications of 1t6's Lemma IV

The stochastic exponential

@ Let X be a stochastic process with AX > —1. Then Y(t) is
called the stochastic exponential of X iff Y solves:

dY(t) = Y_(t)dX(t)

o If X has finitely many jumps:

Y(t) _ eXC(t)*XC(O)f%<XC>(t) H(l +AX(S))

s<t
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Martingale Measure

@ Let @ be a probability measure If for every dividend-free
traded asset with price process p(t) the discounted process
% is a martingale under @ then Q is called a martingale
measure.

@ This is important because its existence is equivalent to
absence of arbitrage.
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Change of numeraire

@ Radon-Nikodym: Given two measures @ and P so that
P << Q (Q(A) =0=> P(A) = 0) there exists a density L so
that EP(X) = EQ(LX) for all measurable X.

o In a dynamic model we define L(t) = EQ(L|F;) then, if X is
Fr-measurable:

EP(XU:t) = EQ(LX‘}—t) = EQ(EQ(LXU:T)‘}—t) =

= EXEAUFDXIF) = EAUTIXIF) =

L(r)EQ(LL((f)’xm)
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Girsanov Theorem

@ It tells us how probabilistic properties of processes change
when we change measures.

@ A brownian motion under a measure @ does not need to be a
brownian motion under P.

@ Jump measures don't change (since path are unchanged) but
compensator measures will change (since compensators
determine probabilities.
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Girsanov Theorem I

@ Assume a probability space with a brownian motion (Wg(t))
and a marked point process p(de, dt) with its compensator
VQ(de, dt) = KQ(de))\Q(t)dt.

@ Define a process L as:

Z/(Lt(f)) = p(t)dWq(t)+ /E (®(e, t)—1)(u(de, dt)—vo(de, dt))
@ Then:

dWp(t) = dWqp(t) — ¢(t)dt is a P-brownian motion
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Girsanov Theorem Il

@ The compensator under P is:

vp(de, dt) = ®(t, e)vg(de, dt)

o If Y(t) = [ (e, t)Ko(t,de) and Le(e, t) = (e, t)/1(t) for
P(t) > 0 and Lg(e, t) = 1 otherwise. Then the intensity
under P becomes:

Ap(t) = h(t)Ao(t)

@ The conditional distribution of the marker is

Kp(t,de) = Le(e, t)Kg(de)
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Change of measure/Change of numeraire technique

Let p(t) be a price (under the money market numeraire, so
discounted..).

@ Then:
p(t) Q Xt
A F
b(t) (b(T)|'7:t)
o Consider a different numeraire A(t), and consider also the

A
process %h = 7A(O§t)( 5

Then X/A is a P-martingale iff (t) A(Agb)(t) is a Q-martingale.
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