The strictly 1/2-stable example

1 Direct approach: building a Lévy pure jump
process on R

Bert Fristedt provided key mathematical facts for this example.

A pure jump Lévy process X is a Lévy process such that X; for any time ¢
is the sum of all the jumps it has taken up to that time. We want to build
such a process X. The particular one we want is called the increasing strictly
1/2-stable process (Section 3.7, page 93 in Cont and Tankov).

1.1 The setting

We begin by thinking about telephone calls.

Suppose we are receiving a Poisson stream of calls. We start at height zero
and whenever the telephone rings we jump upward a unit amount. Then our
height, as a function of time, is a Poisson process.

Let us generalize this. Suppose that we receive telephone calls randomly,
but now each call gives us instructions: “Please jump an amount A”. If we start
at height zero and jump according to the instructions, our height as a function
of time is a random process X.

To describe this random process more precisely, we categorize each call ac-
cording to the size h of the jump which the call instructs us to make. If the
call tells us to jump by an amount h, we will say the call is of type h. Fix
an interval [a,b] with either 0 < @ < b or a < b < 0. Consider all calls of
type h, where a < h < b, that we have received by time ¢. The number of
these calls is assumed to be a Poisson process, which we might denote by Nt[a’b].
Furthermore we assume that for disjoint intervals [a,b] and [c, d] the processes

(Nt[a’b}) . and (Nt[c’d}) _, axe independent. But what are the rates of these
>0 >0

Poisson processes?

We will be quite general. We will describe our rates using a measure v on sets
of jump sizes. v will be the Lévy measure for the process X that we are going
to construct. It is also referred to as the intensity measure for the process X.

v is assumed finite on any set which omits an neighborhood of 0. That is,
v (A) < oo for any Borel set A such that 0 is not in the closure of A. For the
random structure of the calls that we have described, we assume that the rate
for N = 1 ([a,b]), and hence that the mean value of N/*" = v ([a, b)) .



We will also assume v ({0}) = 0, i.e. no calls of type 0, since a jump by an
amount 0 causes no change.

(Note that v (B) is also a mean value of an appropriate Poisson random
measure on [0,00) x R.)

Intuitively, the process X we are going to construct is such that at time ¢, the
value X; is the height we have reached by starting at height zero and jumping
according to the telephone calls we have received.

It is important to point out that we are allowing v to become infinite near 0.
Of course, this is dangerous, because if we get too many jump requests, even
though they are very small, the sum of the jumps may not converge. So we
will have to place some restriction on v. But we don’t need to require that
v(R) < 0.

(If it does happen that v (R) < co, we have the situation of the compound
Poisson process.)

We expect that it will be necessary to assume that

/ 22y (dz) < oo, (1)
(-1.1]

so that v will satisfy the requirements of any Lévy measure. However, for the
type of process we want, we must actually assume a stronger condition

/[_1 : |z v (dx) < oo, (2)

As Cont and Tankov explain in Proposition 3.9 on page 86, this condition is
required for a Lévy process to have paths of finite total variation. Since the
process we want is an increasing process, it definitely has paths of finite total
variation. (In general a Lévy process with paths of finite total variation is equal
to a pure jump process plus a drift.)

1.2 The case of a finite intensity measure

Before we concentrate on our particular example, let’s think a little more about
how we would construct a jump process with a finite intensity process. As we
noted earlier, this is the case of a compound Poission process. Once we have
studied this case, we’ll return to the construction of the example

To start with, let’s consider a really simple case. Suppose we have two
telephones, telephone 1 and telephone 2.

Telephone 1 receives calls from Philadelphia, and the calls form a Poisson
stream with rate A;. The number of calls received up to time ¢ (from some
initial time) form a Poisson process N}.

Telephone 2 receives calls from Boston, and the calls form a Poisson stream
with rate Ag. The number of calls received up to time ¢ (from some initial time)
form a Poisson process N?.

We assume these two streams are independent, which may be a reasonable
approximation for whatever situation we are modelling. A fundamental property



of the Poisson distribution is that then the total number of class N; = N} + N?
is also a Poisson process, with rate A = Ay + As.

Suppose that (for some reason), we can charge a client company $2 for each
call from Philly and $3 for each call from Boston. We call these amounts the
values of the calls. Then the total charges up to time t is a process X; =
2N} + 3N?, and this is a typical compound Poisson process. The intensity
measure v for this process is A1ds + A2d3. Notice we can check this from the
definition, since for any subset B of the real line, the expected number of calls
received in a unit time which have value in B is v (B) (there are only 4 cases to
check, depending on the number of elements in {2,3} N B).

Now suppose that we can’t afford two telephones. We buy a single telephone,
and route all the calls, both from Philly and from Boston, through our single
telephone. The number of calls by time ¢ is of course the process Ny = N} + N?
mentioned earlier. It is a Poisson process with rate A = Ay + A\2. But how can
we charge for the calls now, when we don’t know which calls are from which
city? We can make a reasonable guess, as follows. For each call, we toss a coin
which has success probability

pr= A1+ Ag
and failure probability
A2
—1—p =22
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If we obtain a success with our coin toss, we arbitrarily assign the call to Philly,
and charge $2. If we obtain a failure, we charge $3.

It is a fundamental property of Poisson processes that this new way of billing
gives us a process X, which is statistically indistinguishable from the previous
process X, i.e. X and X have the same distribution. Thus, though our records
are faked, on the average we are charging the correct amount.

The lesson here is that there are two equivalent ways to construct a com-
pound Poisson process with given intensity measure. We can either (i) add
multiples of independent Poisson processes, or (ii) split a single Poisson process
and multiply the pieces.

Method (i) seems more intuitive. Method (ii) seems to generalize more
readily.

Let’s now consider an arbitrary finite measure v on the Borel subsets of the
real line. We will construct a compound Poisson process which has v as its
intensity measure. We assume v is nonzero. Define the probability measure f
by

7By =280
v(R)

We imagine that we have a Poisson stream of telephone calls with rate A = v (R).
The number of calls by time ¢ is a Poisson process N; with rate \. When a call
comes in, we proceed analogously to Method (ii) above and randomly assign
the call a value to the call by sampling from the distribution f. The sum of




the values for times up to time ¢ is the compound process X with intensity
measure v. More precisely, we construct an iid sequence Z,,, n = 1,2,..., where
each Z,, has distribution f. Then we let

Ny
Xi=> 7
j=1
This is how Cont and Tankov define a compound Poisson process.

1.3 Approximating X

Now we return to the construction of our increasing example. We won’t restrict
ourselves to a particular Lévy measure in this part though.

Let C be a Borel subset of R such that 0 is not in the closure of C'. Then
v (C) < oo. Suppose we decide to ignore calls that request jumps which are not
in C. What kind of process do we get using the remaining calls?

The measure describing the calls that we accept will be denoted by v“, where

VY (A)=v(ANC).

Define the probability measure f€ on R by

Z/C
OEE

Let M be a Poisson process with rate v¢ (R). Let (Zn) >0 be an iid sequence
such that each Z, has distribution f¢. Define

M
X¢ = Z .
n=1

This compound Poisson process describes jumping according to the telephone
calls which are of type h, where h € C.

When C' is a bounded set the integral of Z,, exists and is finite. In that case
it is intuitively clear (and easy to prove) that

EXC = /ny (dx). (3)

Now we would like to approximate X using the processes X©. Since calls
with small jumps are the problem for us, it’s natural to start our construction
of the true process X by fixing ¢ > 0 and taking C' = (—¢,¢)¢. We can hope
that X is the limit of the processes X (=) as ¢ — 0.

To simplify our discussion, let’s focus on processes that only take positive
jumps. That means that from now on we assume that

v ((—00,0]) = 0. (4)



In this case X(=52)° = Xle:00),

Consider a sequence €, > 0, k = 0,1,... such that ¢, decreases to zero. We
would like to show that X[##:°) converges to a limit. We can always arrange our
construction so that the random variables X[€0:°°) and X[Ewer-1) =12 ...
are independent, and set

k
Xlew0) — xleo,00) | ZX[EkwEk—l),

Jj=1

since this definition gives the correct distribution. Hence we see that we would
like to show that the infinite series

Z X lEren-1)
k=1

converges. The terms in the series are independent random variables, so if the
series converges in the weakest sense (in distribution) then it converges almost
surely. Furthermore, the Three Series Theorem of Kolmogorov applies.

Cont and Tankov discuss a similar situation on page 82 of Section 3.4. They
point out that the Three Series Theorem shows why the fundamental condi-
tion (1) must hold for a Lévy measure, because the sum of the variances of the
truncated series elements must be finite. However, the the Three Series Theo-
rem also says that the sum of the means of the truncated series elements must
converge.

By (3) we have

Exleren-1) — / av (dz) .
lek,ern—1)

In our case, because the random variables X [€5€k-1) are nonnegative, conver-
gence of the sum of the means is easily seen to be equivalent to condition (2).
Since we have assumed that v ((—oo,0]) = 0, this is also equivalent to requiring
that

/ av (dx) < oo. (5)
(0,1]

Hence this is the requirement we will actually make for v.

Remark Although the Three Series Theorem of Kolmogorov gives us insight
in general, we don’t really need it for our situation here. We have chosen our
random variables X[##>) so that they are increasing. The Monotone Conver-
gence Theorem then shows that X[%%:°°) will converge to a finite limit if and
only if (5) holds.

1.4 Choosing the Lévy measure

We have discussed the construction of a general increasing pure jump process.
Now we specialize to the one we are actually interested in. Let v have density



g, where

1_,.-3/2 f 0
x orx > U,

glz)=4¢ V¥ , (6)
0 otherwise.

According to Cont and Tankov, equation (3.31) on page 93, a strictly -
stable process X must satisfy the following scaling condition: for each ¢ > 0,

(57) L, £ Oesa )

Let’s verify that for our process X, with o = 1/2.

First let’s think about the Lévy measure for (X ),~,. Compared to the
original process X, everything happens c times as fast for this new process.
Hence the Lévy measure for (X),- is exactly cv, and thus the density is cg.

Now consider the process ¢2X. Let u denote the Lévy measure for this
process, with density g. Compared to the original process X, the jumps of the
new process are ¢ as large. Hence

1 (¢*B) = v (B)

for every Borel set B. Hence

22 we have

/Bg (Pz) Pdx = /Bg(w) dzx.

Since this holds for all B we have

g(z) * =g(x)

Letting y = ¢

for all z. That is,

W) =g(cy)c?=g(y) e =cgly).
It follows that ¢>X has the same Lévy measure as (X¢),s, so the processes are
the same. -
This shows that our constructed process X really is the strictly 1/2-stable
process, as claimed.

Remark on uniqueness An increasing strictly a-stable process X is de-
termined by «, up to a constant factor in the time scale. If we don’t require
that the process be increasing then there are more possibilities, since we could
consider the difference of two independent increasing strictly a-stable processes.



1.5 Frequent jumps

Consider a time interval [0, ], where b > 0 may be very short. Since v ((0,1]) =
00, we can find a sequence I, of disjoint intervals which are subsets of [0, 1],

such that -
Z v(I,) = 0.
n=1

Let A, be the event that X has a jump of size h during the time interval [0, b],
where h € I,,. The events A,, are independent.

Since the number of calls during the time interval [0,b] which have size in
I,, is a Poisson random variable with mean v (I,) b, we know that

P(A,)=1—¢ VU,
By calculus there exists a constant ¢ > 0 such that for 0 < x < 1 we have
1—e*>cx.
Hence for all x > 0 we have
l1—e®>caxANl

It follows that -
> P(4,) = o
n=1
By the second Borel-Cantelli Lemma we know that with probability one X has
a jump during [0, b] with size in [0, 1].
Thus X takes infinitely many jumps during every interval of time.

2 The connection with Brownian motion

Here we follow some material in N. Krylov’s book ( Introduction to the Theory
of Random Processes, Theorem 2.6.1 and Exercise 5.2.11).

2.1 Defining the process via stopping times

Let (W¢),~ be the usual Brownian motion process on R. For each a > 0, let
To=inf{t: t >0, Wi >a}.

Thus 7, is the first hitting time of [a, o) by W. Since W is a continuous process,
it cannot reach (a, c0) without first being equal to a. Thus 7, is in fact the first
time ¢t that W, = a.

It is intuitively reasonable from the stationary independent increments prop-
erty of of Brownian motion that (7,),~ is a process with with stationary inde-
pendent increments. We will call this process X. We will show that X is the
same increasing strictly a-stable process constructed already.



Since W is a continuous process, for any a < b the process W cannot move
instantly from a to b. It follows that X is a strictly increasing process.

It is easy to check from the definitions and the continuity of W that X is
a caglad process. Naturally we could easily modify X to make it cadlag, if we
had a reason to do so.

Consider a point a such that 7, = s and W. has a local maximum at time s.
(There are many such points, because Brownian motion wiggles so much.) Let
4 > 0 be such that Wy < a for t € (s — §,s + 9). It follows from the definitions
that X has a jump at time a of size at least 6. We can show in this way that X
has infinitely many jumps in every time interval. The set of jump times are
dense but are countable since the jumps add to a finite sum.

2.2 The maximum process

Let
My = max {W,: s <t}.

This process gives the maximum attained by Brownian motion up to time ¢,
so it is necessarily nondecreasing and continuous. Notice that it has lots of
flat spots, i.e. intervals of constancy. Indeed, using the scaling property of
Brownian motion and the independent increments property, we can show that
with probability one the complement of the union of the intervals of constancy
is a Lebesgue null set.

The process 7. just constructed earlier satisfies the following equation, by
simple logic:

To=inf{t: t >0, My >a}.

Actually 7. is is a kind of inverse to M.. Of course it is not the usual inverse,
because M. is not one-to-one. But we know how to find an “inverse” of a dis-
tribution function when we are constructing random variables, and the formula
we use in that situation the same one that holds for 7., even though M. is not
a distribution function. So loosely speaking 7. is the inverse of M..

Then range of 7. is uncountable, since 7. is strictly increasing and hence is
one-to-one. One can show that the range of 7. has Hausdorff dimension 1/2.

2.3 The reflection principle

We would like to find the distribution of X,. First we review a property of
Brownian motion.

Lemma 1 (Reflection) Let W be Brownian motion. Let a,b > 0. Then

P (org?gbwt < a) =P(|W| <a).

Proof Let 7 =7, Ab.



Consider the map 6 : C ([0,00)) — C (]0,00)) defined by

f @) for t < 7,

0 t) =
S f(ma) = (f(t) = f(7a)) fort> 7.

Since Brownian motion has no preference for left or right, we can convince
ourselves that 6 o W has the same distribution as W. Thus after time 7,, W is
equally likely to pursue the reflected version of its path as to pursue the original
version of its path.

We note that since W, has a density, P (W, = a) = 0.

Combining these facts, and drawing the appropriate picture, we conclude
that given 7, < b, the probability that W}, > a is exactly one-half. That is,

P(max Wt2a> =2P (W, > a).

0<t<b

That is,
1-P W, =1-2P (W, - p
(&% t<a) (Wy > a) = P(|Wy| < a),

where we use the symmetry of W, in the final inequality.
This proves the lemma.

3 The distribution of X,

Using Lemma 1 we have

a/Vb 1
e T2y

b

P (X, >b) = P(Wi| <a) = P (VoW <a):2/

( ) (| b| ) | 1 ‘ 0 \/%
where we rescaled the normal density to make the next step easier. The next
step is in fact differentiation with respect to b. This shows that X, has a density
he on (0,00) given by

ha (x) = \/%ax_S/Qe_“Q/h. (8)

It also follows from the fact that P (X, > b) = P (|W3| < @) and the station-
ary increments property for X that X is stochastically continuous.

Hence X is a Lévy process. But which one? We will show below that X
has the Lévy measure v studied earlier and given by (6). Hence that X is the
strictly 1/2-stable process. However, we can also check the strictly 1/2-stable
property directly from the definition.



Fix ¢ > 0. For b > 0 we have

P(X..>b) = P(max W, <ca>

= P max—<a
0<t<b ¢

(max Wije2 < a)
0<t<b
( max W, < a>

0<s<b/c?
= P(Xo>b/*)=P(Xys>b).

I
e

This shows that 4
(XCG)tZO = (C2Xt)t20'

Hence by definition X is strictly 1/2-stable.

3.1 Finding the Lévy measure directly

As part of the proof of the Lévy-Khinchin decomposition (see Krylov’s text-
book), one can prove that the Lévy measure measure v (for any Lévy process
X) has the following property.

/gdy = lim nEg(Xi,), (9)

for any bounded continuous function with compact support whose support does
not contain the origin.
Taking a = 1/n in (8) shows easily that v is given by (6).
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