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Linear Default Correlation

Consider two obligors A and B, fixed tie horizon T .

P(”A defaults before T”) = pA and similar for pB .

To know the correlation we need also the joint distribution or
the conditional probabilities.

ρAB =
pAB − pApB√

pA(1− pA)pB(1− pB)

If we have two obligors the pairwise correlation is enough. If
we have more combinations.

So, for larger portfolios it is impossible to describe all the
possible events with pairwise correlations.
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Size of the impact of default correlation

If pA and pB are not too big and the correlation is not
negligible then the joint probabilities of default and the
conditional probabilities are dominated by ρAB .
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Price bounds for FtD Swaps

Clearly, the CDS spread on an FtD has to be bigger than the
spread of the worst credit in the portfolio.

Also, it has to be lower than the sum of the credit spreads of
all the credits in the basket.

The exact value depends on the correlation.

In a CDO the holder of the equity piece is long correlation and
holder of the senior piece is short correlation.
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The need for theoretical models of default correlation

It is hard to get data on joint defaults.

The alternative is to use credit spreads.

However, no clear justification for the size and strength of the
link between credit spread correlation and default correlation.

Main problem is that to describe the full joint default
probbilities is too complex. For N obligors there are 2N joint
default events. Compare this to the case of describing the
dynamics of N continuous variables in which we can assume
that they follow a normal (or lognormal) distribution and then
the correlation structure is given by N(N − 1)/2 parameters.
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Extreme cases

Independent Defaults

If we have N obligors, exposure, recovery and probability of
default between times 0 and T are the same L, π, p.

If X is the number of defaults the the loss is X (1− π)L.

If defaults are independent then the loss distribution is
binomial (N, p).

Perfectly dependent defaults

If, under the same assumptions on L, π, p, the default are
perfectly correlated the distribution is similar (up to scale) to
the loss distribution for 1 obligor. So, it is also a binomial
distribution but with 1 draw.
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Binomial Expansion Method (BET)

Used by Moody’s to assess the default risk in bond and loan
portfolios.

Not based on a formal portfolio default risk model, can be
inaccurate and generally unsuitable for pricing but has become
a market standard for risk assessment.

It is based on the extreme cases. Since both are binomial,
define a diversity score D as the number of independent
obligors (and we aggregate on those the dependent ones so L
becomes LN/D).
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Factor Models

Assume that the default is triggered by by the change in the
value of the assets of the company. The value of the assets
are normal (Vn(T )). Obligor n defaults if Vn(T ) < Kn.

The probability of default is given by Kn = Φ−1(pn).

Still need to specify the correlation matrix. One trick to
reduce dimensionality is to use factors.

One factor model Vn(T ) =
√

ρY +
√

1− ρεn, where Y is a
common factor and εn is idiosyncratic.

So, we have reduced the number of correlation parameters to
1.

Another way of saying this is: conditional on the systematic
factor Y , the firm’s values and the defaults are independent.
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Factor Models II

The distribution of the defaults

Assume that default happens if Vi (T ) reaches K .

So, conditional on y the probability of default is

p(y) = Φ(
K−√ρy√

1−ρ
).

Using the fact that conditionally on the value of Y the default
probabilities are independent, can compute the distribution of
the discrete variable which counts how many defaults
happened between 0 and T :

P(X ≤ m) =
m∑

n=0

(
N

n

) ∫ ∞

−∞
p(y)n(1− p(y))N−nφ(y)dy

This can be used to give a density for the random variable
giving the loss in a portfolio containing many assets.

Models for Default Correlation Chapter 10



Correlated defaults in intensity models

Four approaches:

Correlate the intensities: can’t reproduce realistic levels of
dependence (low).

Joint default events: has an unrealistic distribution of defaults
over time and it is difficult to implement and calibrate
(defines three Cox processes, two driving defaults in isolation
and one driving joint defaults).

Infectious defaults: good intuition but hard to calibrate and
lacks tractability.

Incorporate a copula function.
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Correlated defaults in firm value models

Firms A and B default only at time T if VA < KA or
VB < KB , where VA,VB are the logs of the value of the
assets.

VA and VB follow brownian motions.

DWAdWB = ρdt.

Since the defaults happen only at time T we can assume
VA(T ) ∼ N(0, 1) and the same thing for B.

So the default probabilities are pA = Φ(KA), pB = Φ(KB) and
the joint def prob pAB = Φρ(KA,KB).
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Correlated defaults in firm value models II

Now, if share prices are functions of the firm value then (by
Itô) local correlation between share prices and firm value
processes should coincide.

This is is not true in reality: calibration of firm value
(one-factor) models give lower local correlation than share
prices.

Possibly due to liquidity?

Another problem: timing. Some people proposed models to
solve this in this context.
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Copula Functions

So far all the approaches considered had problems:

Firm-value: timing.
Barrier based firm value: hard to calibrate and implement.
Intensity-based: large number of parameters.

The idea of copulas is to separate the individual term
structure of default risk from the dependency model.

Remember: is X is a continuous random variable then
U = FX (X ) is uniform. Also, if U is uniform then
Y = F−1(U) has distribution F (F continuous).
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Copula Functions II

The most common definition is:

A copula is a function C : [0, 1]l → [0, 1] so that
a) There are random variables U1, ...,Ul taking values in [0, 1] such
that C is their distr function.
b) C has uniform marginal distributions C (1, .., 1, ui , 1, ..., 1) = ui .

However that definition does not say what should C satisfy
(important when building copulas by other methods than just
taking a given distribution)

A copula is a function C : [0, 1]l → [0, 1] so that
a) C (u) = 0 if at least one of the ui s is zero.
b) C (1, ..., 1, ui , 1..., 1) = ui .
c) The volume of every hypercube is nonnegative.
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Copula Functions III

Sklar’s Theorem:

Let X1, ...,Xl be random variables with marginals F1, ...,Fl and
joint distr F . Then there exist a copula C so that
F (x) = C (F1(x1), ...,Fl(xl)). So C is the distribution function of
the random vector of uniform variables (F1(x1), ...,Fl(xl)).
Moreover, if all the marginals are continuous then C is unique.
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Copula Functions IV

Neat Property:

fX (x1, ..., xn) = fU(FX1(x1), ...,FXn(xn))
n∏

i=1

fXi
(xi )
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Copula Functions IV

Examples

Product Copula: Πl(v1, ..., vl) = v1.v2...vl . Gives
independence.

Gaussian: CΣ(u) = ΦΣ(φ−1
1 (u1), ..., φ

−1
l (ul)).

Notice that the ui s can now be taken as F (yi ) for random
variables Yi with a non-normal distribution. So the result
would be a joint distribution with chosen marginals but
Gaussian dependence structure.

Similarly, can define a t-copula.
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Copula Functions

Tail Dependence

For a bivariate copula C :

C as upper tail dependence parameter λU if:

lim
u→1

1 + C (u, u)− 2u

1− u
= λU > 0

C as lower tail dependence parameter λL if:

lim
u→0

C (u, u)

u
= λL > 0

They give a measure of how many data points are concentrated in
the upper and lower squares.
For Gaussian copulas there is no tail dependence, so extreme
events happen almost independently, the same is not true for
t-copulas (page 333).
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Copula Functions V

Dependence Concepts

If X is a random vector with copula C (u) and fi are strictly
increasing functions, then C is also the copula of the vector formed
by the fi (Xi ).

The problems with correlation

It’s a linear measure: variables that are strongly (but not
linearly) related can have low correlation.

Take two normal variables with correlation ρ, form lognormal
distributions from them. These have correlation different from
ρ.

Depends on the marginals, not just the dependence structure
(copula).
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Copula Functions VI

Concordance

Let (x , y) and (x̄ , ȳ) be two observations from a vector of
continuous random variables.
Then (x , y)) and (x̄ , ȳ) are said to be concordant if
(x , y)− (x̄ , ȳ) > 0 and discordant if it is < 0.
Main result:

If (X ,Y ) and (X̄ , Ȳ ) are independent vectors of continuous
random variables with joint distr H and H̄, common marginals
F (for X ) and G (for Y ) and copulas C and C̄ (so
H(x , y) = C (F (x),G (y))). Then the difference between the
probability of concordance and the probability of discordance
is given by:

Q = Q(C , C̄ ) = 4

∫ ∫
[0,1]2

C̄ (u, v)dC (u, v)− 1

Also, Q is symmetric.
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Copula Functions VII

Definition of a measure of concordance

κ is a measure of concordance between two variables X and Y
with copula C if:

−1 ≤ κX ,Y ≤ −1 and κX ,X = 1, κX ,−X = −1.

It’s symmetric.

If they are indep κ is 0.

κ−X ,Y = κX ,−Y = −κX ,Y

Pointwise limit is preserved.

κ preserves the order.
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Copula Functions

Kendall’s tau and Spearman’s rho

Kendall’s τ is defined as

τ(X ,Y ) = P((X − X̄ )(Y − Ȳ ) > 0)−P((X − X̄ )(Y − Ȳ ) < 0)

Can be proved that τ(X ,Y ) = 4E (C (U,V ))− 1, where C is
the copula of (X ,Y ) and U,V are uniform.

Spearman ρ is defined as the correlation of the grades:

ρS(X ,Y ) = ρ(F (X ),G (Y ))
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