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Term Structure Models

@ Black-Scholes models 1 underlying.
@ What if we need more? spread, basket options.
@ Need correlation structure of the market.

@ What if the market is naturally a curve?

o Interest rates.
o Commodities.

@ Does it make sense to model each underlying individually?
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Crude Curve through time
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Natural Gas Curve through time

for explanation. N108 Comdty CTGH
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Term Structure Models

Black's model:

@ Each possible underlying is lognormal.
@ What if we need to use more than one rate?
1-Factor models (Vasicek, Ho-Lee)
@ Model the short rate, derive the rest of the
curve from it.
@ 1-factor not rich enough, how do we add factors?
@ Adding factors not obvious.

HIM

@ Forget Black-Scholes..
@ Model the whole curve.
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HJM

@ How?? oco-many points.

@ However correlation is high.

@ Maybe the moves "live” in a lower dimensional space.

Instead of
dF;
Fi
with W;, W; correlated do

= o;dW;

k
dF;
o
! i=1

k < n (hopefully)
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HJM

@ How?? oco-many points.
@ However correlation is high.

@ Maybe the moves "live” in a lower dimensional space.

Instead of
Fi :
dl__. = o;dW; i=1,...,n
with W;, W; correlated do
dFi <
F-I = ZJL,-de k < n (hopefully)
! i=1

But, how do we choose the o;; 77
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Litterman-Scheikman (1991)

@ Looked at the treasury yield curve.

@ Found that just a few eigenvectors are the important ones.

@ Three of them explain most of the moves.

Level-Slope-Curvature

o Very Intuitive.
o Curve trades.

Cortazar-Schwartz (2004) found the same in copper

Loads (or lots?) of other people report the same kind of
results in many other markets.
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o Study predictive power in oil.
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Predictive Power

@ Recently, some work has been done on this.
e Monch (2006)

e Studies innovations in level-slope-curvature wrt macro
variables.
o Positive answer for curvature.

e Diebold-Li (2006)

o Use autoregressive models for each component.
e Study forecast power at short and long horizons.
o Report encouraging results at long horizons.

o Chantziara-Skiadopoulos (2005).

Study predictive power in oil.

Results are weak.

Also look at spillover effects among crude (WTI and IPE),
heating oil and gasoline.

Some spillover effects found.

(]

(]

(]
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Table: Correlation Matrix for Changes of the First 12 Crude Oil Futures Prices
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Forzani-T (2003)

@ Why is the result " market-invariant”?
@ Because all the correlation matrices are very similar.
o They all look like pl"~! with p close to 1.

@ Proved that the eigenvectors of those matrices converge to
cos(nx) when p — 1.
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Forzani-T (2003)

Correlation matrix:

T 5T T
1T e g Tn ’ T
pn 1 pn p(”—1)7
_ T _ T _3\T
pr DT DT 09 1l
,0”7 p(nfl)z p(nf2); pn 1
or, as an operator:
T
KJ(X)Z/0 P (y)dy. (1)
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@ A big part of the correlation structure is given by:

R(t, T1)T1 = R(t, T())TO - f(t, To, T1)(T1 — To)
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@ So, it is an artifact.
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the correlation matrix of the zeros.
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Lekkos (2000)

@ A big part of the correlation structure is given by:

R(t, T1)T1 = R(t, To)To 4F f(t, To, T1)(T1 — TO)

@ So, it is an artifact.

@ Even if we generate independent forwards we find structure in
the correlation matrix of the zeros.

@ Looked at the PCAs of fwds in various markets, found nothing
interesting.
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Alexander-Lvov (2003)

@ They study different fitting techniques for the yield curve.
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Alexander-Lvov (2003)

@ They study different fitting techniques for the yield curve.

@ Found that this choice is crucial to the correlation structure
obtained.
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Alexander-Lvov (2003)

@ They study different fitting techniques for the yield curve.

@ Found that this choice is crucial to the correlation structure
obtained.

@ Could Lekkos' critique be just a matter of the choice of the
fitting technique?
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Lord, Pessler (2005)

@ They ask the question:

Can we characterize " level-slope-curvature”?
@ They look at sign changes in the eigenvectors.
@ "Level’ means no sign changes.

@ This is solved by Perron’s theorem.
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Lord, Pessler (2005)

Perron's Theorem:

Let A be an N x N matrix, all of whose elements are strictly
positive. Then A has a positive eigenvalue of algebraic multiplicity
equal to 1, which is strictly greater in modulus than all other
eigenvalues of A. Furthermore, the unique (up to multiplication by
a non-zero constant) associated eigenvector may be chosen so that
all its components are strictly positive.

v
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Lord-Pessler (2005)

@ A square matrix A is said to be totally positive (TP) when for
all p-uples n, m and p < N, the matrix formed by the
elements an;,m; has nonnegative determinant.
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TP.
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Lord-Pessler (2005)

@ A square matrix A is said to be totally positive (TP) when for
all p-uples n, m and p < N, the matrix formed by the
elements an;,m; has nonnegative determinant.

o If that condition is valid only for p < k < N then A is called
TP.

o If those dets are strictly positive they are called strictly totally
positive (STP).

@ This is all classical stuff in matrix theory.
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Lord-Pessler (2005)

A square matrix A is said to be totally positive (TP) when for
all p-uples n, m and p < N, the matrix formed by the
elements an;,m; has nonnegative determinant.

o If that condition is valid only for p < k < N then A is called
TP.

o If those dets are strictly positive they are called strictly totally
positive (STP).

@ This is all classical stuff in matrix theory.

@ In 1937 Gantmacher and Krein proved a theorem for ST
matrices.
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Lord-Pessler (2005)

Sign-change pattern in STPk matrices

Assume ¥ is an N x N positive definite symmetric matrix (i.e. a
valid covariance matrix) that is STP,. Then we have

A1 > Ao > o> A > A1 > Ay > 0, el at least the first k
eigenvalues are simple. Moreover denoting the jth eigenvector by
xj, we have that x; crosses the zero j — 1 times for j = 1,..., k.
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Lord-Pessler (2005)

@ Therefore STP3; = "level-slope-curvature”.
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@ Condition can be relaxed.
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Lord-Pessler (2005)

@ Therefore STP; = "level-slope-curvature”.
@ Condition can be relaxed.

@ Definition: A matrix is called oscillatory if it is TP, and some
power of it is STPy.
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Lord-Pessler (2005)

@ Therefore STP; = "level-slope-curvature”.
@ Condition can be relaxed.

@ Definition: A matrix is called oscillatory if it is TP, and some
power of it is STPy.

Sufficient condition can be relaxed to being oscillatory of
order 3 (actually to having a power which is).
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Lord-Pessler (2005). Schoenmakers-Coffey (2000)

@ The matrices in Forzani-T have constant diagonal elements
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Lord-Pessler (2005). Schoenmakers-Coffey (2000)

@ The matrices in Forzani-T have constant diagonal elements

@ Actually that is not true in reality. The diagonals increase in
size.

Carlos F. Tolmasky Principal Components Analysis in Yield-Curve Modeling



Lord-Pessler (2005). Schoenmakers-Coffey (2000)

@ The matrices in Forzani-T have constant diagonal elements

@ Actually that is not true in reality. The diagonals increase in
size.

@ In modeling correlations Schoenmakers-Coffey proposed a
family of matrices that takes this fact into account.
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Lord-Pessler (2005). Schoenmakers-Coffey (2000)

@ The matrices in Forzani-T have constant diagonal elements

@ Actually that is not true in reality. The diagonals increase in
size.

@ In modeling correlations Schoenmakers-Coffey proposed a
family of matrices that takes this fact into account.

@ Lord-Pessler show that these matrices are oscillatory.
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Lord-Pessler (2005). Conjecture
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Lord-Pessler (2005). Conjecture

Sufficient conditions for a correlation matrix to satisfy
" level-slope-curvature” are:
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Lord-Pessler (2005). Conjecture

Sufficient conditions for a correlation matrix to satisfy
" level-slope-curvature” are:

® pijy1 < pijforj =i
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Lord-Pessler (2005). Conjecture

Sufficient conditions for a correlation matrix to satisfy
" level-slope-curvature” are:

® pijy1 < pijforj =i

® pjj-1 =< pjjforj<i.
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Lord-Pessler (2005). Conjecture

Sufficient conditions for a correlation matrix to satisfy
" level-slope-curvature” are:

® pijy1 < pijforj =i

® pjj-1 =< pjjforj<i.

@ piitj < Pitl,itj+1
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Extensions: Multi-Curve, Seasonality. Hindanov-T (2002)

@ Sometimes we need to mix up different markets.
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Extensions: Multi-Curve, Seasonality. Hindanov-T (2002)

@ Sometimes we need to mix up different markets.
@ Example: Oil

o Not just timespreads, bflies but also cracks.
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Extensions: Multi-Curve, Seasonality. Hindanov-T (2002)

@ Sometimes we need to mix up different markets.
@ Example: Oil

o Not just timespreads, bflies but also cracks.

@ In that case we could price any structure in a muti-curve
market.
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Extensions: Multi-Curve, Seasonality. Hindanov-T (2002)

@ Sometimes we need to mix up different markets.
@ Example: Oil

o Not just timespreads, bflies but also cracks.

@ In that case we could price any structure in a muti-curve
market.

@ We can model something like this by assuming a constant
correlation intercurve and a different, also constant,
correlation intracurve.
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Extensions: Multi-Curve, Seasonality. Hindanov-T (2002)

@ Sometimes we need to mix up different markets.
@ Example: Oil

o Not just timespreads, bflies but also cracks.

@ In that case we could price any structure in a muti-curve
market.

@ We can model something like this by assuming a constant
correlation intercurve and a different, also constant,
correlation intracurve.

@ Depending on how high is the intercurve correlation we will
get "separation” vectors of different orders.
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PCA of crude and heating oil together

4
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Model for multiple curves
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Model for multiple curves

Let 1 and X be the intercurve and intracurve correlations.
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Model for multiple curves

Let 1 and X be the intercurve and intracurve correlations.

Then the correlation matrix C is given by:
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Model for multiple curves

Let 1 and A be the intercurve and intracurve correlations.

Then the correlation matrix C is given by:

(& ')
wily
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Model for multiple curves

Let © and A be the intercurve and intracurve correlations.

Then the correlation matrix C is given by:

(& ')
wily

where
1 p P p"
p 1 p p" 1
pn—l pn—2 pn—3 1 p
pn pn—l pn— p 1
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Model for multiple curves
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Model for multiple curves

If vi,..., v, are the eigenvectors of C, with eigenvalues Ay, ..., Ap.
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Model for multiple curves

If vi,..., v, are the eigenvectors of C, with eigenvalues Ay, ..., Ap.

Then the eigenvectors of C are of the form (v, vi) and (vi, —vk)
with 1 < k < n and
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Model for multiple curves

If vi,..., v, are the eigenvectors of C, with eigenvalues Ay, ..., Ap.

Then the eigenvectors of C are of the form (vi, vk) and (vk, —vk)
with 1 < k < n and

eigenvalues A\, (1 + p) and A\g(1 — p).
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Model for multiple curves

If vi,..., v, are the eigenvectors of C, with eigenvalues Ay, ..., Ap.

Then the eigenvectors of C are of the form (vi, vk) and (vk, —vk)
with 1 < k < n and

eigenvalues A\, (1 + p) and A\g(1 — p).
So, depending on the size of the intercurve correlation we will get

different order of importance between common frequencies and
separating frequencies.
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Seasonality in the Eigenvalues (o=heating oil, x=crude)
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