SOLUTIONS OF VARIATIONS, PRACTICE TEST 1

1-1. Let C be the part of the graph of y = In(cos z) between z = 0 and
x = m/4. Find the length of C.

Solution: We parametrize the curve C' by x = t and y = In(cost),
for 0 <t < w/4. The velocity is given by & = 1 and § = tant. For
0 < t < 7/4, the speed is given by [12 + (tant)?]"/? = [sec? ]/ = sect.
The length of C' is then

w/4
/ sectdt = [In((tant) + (sect))]"7n/*
0

= m(1+Vv2)] -mE+1]=m(1+v2). O

1-2. In xyz-space, let C' be the curve with parametric equations x = 2t,
y=1t?>and z =13/3,0 <t < 1. Find the length of C.

Solution: The velocity is given by & = 2, 5y = 2t and 2 = t2. The speed

is given by [22 + (26)% + (£2)2]"? = [4 + 4¢2 + #4]"/% = 2442, The length
1 t3 t:—1 1 7

ofCisthen/(2+t2)dt: 2t + — =2+ - =-. O
0 3 t:—0 3 3

2-1. Give an equation of the line tangent to the graph of y = bx +sinx
at z = .

Solution: The slope is
[(d/dx)(bx +sinx)|pyr = [0+ cOST]pyr = 5+ (—1) = 4.
The y-coordinate of the point of tangency is
[bx +sinz),r = br+0 = 5.

so the point of tangency is (m, 57). An equation of the line is therefore
y — b = 4(xz — ), or, equivalently, y = 4x + . O
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3-1. If V is a 3-dimensional subspace of R” and W is a 5-dimensional
subspace of R”, what are the possible dimensions of V N W?

Solution: The minimum possible dimension of V + W is
max{dimV,dimW} = max{3,5} = 5.

The maximum possible dimension of V' + W is

min{ (dim V) + (dim W), dimR"} = min{3+5,7} = T.
So the set of possible dimensions of V' + W is {5,6,7}. As
(dimV) + (dimW) = (dim(V+W)) + (dim(V NW)),
we see that 8 =3 + 5 = (dim (V + W)) + (dim (V N W)), so
dim(VnW) = 8 — (dim(V+W)).

Then the set of possible dimensions of V NW is

{8-5,8-6,8—-7} = {3,2,1}. O

4-1. Let k be the number of real solutions of the equation 7—2° —x = 0
in the interval [0, 1], and let n be the number of real solutions that are
not in [0, 1]. Which of the following is true?

A)k=0andn=1

(

(B) k=landn=0
(C)k=n=1

(D) k>1

(E) n>1

5 — I’]z_> 1000 > 0 and [7 x° — m]:v—)lOOO < O it

follows that the equation 7 — 2° — x = 0 has at least one solution in R,
sok+n>1 Forall z € R, [d/dx][T —2° —z] = —5z* — 1 < 0, so
7 — 2° — x is decreasing in x. Thus the equation 7 — 2° — z = 0 has at
most solution in R, so k+n < 1. Then k +n = 1.

Since [7 — 2% — )50 =7 > 0, since [7T—2° — 2] 1 =7—1-1>0
and since 7 — 2% — x is decreasing in x, it follows that the equation
7 — 2% — x = 0 has no solutions in [0,1]. Then k = 0.

Thenn=(k+n)—k=1—-0=1. Answer: (A) O

Solution: Since [7 — x
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<

5-1. Suppose b is a real number and f(z) = 42® + bxr + 9 defines a
function on the real line, part of which is graphed above. Compute

f).

Solution: We have f'(z) =8z + b, so f'(2) = 16 + b. From the graph,
f(2) =0. Thus 16 + b =0, so b = —16. Then f(z) = 42> — 16z + 9,
s0 f(5)=4-52—16-5+9 =100 — 80 + 9 = 29. 0

6-1. For what values of b does the curve 422+ (y —b)? = 1 have exactly
one intersection point with y = 2x7?

Solution: Let b € R. For all z,y € R,
[(41‘ +(y—>b?=1)and (y=2z) ] iff
[(y+@y-bP=1)and (y=2z)] iff
[(v*+y*—2yb+b*=1)and (z=19y/2)] iff
[(202—20y+ (V> —1)=0)and (z=y/2) ] iff
The expression 2y — 2by + (b* — 1) is a quadratic in y with coefficients
2, —2b, v — 1.
The discriminant of this quadratic is
(=20 —4-2-(*—1) = 40> —-8(b*—1) = —4b*+38.
Thus

[ there is one intersection point | ift
[ —40*+8=10] iff [V =2] iff
[(b=v2)or (b=—v2)] =
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3
7-1. Compute/ el qg.

-3

Solution: The integral is equal to

[/31 e”lldx] + {/1 6|I+1|dx]
= U_g et dm} + U_l Gl dx}

_ [_efxfl]mié—l_'_ [€x+1]x:—>3

r:——3 r:——1
= [ = (=) + [e" =]
= —14+e+et—1 = etre?-2. O

8-1. Let R be a rectangle whose vertices are (x,v), (—z,y), (—z,0) and
(z,0). Assume that 0 < z < 3, that 0 < y < 3 and that 2* + y* = 1.
What is the maximum possible area inside such a rectangle R?

Solution: The rectangle has width 2x and has height y. Therefore,
since y = (1 — a*)1/4, the area is 2zy = 2z(1 — 2*)/%. We have

flz) = [2(1- :174)1/4] + [22(1/4)(1 — :)54)_3/4(—41'3)]
[ 2(1 — z%) } N [29:(1/4)(—4933)}

(1 _ x4)3/4 (1 _ x4)3/4
21 —ah)] + =227 21 —2a%)
(1 _ x4)3/4 (1 _ x4)3/4'

Then f/(x) > 0on 0 <z < 27Y4 Also, f/(z) <0on 274 < 2 < 1.
Thus f(z) is increasing on 0 < z < 27Y4. Also, f() is decreasing
on 274 < 2 < 1. Then f(x) attains a global maximum at z = 27/4,
So, since f(z) = 2x(1 — 2*)'/*, the maximum value is
f (271/4) — 9.9 1/4, (1 _ 271)1/4 — 9.971/4, (1/2>1/4
ot-(/9-/4) — 9l/2 _ /9 0
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9-1. Define
J = /2\/256—x4dx
1
K = /2\/256—1—904d:p
1
L = /2\/256—x8dx
1

Order 16, J, K, L from smallest to largest.
Solution: On 1 < x < 2, we have:

—256 < —18 < —2* <0< a2t
which implies 0 < 256 — 8 < 256 — 2t < 256 < 256 + x4,
which implies /256 — 28 < /256 — 2% < 16 < v/256 + x*.

Thus L < J <16 < K. O

10-1. Let g be a function whose derivative ¢’ is continuous and has
the graph shown above. On 0 < x < 5, what are the maximal open
intervals of concavity for g(z)?

Solution: Since ¢'(x) is decreasing on 0 < x < 4, it follows that g(x) is
concave down on 0 < x < 4. Since ¢'(z) is increasing on 4 < x < 5, it
follows that ¢'(z) is concave up on 4 < x < 5.
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It follows, on 0 < z < 5, that the only maximal open interval of
concave down for g(z) is 0 < x < 4. It also follows, on 0 < x < 5, that
the only maximal open interval of concave up for g(z) is4 <z < 5. O

11-1. Approximate [3.59] [(10)>/?].

Solution: We have:

V359 ] [(10)2]

V3 59} [\/(10)5]
i

= V359 \/EH (10)4]
- :\/(3.59)(10)] [102]

= [v359] [oo)

< \/%} [100]

~ (6] [100]

— 600 O

NOTE: Two two decimals, the exact answer is 599.17.

12-1. Let A be a 5 x 5 matrix such that the entries in each row add up
to 10. Let B := 643 + 4A? + 7A. True or False: The entries any row
of B will add up to 6470.

Solution: True. Proof: Let v be the row vector [ 11111 } Let
w = v! be the transpose of v, so that w is a 5 x 1 column vector, with

all entries equal to 1. Since sum of the entries in each row of A is 10,
we get Aw = 10w. Then A%w = 100w and A3w = 1000w. Then

Bw = 6A%w + 4A*w + 7TAw = 6000w + 400w + 70w = 6470w.
Then the entries in any row of B add up to 6470. U
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13-1. We have available 75 square feet of material, and wish to use it to
form the sides and bottom of an open-topped rectangular box. What
is the maximum volume of the box?

Solution: Let x and y be the dimensions of the base of an open-topped
rectangular box constructed from 75 square feet of material. Let h
denote the height of the box. The total of the surface areas of the
bottom and the four sides is zy + xh+yh+xh+yh, or xy+ (2x + 2y)h.
Then xy + (2o 4+ 2y)h = 75. Then h = (75 — zy)/(2x + 2y). Also,
because x,y, h > 0, it follows that zy < 75. Let

D = {(z,y)eR*|z,y>0, 2y <75}

For all (z,y) € D, let V(x,y) denote the volume of the box. Then
V(z,y) = xyh = xy(75—zy) /(22 +2y). We wish to maximize V on D.
For all s € (0,00), let Dy := (0,4/75/s) and define Vi : Dy — R by
Vi(xz) = V(z,sx). Then, because D = U{(a:, sx)|x € Ds}, it follows
>0
that V(D) = | J{V(z,sz) |z € D.} = | [Va(D.)].

s>0 s>0
We will show, for all s > 0, that, on Dy, the function V; attains

its global maximum at 5/4/s. We will also show that the function
s — Vi(5/4/8) : (0,00) = R attains its global maximum at s = 1. Tt
will then follow that the global maximum value of V is Vi (5/v/1).

We first show that the function s — V5(5/4/s) : (0,00) — R attains
its global maximum at 1, as follows: For all s > 0, we have

Vi(5/vs) = V(5/Vs,s-(5/vs)) = V(5/Vs,5-Vs)
(5/v/s)(5 - V/s)(75 = (5/y/s)(5- V/s))
2-(5/Vs)+2-(5-/s)
25 - (75 — 25)
(10/y/s) +10- /s
25 - 50 V5 g VB
10-[(1/vs) +V/s] Vs 1+s

Differentiating with respect to s, we find, on s > 0, that

d o (L 8)((1/2)s712) — 5 245
%[V@/\/g)] = 125 1+ s)2 ' 2/s
125 (1 + 5) — 25 125 1-—s

2 (ItsPvs 2 (L+spys
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Thus V,(5/4/$) is increasing on 0 < s < 1 and decreasing on 1 < s.
It follows that the function s — Vi(5/4/s) : (0,00) — R attains its
global maximum at 1. It remains to show, for all s > 0, that, on D,
the function V; attains its global maximum at 5/4/s. Given s > 0. We
wish show, on Ds, that V; attains its global maximum at 5/4/s.

By definition, for all € D, we have

x-(sx)- (75 —z - (sx))

Vi(z) =V (z,sx) =

20 + 2 - (sx) ’
SO
V() = sz®(75 —sa?) [ s 2?(75 — sx?)
T (2428)r |24 2s T ’
so Vi(z) = [ﬁ} (752 — sz®]. Differentiating with respect to x, we
s

find, on 0 <z < 4/75/s, that

d s 9 3s 9

2 - - - 25 — sa?].

o V()] [2+ 23} [75 — 3sz”] 2+2s] [25 — sx”]

Thus V;(z) is increasing on the interval 0 < = < 5/4/s and Vi(z) is
decreasing on the interval 5/y/s < x < 1/75/s. Thus V; attains its
global maximum at 5/4/s.
Thus the global maximum value of V' is Vi (5/+/1), which is equal to
5.5-(75—5-5) 2550 125
2-5+2-5 20 2

Vi(5) =V (5,5) = U

NOTE: To simplify the problem we could specify, in advance, that
the rectangular box is to have a square base. That would result in a
problem in one-variable calculus, instead of multi-variable calculus.

14-1. What is the hundreds digit in the standard decimal expansion of
the number 7267
Solution: In this solution, congruences (=) are all mod 100. We have
=77 = 49, SO
T=T7-TP=7-49=343 = 43, SO
T=7-7=7-43=301 = L1

Then 726 = 72 (7%)6 = 49 - 16 = 49. Thus the hundreds digit of 7% is
the same as that of 49, namely 4. O
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15-1. True or False: Let f be a continuous real-valued function defined
on the open interval (—2,3). Then f is bounded.

Solution: False. Counterexample: Let f : (—=2,3) — R be defined by
f(z) =1/(x+2). Then lin%+ (f(x)) = o0, so f is not bounded above,
T——

so f is not bounded. O

15-2. True or False: Let f be a continuous real-valued function defined
on the closed interval [—2,3]. There exists ¢ € (—2,3) such that f is
differentiable at ¢ and such that 5 - [f'(c)] = [f(3)] — [f(—2)].

Solution: False. Counterexample: Let f : [-2,3] — R be defined by
F(z) = Ja]. Then [£(3)] — [f(—2)] = 3| — | — 2| = 1.
On the other hand,
e for all c € (—2,0), 5-[f'(c)] =5-[-1] = =5,
e f is not differentiable at 0, and
e for all c € (0,3), 5-1f(c))=5-1=5.
Thus there is no ¢ € (-2, 3) such that f is differentiable at ¢ and such
that 5- [f'(c)] = 1. O

15-3. True or False: Let f be a continuous real-valued function defined
on the closed interval [—2,3]. Assume that f is differentiable at 0 and
that f'(0) = 0. Then f has a local extremum at 0.

Solution: False. Counterexample: Let f : [-2,3] — R be defined by
f(x) = 2. Then f is differentiable at 0 and f'(0) = 3-0* =0, but f is
increasing on [—2, 3], so f has no local extremum at 0. U

15-4. True or False: Let f be a continuous real-valued function defined
on the closed interval [—2, 3]. Assume that all of the following are true:

e f is twice-differentiable at 0,

e f/(0)=0 and

o 1(0) £ 0.
Then f has a local extremum at 0.
Solution: True. Proof: By the Second Derivative Test, if f”(0) > 0,
then f has a local minimum at 0. Also, by the Second Derivative Test,

if f”(0) < 0, then f has a local maximum at 0. In either case, f has a
local extremum at 0. U
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16-1. What is the volume of the solid formed by revolving, about the

x-axis, the region in the first quadrant of the xy-plane bounded by: the

L o

1424

coordinate axes and the graph of the equation y =

Solution: By the disk method, with u = 2%, du = 2z dw, the volume is
/OO x 2 p /°° xdx
€T =
0 TV Tt " o 144

/°° du/2
= 7 —
0o 14u?

= g[arctanu]zzjgo
2

T 7T
2 [2 4

16-2. What is the volume of the solid formed by revolving, about the

y-axis, the region in the first quadrant of the xy-plane bounded by: the
2
x

R —
(1t 202

Solution: By the shell method, with v = 1 + 2%, du = 32%dz, the
volume is

o z? > dx
e e =
< du/3
o 27T/1 u3/?
2 [

= w3 du
3 N

- 3 _]‘/2 u:—1

5hGal - % e

coordinate axes and the graph of the equation y =
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17-1. How many real roots does the polynomial 2° — 5z 4 3 have?

Solution: Define f : R — R by f(z) = 2° — 52 + 3. We want to know
how many real roots f has.

For all x € R, we have f'(z) = ba' — 5 = 5(z — 1)(z + 1)(2® + 1).
Thus f’ is positive on (1,00), is negative on (—1,1) and is positive
on (—oo, —1). Thus, by the Increasing Test and the Decreasing Test,
f is increasing on (1, 00), is decreasing on (—1,1) and is increasing on
(=00, —1). Thus f has at most one root on (1,00), has at most one
root on (—1,1) and has at most one root on (—oo, —1).

We have xgmoo [f(z)] = xgmoo 7 = —ooand f(—1) = —1+5+3>0
and f(1)=1-5+3 <0 and xh_)rgo [f(z)] = lim 2° = cc.

Because xli)moo [f(z)] = —oc0 and f(—1) I>—>O(<)), it follows, from the
Intermediate Value Theorem, that f has at least one root on (—oo, —1).
So, since f has at most one root on (—oo, —1), we conclude that f has
exactly one root on (—oo, —1).

Because f(—1) > 0 and f(1) < 0, it follows, from the Intermediate
Value Theorem, that f has at least one root on (—1,1). So, since f
has at most one root on (—1,1), we conclude that f has ezactly one
root on (—1,1).

Because f(1) = 1—-5+3 < 0 and :}Lrglo [f(z)] = o0, it follows, from the
Intermediate Value Theorem, that f has at least one root on (1, 00).
So, since f has at most one root on (1,00), we conclude that f has
exactly one root on (1, 00).

Because f has exactly one root on (—oo, —1) and on (—1,1) and on
(1,00), and because f(—1) # 0 and f(1) # 0, we conclude that f has
exactly three real roots. O
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18-1. Let V be the real vector space of all real homogeneous polynomi-
als in = and y of degree 7 (together with the zero polynomial). Let W
be the real vector space of all real polynomials in z of degree < 3 (to-
gether with the zero polynomial). If T is a linear transformation from
V onto W, what is the dimension of the subspace {v € V' |T'(v) = 0}
of V7

Solution: By definition of kernel, we have
ker[T] = {veV|T(v)=0}.
We therefore wish to calculate dim (ker[T]). A basis for V' is
(27, 2By, 25, 2P, B, 220, oS, uT ),
so dim (V) = 8. A basis for W is {1, z, 2% 2%}, so dim (W) = 4. Then
e dim(dom[T]) =dimV =8  and
o dim (im [7]) = dim W = 4.
So, since
dim (ker[T]) + dim (im [T]) = dim (dom [77]),
we conclude that dim (ker[T]) +4 = 8, and so dim (ker[T]) = 4. O
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18-2. Let V' be the real vector space of all real polynomials in x and y
of degree < 7 (together with the zero polynomial). Let W be the real
vector space of all real polynomials in = of degree < 3 (together with
the zero polynomial). If T"is a linear transformation from V' onto W,
what is the dimension of the subspace {v € V' |T'(v) = 0} of V7

Solution: By definition of kernel, we have
ker[T] = {veV|T(v)=0}.
We therefore wish to calculate dim (ker[T]). A basis for V is

{27, 2%, 27, 2P, 2Pyt 2P, wyt
20, 2y, oy, 2Py, Py, o
3:5’ $4y, l'3y2, l‘2y3, flfy4, y57
.T4, x3y’ x2y27 xy3’ y4’

3 2 2 3
r, Ty, 1y, Yy,

T
T, Y,
Ly
sodim (V) = 8+7+---+1=8-9/2 = 36. A basis for W is {1, z, 2%, 23},
so dim (W) = 4. Then
e dim (dom [T]) = dimV = 36 and
e dim (im [T]) = dim W = 4.
So, since
dim (ker[T]) + dim (im [T]) = dim (dom [77),
we conclude that dim (ker[T]) + 4 = 36, and so dim (ker[T]) = 32. O
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19-1. True or False: Let f : R — R be a differentiable function such
that, for all z € R, we have —z? < f(x) < 2. Then, for all z € R, we
have —2z < f'(x) < 2uz.

Solution: False. Counterexample: Define f : R — R by
z? - (sin(1/z)), ifz #0;
fx) = .
0, if v =0.

Then, for all z € R, we have —2? < f(z) < x2. Also, f is differentiable,
and, for all z € R\{0}, we have
f'le) = 2x-(sin(1/x)) +2* - (cos(1/x)) - (~1/2%)
= 2z - (sin(1/z)) — (cos(1/x)).

In particular, f'(1/7) = (2/7)-0—(—1) =1 > 2/7m. So it is NOT true,
for all z € R, that f'(z) < 2. O

19-2. True or False: Let f : R — R be a differentiable function such
that, for all z € R, we have —2% < f(z) < 2. Then f/(0) = 0.

Solution: True. Proof: We have —0% < f(0) < 02, so f(0) = 0. Then,
for all h € R\{0}, we have

ORI =[O f)
h h ~
h
We therefore wish to show that }llir% % = (0. It therefore suffices
—
h h
to show both that lim M = (0 and that lim M = 0.
h—0+ h h—0— h
For all h > 0, we have
—h? f(h) h?
-h = — < — < — = h
h - h - h
h
It follows, from the Squeeze Theorem, that lim {M =0. It re-
h—0Tt h
mains to show that lim [m} = 0.
h—0— h
For all h < 0, we have
_hH2 2

h h h
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It follows, from the Squeeze Theorem, that hh%l [%h)} =0. 0
s

19-3. True or False: Let f : R — R be a differentiable function such
that f'(1) =5 and f/(3) = 9. Then Jc € (1, 3) such that f'(c) = 7.
Solution: For every h € R\{0}, define g, : R — R by

(e + )] = [f(z)]
. .

gnlx) =
We have
g (1] = F(1) =5 and  lim [g_(3)] = /(3) =0.
Choose b > 0 so small that g,(1) < 6 and g_,(3) > 8. Then
f(B=0)+b)] = [fB )]

B(3—=0b) = 2
CUEI-UE-b  B-b) - [G)
b —b
_UBHCOLUOL

Since g,(1) < 6, since g,(3 —b) > 8 and since g, : R — R is continuous,
by the Intermediate Value Theorem, we choose a € (1,3 — b) such that

gr(a) = 7. Then Jlat b>{1 — /(0) = gy(a) = 7. Then, by the Mean

Value Theorem, we choose ¢ € (a,a+b) such that f'(c) = 7. It remains
to show that ¢ € (1, 3).

Since a € (1,3 — b), it follows that 1 < a and that a +b < 3. Then
c € (a,a+b) C(1,3), as desired. O

NOTE: It is a general fact that if a real-valued function is differen-
tiable on R, then the function satisfies the Intermediate Value The-
orem. Problem 19-3 simply asks whether this is true in a particular
case, using the interval [1,3]. The solution given above is based on a
proof of that general fact.
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19-4. True or False: Let f : R — R be a differentiable function. Then
there exists ¢ € R such that f’ is continuous at c.

NOTE: Let’s talk about measure theory ...

In measure theory, one thinks of a property as holding “almost ev-
erywhere” (or, sometimes, “generically”) if it holds except on a set of
measure zero. An old joke has it that doing measure theory is torture
because you have to say “almost everywhere” almost everywhere.

A set is null if it has measure zero. A set is conull if its complement
is null. Then a generic property is one that holds on a conull set.

Now we move from measure theory to topology ...

For any A,B C R, “B is dense in A” means that A is a subset
of the closure in R of B. A subset of R is somewhere dense, or
somewhere dense in R, if it is dense in a nonempty open subset
of R. So, for example, @ N (0,1) is not dense in R, but it is dense
in (0,1), and, consequently, is somewhere dense in R. A subset of R is

e nowhere dense if it is not somewhere dense,
e meager if it is a countable union of nowhere dense sets and
e comeager if its complement in R is meager.

Warning: In older books, instead of “meager” you'll see “of first cate-
gory”  and, instead of “comeager”, you'll see “residual”.

Next, let’s compare topology and measure theory ...

We use Lebesgue measure on R, and so a subset of R is null iff it has
Lebesgue measure zero. While

e meager does not imply null, and
e null does not imply meager,

it’s work to actually find a meager set that isn’t null, or a null set that
isn’t meager. More importantly, the intuition for meager sets is about
the same as for null sets, and, in some sense, “meager” is a topological
analogue of “null”. So, for example, topologists typically say that a
property is “generic” if it happens on a comeager set.

Finally, let’s talk about Problem 19-4 ...

If a real-valued function is differentiable on R, then its derivative is a
pointwise limit of its difference quotients, each of which is continuous.
While a limit of continuous functions need not be continuous on all
of R, it is a general fact that it must be “generically continuous”, i.e.,
continuous on a comeager subset of R. By the Baire Category Theorem,
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any comeager subset of R is nonempty, and it follows that the answer
to Problem 19-4 is “true”. The solution given below simply follows a
detailed proof of that general fact, where g := f’ is the pointwise limit
of continuous difference quotients ¢y, g2, ... of f.

Solution: True. Proof: Let g := f'. For all h > 0, let v, : R — R be
h)| —
defined by (z) = LEF )}]L [f ()]

Y(z) — g(x), as h — 0. Since f is differentiable, f is continuous.
Then, for all h > 0, the function ~, is continuous. For all integers

. Then, for all x € R, we have

J =1, let g; := 71/;; then g; is continuous. Also, for all z € R, we have
gj(x) — g(z), as j — oo.

Let D be the set of x € R such that g is discontinuous at x. We
wish to show that D # R. By the Baire Category Theorem, it suffices
to show that D is meager. Assume that D is nonmeager. We aim for
a contradiction.

For all € > 0, let D. denote the set of all x € R such that

o foralld >0, g((z—19,24+96)) < ([9g(x)] —e,[g(x)] +¢).

Then D = DyUD,;,;UD;/3U---. Fix an integer m > 1 such that D,
is nonmeager. Let € := 1/m. Then D, is nonmeager.

We define n :=¢/5 and S := {fn|{ € Z}. For all s € S, we define
I, :=[s—mn,s+mn|. Then U I, =R, so U g7 (L,)] = g "(R). Then
seS ses
U[(g_l(ls)) ND.]=[¢g ' (R)]ND.=RND, = D,. As S is countable

s€S
and D, is nonmeager, fix s € S such that (¢~*(I,)) N D, is nonmeager.

Let A:= (¢g7'(Is)) N D.. Then A is nonmeager.
For all integers k > 1, let L; be the set of all z € R such that

o for all integers j >k, |[g;(z)] — [9(2)] | <n.
Recall, for all z € R, that g;(z) — g(z), as j — oo. It follows that

U L, =R. Then U [Ly N Al =RNA=A. Choose an integer k > 1
k=1

— k=1
such that Ly N A is nonmeager.

For any function ¢ : R — R, for any Q C R, for any p > 0, let’s
agree that “¢ is p-constant on 27 means:

o forall v e, [(¢(n) = (6(W))] < p.
Because I, = [s — 1, s + 1], we see that g is (2n)-constant on ¢~'(I}).
Since A = (¢7'(Is)) N D., we get A C D.. Then g is (2n)-constant
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on A. Then, by construction of L, we see, for all integers 7 > k, that
gj is (4n)-constant on Lj N A.

Every nowhere dense set is meager, while L, N A is nonmeager. Thus
L, N A somewhere dense. Let C' denote the closure in R of L, N A. Let
U be a open subset of R s.t. § £ U C C. For all integers j > k, g; is
continuous and (47)-constant on L, N A, and so g; is (4n)-constant
on C, and so g; is (4n)-constant on U. So, as g; — ¢ pointwise, as
Jj — 00, we conclude that g is (4n)-constant on U. On the other hand,
since 4n < e, by definition of D, we see that ¢ is not (4n)-constant on
any open neighborhood of any point of D.. Then UN D, = (). So, since
LyNAC A= (¢g7'(I,))Nn D, C D., we conclude that UN (LN A) = 0.
That is, Ly N A C R\U. So, since R\U is closed in R, it follows that
C CR\U, and so UNC = (). Because U C C, we see that U = UNC.
Then ) # U = U NC = (), contradiction. O

20-1. Let f be the function defined on the real line by
{xQ, if x is rational,

2z, if x is irrational.

fx) =

Compute the set of points of discontinuity of f.

Solution: Because the rationals and irrationals are both dense in R, we
see, for all ¢ > 2, that liminf[f(x)] = 2c and that limsup[f(z)] = ¢?,
Tr—cC

Tr—cC
and, therefore, that f is not continuous at c. Because the ratio-

nals and irrationals are both dense in R, we see, for all ¢ < 0, that
liminf[f(z)] = 2¢ and that limsup[f(z)] = ¢?, and, therefore, that f
Tr—cC

r—c
is not continuous at c¢. Because the rationals and irrationals are both

dense in R, we see, for all ¢ € (0,2), that liminf[f(x)] = ¢* and that
Tr—cC

limsup|f(z)] = 2¢, and, therefore, that f is not continuous at c.
r—c

We have limiglf[f(x)] > 0 and limsup[f(z)] <0 and f(0) = 0, and
z— z—0
so f is continuous at 0. Finally, lim glf[f(:z:)] > 4 and limsup[f(z)] <4
z— z—2

and f(2) =4, and so f is continuous at 2.
Thus the set of points of discontinuity of f is R\{0,2}. O
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21-1. Let p := 7919, which is a prime number. Let Q := {p,2p, 3p, ...}
be the set of multiples of p. Let K := {0,1,...,p} denote the set of
integers from 0 to p. For all £ € K, let C} be the binomial coefficient
“p choose k. Let S := {k € K|CY,...,Cy € Q}. So, for example,
because C1 =p € Q and C§ = [(p—1)/2]p = 3959p € Q, we get 2 € S.
Compute the maximum element of S.

Solution: Claim: Vk € {1,...,p—1}, we have C} € Q. Proof of claim:
Given k € {1,...,p}. Let c:= C}. We wish to show that ¢ € Q.

Let ¢ := p—k. Then ¢ = [p!]/[(k!)(£)]. Since p is a prime, it follows,
for all integers m,n > 1, that:

(%) [mn € Q] = [(m € Q) or (n € Q)].

Taking the contrapositive, for any positive integers m and n, we have:

(xx) [(m ¢ @) and (n ¢ Q)] = [mn ¢ Q].

Since 1,...,k < p, it follows that 1,...,k ¢ Q. Repeatedly apply-
ing (xx), we see that (1)(2)---(k) ¢ @, i.e., that kI ¢ Q. Since
1,...,0 < p, it follows that 1,...,¢ ¢ Q. Repeatedly applying (xx), we
see that (1)(2)---(¢) ¢ Q, i.e., that ! ¢ Q.

We have c(k!)(¢!) = p! € Q. Then either ¢ € Q or (k!)(¢!) € Q. Since
both k! ¢ @ and ¢! ¢ Q, it follows, from (xx), that (k!)(¢!) ¢ Q. Then
c € (), as desired. End of proof of claim.

By the claim, C7,C%,...,Cy_; € Q. Then p —1 € S. On the other
hand, C? =1 ¢ Q,sop ¢ S. So, since S C K = {0,...,p}, it follows
that maxS =p—1="T918. U

22-1. Let C(R) be the collection of all continuous functions from R
to R. Then C(R) is a real vector space with vector addition defined by
(

Vfge CR), vz eR,  (f+g)x) = [f@)] + [9(x)],
and with scalar multiplication defined by
VfeCR), Vr,z € R, (rf)(z) = r-[f(x)].

Let S denote the set of f € C(R) such that all of the following hold:

e f is twice differentiable,
o for all z € R, f(x +27m) = f(x).
o "=~

True or False: S is a subspace of C'(R).
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Solution: True. Proof: Let V' denote the set of all ¢ € C'(R) such that
¢ is twice differentiable. Then V' is a subspace of C'(R).

For all f € C(R), let f* € C(R) be defined by f*(x) = f(z + 2n).
Define I' : C(R) — C(R) by I'(f) = f — f*. Then I is a linear map.
Then ker[I'] is a subspace of C'(R). Define A : V- — C(R) by I'(f) =
f"+ f. Then A is a linear map. Then ker[A] is a subspace of V', and,
therefore, is a subspace of C'(R). Then, because S = (ker[I']) N (ker[A]),
we see that S is a subspace of C'(R). O

23-1. True or False: There exists a real number b such that the line
y = 10z tangent to the curve y = bz? + 10z + 1 at some point in the
xy-plane.

Solution: False. Proof: Let b € R, and assume that the line y = 10x is
tangent to the curve y = bx? + 10z + 1. We aim for a contradiction.
Let x € R be the first coordinate of the point of tangency. Then

102 = bz? 4+ 10x + 1 and 10 = 2bx + 10.

By the second equation, we see that bx = 0. By the first equation, we
see that © # 0. Since bx = 0 and x # 0, we get b = 0. Then the first
equation says 10z = 10x + 1, and so 0 = 1, contradiction U

2

24-1. Let h be the function defined by h(x) = / @ gt for all
0

real numbers x. Compute h'(1).

2

ro+x
Solution: Claim: For all z € R, we have h(z) = / e ds. Proof of

xz—i—x
2

claim: Given z € R. We wish to prove that h(z) = e” ds.
Make the change of variables s = x +t and ds = dt?in the definition

24z
of h(x). This yields h(z) = / %" ds. End of proof of claim.

Define F': R — R by F(z) = / e* ds. By the claim, for all z € R,

we have f(z) = [F(2® + )] — [Po’(x)] Differentiating, for all z € R,
we have f'(z) = [F'(z* + z)][2z + 1] — [F'(x)]. Evaluating this at
x:— lyields f/(1) = [F'(2)][3] —[F"(1)]. By the Fundamental Theorem
of Calculus, for all z € R, F'(z) = e**. Then F'(2) = ¢* and F'(1) = e.
Then f'(1) = [F'(2)][3] — [F"(1)] = 3e* —e. O
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25-1. Let {a,}2, be defined recursively by a; = 7 and

n
for all integers n > 1 Opi1 = n-
g - 4L +1 (TL I 3) a

Compute aos.

Solution: We have

= (B)on
- () ()
- (@) @)~
: @_2' @) (%2)0'(.2.)((1%) ’

26-1. Let f:R? — R be defined by f(z,y) = 22® — 42y + y*. Find all
the absolute extreme values of f, and where they occur.

Solution: For all z,y € R,

flz,y) = 2(x—y)? +y*—2* = 20z —y)* + (¥ —1)* -1,

so —1 is an absolute minimum value for f. Also, for all z,y € R, we

have: | f(x,y) = —1]iff [ (x—y =0) and (y*—1 = 0) ]. Thus f attains

its absolute minimum value at, and only at, (1,1) and (-1, —1).
Since mhﬁlrgo [f(x,0)] = o0, f has no absolute maximum value. O

27-1. Find the dimension of the solution space, in R*, of

3w + 4 — 2y — 3z = 1
2w + T — oy =
- w + Tr - y — 92z = -7
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Solution: Multiply the first equation by —3 and add to the last:

3w + 4 — 2y — 3z = 1
2w + T — oy =
— 10w — b5z + oSy = —10.

The third equation is —5 times the second equation; we eliminate it:

Jw + 4 — 2y — 3z =1
2w + T — oy = 2

For any w,x € R, there is a unique solution of this system, and all
solutions are obtained this way.
So the dimension of the solution space is 2. O

27-2. Find the dimension of the solution space, in R*, of

3w + 4z — 2y — 3z = 1
2w + 2z — oy = 2
- w + Tr - y — 92z = -7

Solution: Multiply the first equation by —3 and add to the last:

3w + 4 — 2y — 3z = 1
20 + 2z — oy =
— 10w — b5z + dy = —10.

Multiply the second equation by 5 and add to the last:

Jw 4+ 4 — 2y — 3z = 1
20 + 2z — oy 2
T = 0.

Divide the last equation by 5:

Jw 4+ 4dr — 2y — 3z = 1
2w 4+ 2z — oy
x = 0.

I
N

Multiply the last equation by —4 and add to the first:

3w - 2y — 3z =1
20 + 2z — oy =
x = 0.
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Multiply the last equation by —2 and add to the second:

3w — 2y — 3z =1
2w -y = 2
T = 0.

For any w € R, there is a unique solution of this system, and all
solutions are obtained this way.
So the dimension of the solution space is 1. O

27-3. Find the solution space, in R*, of

3w + 4z — 2y — 3z =1
2w+ T — oy
- w + T7r — y — 9z = 5.

Solution: Multiply the first equation by —3 and add to the last:
3w + 4o — 2y — 3z =1

20 + x — oy = 2

— 10w — 5z + 5y = 2.

Multiply the second equation by 5 and add to the last:
3w + 4dr — 2y — 3z = 1

2w+ T — oy = 2

0 = 12

Because of the inconsistency of the last equation (0 = 12), we see that
the solution space is the empty set, (. 0

28-1. Let T be a graph with 378 vertices. Assume 7' is a tree, which is
a connected graph with no cycles. How many edges does T" have?

Solution: Let V' be the set of vertices of T" and let E be the set of edges
of T'. We know that #V = 378, and we wish to compute #FE.

An induction proof shows that any tree has one more vertex than it
has edges. Then #V =1+ (#E).

Then #FE = (#V) —1=378 — 1 = 377. O




24 SOLUTIONS OF VARIATIONS, PRACTICE TEST 1

29-1. For all positive functions f and g of the real variable z, let ~ be
a relation defined by

f~g ifandonlyif  lim {M} _

200 | ()

True or False: Let f, g, ¢, be positive functions of x. Assume that
f ~gandthat ¢ ~ . Then f+ ¢ ~ g+ 1.

Solution: True. Proof: Given € > 0. We wish to show that there
exists M € R such that, for all x > M, we have

[/ (@)] + [¢()] '
—1 .
‘ @ @] | T T
Choose L > 0 such that, for all z > A, we have g((g — 1’ <e.
Choose A > 0 such that, for all x > A, we have zig -1l <e
Let M := max{L,A}. Given z > M. We wish to prove that
[/ (@)] + [¢(x)] )
—1 .
‘ @I+ W] | S C
Let s:= f(x), t := g(x), 0 := ¢(x), 7 := Y¥(x). We wish to prove that
s+o ’
-1 < e
t+71

Since x > M > A, it follows that ‘z — 1‘ < g, and so
T

g

l1—¢ < < 1l+4e.

-
Multiplying by the positive number 7, we get (1 —e)7 < o < (1 +¢&)7T.
Since x > M > L, it follows that E — 1‘ < g, and so

11— < ; < 1l+4e.
Multiplying by the positive number ¢, we get (1 — &)t < s < (1 + ¢)t.

Adding this to (1 —e)7 < o < (1 + &)1 yields
1—e)t+7) < s+o0 < (14¢e)(t+71).

Dividing by the positive number ¢ + 7, we get
sS+o
t+71

1—¢

1+e¢,
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s+o
+ 7

and so

— 1‘ < g, as desired. O

30-1. Let S and T be sets and assume that there exists a function
f S — T such that f is onto T. True or False: There must exist a
function g : T'— S such that ¢ is one-to-one.

Solution: True. Proof: By the Axiom of Choice, for all y € T, choose
x, € S such that f(z,) =y. Define g : T'— S by ¢(y) = x,. We wish
to show that g is one-to-one. Given t,7 € T'. Assume ¢g(t) = g(7). We
wish to prove that t = 7.

We have z; = ¢g(t) = g(7) = z,, and so f(z;) = f(x;). So, since
fzy) =tand f(x,;) =7, wegett = f(zy) = f(z,;) =7, as desired. O

30-2. Let S and T be sets. Assume that there does NOT exist a
function f : S — T such that f is one-to-one. True or False: There
must exist a function g : T'— S such that g is one-to-one.

Solution: True. Proof: Let Z denote the set of functions f : Sy — T
such that Sy C S and such that f is one-to-one. We define a partial
ordering < onZ by [f < g] < [3FA C domlg]s.t. gJA = f]. Then
every <-chain has an upper bound, so, by Zorn, let f € Z be a maximal
element with respect to <.

Let Sy € S be the domain of f and let Tj be the image of f. By
assumption, Sy # S. Then Ty = T; otherwise, we could extend f,
contradicting maximality of f. Then f is a bijection from Sy onto 7.
Let g be the inverse of f. Then g is an bijection from 7" onto .Sy, so
g : T — S is one-to-one. U

31-1. True or False: There exists a solution y : R — R to the differential
equation y’ = x* + 222y + y* with the property that, for every x € R,
we have —1000 < y(z) < 1000.

Solution: False. Proof: Following the notation given in the prob-
lem, y and y(z) are used interchangeably. Also, 3 and y'(z) are
used interchangeably. Let y : R — R be a solution to the ODE
y = a* + 22%y% + y*. We will show that there exists z € R such
that y(z) > 1000.

For all z > 1, we have y/(z) = 2* + 222y? + y* > 2* > 1. So, by the
Mean Value Theorem, for all z > 1, we have [y(z)] — [y(1)] > = — 1.
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)} Then [y()]

Let z := max{1,1001 — [y(1 — [
1)] + 1001 — [y(1)] — 1 = 1000

y(r) > [y()] + 2 =1 > [y(

32-1. True or False: Let G be a group. Assume, for all a,b € G, for all
integers n > 1, that (ab)” = a"b". Then G is Abelian.

y(1)] > © — 1. Then
. U

Solution: True. Proof: Given a,b € G. We wish to show that ab = ba.
For all integers n > 1, (ab)® = a™b". In particular, (ab)? = a?b*.
Then abab = aabb, so a~*[abablb™ = a~[aabb]b™!, so ba = ab. O

33-1. True or False: Let p and ¢ be prime numbers, and let n be an
integer. Assume that p # ¢. Then there exist integers k£ and ¢ such
l

n
that —— = — + —.
¢ PP
Solution: True. Proof: By the Euclidean algorithm, choose a,b € Z

such that ap? +bg = 1. Let k := nb and let £ := na. We wish to prove

k¢

that % = — + —. Equivalently, we wish to prove that n = kq + p?.
pq p q

We have n = n -1 = n(ap? + bq) = (na)p? + (nb)q = lp* + kqg. O

33-2. True or False: Let p and ¢ be prime numbers, and let n be an
integer. Assume that p # ¢q. Then there exist integers r, s, t, u such that

n S t U
0§s<pand0§t<pand0§u<qandT:r+—+—2+—.
p=q p p q

Solution: True. Proof: By 33-1, choose integers k£ and ¢ such that

E
+

By the Division Algorithm, choose integers a and ¢ € [0, p) such that
k = ap + t, then choose integers b and s € [0, p) such that a = bp + s,

then choose integers ¢ and u € [0, ¢q) such that £ = c¢q + u. We then
n S t U
define r := b+ c. We wish to prove that — =r+ -+ — + —.
pq p D q
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k7 t
Wehavei:— _:ap;l— +Cq+u,andso
p’q p q p q
n a u
- = —+—2+C+—
p=q p p q
bp +
S
p p
] t
= b+——|——2+c+—
p p q
S t U
= r+—-+ 5 + - [l
p p q

33-3. True or False: Let R[z] denote the ring of polynomials, with
real coefficients, in the indeterminate z. Let p,q € R[z] be irreducible
polynomials, and let f € R[z]. Assume that p # ¢. Then there exist
r,s,t,u € Rlx] such that deg[] < deg[ | and deg[t] < deg[p] and
t

deg[u] < deg[g] and —— = r+24 42

p=q p P q
Solution: True. The proof is the same as for 33-2, except: We are using
“f” instead of “n”, and we must follow the Euclidean Algorithm and
the Division Algorithm in R[z], rather than in Z. O

NOTE: This is an example of a partial fractions decomposition, often
taught as a technique of integration in first year Calculus.

[

34-1. Define N : R?* — [0,00) by N(z,y) =
sometimes called the L*-norm on R%) Let C :
D :=(3,5) € R% Let

S = {AeR*|INA-C)=1}

T = {BeR*|N(B-D)=2}
(These are two L*-spheres in R%.) Minimize N(A — B) subject to the

constraints A € S and B € T. (That is, compute how close the one
L*-sphere gets to the other.)

+ y*V/4. (This is
1,2) € R? and let

(1,

Solution: In this problem dist denotes L*-distance, so, for all P,Q € R?,
we define dist(P, Q) := N(P — Q). The L*-triangle inequality asserts:
For all P,Q,R € R?, dist(P,R) < [dist(P, Q)] + [dist(Q, R)]. Also,
note: For all P,Q, R € R?, if Q is on the line segment from P to R,
then dist(P, R) = [dist(P, Q)] + [dist(Q, R)]. (These facts hold for any
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norm on R?, and, in particular, for the L*-norm.) We define the length
of a line segment in R? to be the L*-distance between its endpoints.
We define the length of a polygonal path in R? to be the sum of the
lengths of its line segments.

Let L be the line segment from C to D. Let A be the point of
intersection of S and L. Let B be the point of intersection of T" and L.
By the L*-triangle inequality (and mathematical induction), there is
no polygonal path from C' to D whose total L*-length is < dist(C, D).
If 3A; € S, By € T s.t. dist(Ay, By) < dist(A, B), then, concatenating

e the line segment from C to A; (which has length 1),
e the line segment from A; to By,
e the line segment from By to D (which has length 2),

we would arrive at a polygonal path from C' to D whose total length
is < 1+ [dist(A, B)] + 2 = dist(C, D), which, as we just pointed out,
is impossible. Thus the minimal distance between any point on .S and
any point on 7" is dist(A, B), and this is the number we seek. Because
A and B are points on L, we have

dist(A, B) = [length(L)] — [dist(C,A)] — [dist(D, B)].
We have C = (1,2) and D = (3,5), so the L*-length of L is

dist(C,D) = N(C—D) = [(1—=3)*+(2—5)4"4
= [(=2)* + (=3)Y* = [16+81)V* = V9T,

The distance from C to A is the radius of .S, which is 1. The distance
from D to B is the radius of T', which is 2.
Thus dist(A4, B) = v97 — 1 — 2 = v/97 — 3. O

Alternate Solution: The gradient of (p — s)* + (¢ — t)* w.r.t. p,q,s,t is
(4(p - 8)3 ’ 4(q - t)3 ) _4(p - 8)3 ) _4(q - t)3 )
The gradients of (p—1)?+(¢—2)* and (s—3)?+(t—5)*, w.r.t. p,q, s, t are

(4(p—1)%,4(¢—2)*,0,0) and
(0,0, 4(s—3)*, 4(t —5)%)

Choose p, q, s,t so as to minimize

(p—9)"+(g—1)"
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subject to
(p—D'+(¢—2" = 1 and
(s—3)'+(t—5)" = 16

We wish to compute

(EDEIEDR
By Lagrange Multipliers, choose A, 1 € R such that
(4p—5)*, 4a—1)*, —4(p— s)*, —4(g —1)*).
is equal to the Ay, p; linear combination of
(4p—1)*,4(g—2)*,0,0) and
(0,0,4(s—3)%, 4(t —5)%)
Let A := /A, and let p := &/ Then
(p—s,q-t) = A-(p—1,¢-2) and
(s—p,t—q) = p-(s—=3,t—5).

Throughout this problem dist is L*-distance, so, for all V,W € R?
we define dist(V, W) := N(V —W). Let A := (p,q) and let B := (s,1).
Let C' := (1,2) and let D := (3,5). Then A — B = A\(A — C) and
B— A= pu(B—-D). Let L be the line in R? through C and D. Because

p—1)*"+(@-2" = 1 and
(s=3)*+(t—5" = 16,
it follows that dist(A,C) = 1 and dist(B, D) = 2. Then
dist(C,D) = /(1-3)4+(2-5)* = V97
> 3 = [dist(A,C)] + [dist(B, D)],

Thus
dist(C, D) > dist(C, A) + dist(B, D).
On the other hand, by the L*-triangle inequality, we have
dist(C, D) < dist(C, A) + dist(A, D).

Therefore A # B. Let L be the line through A and B.

Because A — B = A\(A — C), it follows that B = A\C' + (1 — X\)A, and
so B is on the line in R3 through C' and A. This line, which passes
through A and B, must be L. Then C' € L.
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Because B— A = u(B — D), it follows that A = uD + (1 — ) B, and
so A is on the line in R? through D and B. This line, which passes
through A and B, must be L. Then D € L.

Since C, D € L, we conclude that L is the line through C' and D. So,
since A € L, choose v € (0,1) such that A = (1 —v)C +vD. Similarly,
since B € L, choose w € (0,1) such that B = wC + (1 — w)D.

Then A —C =v(D —C) and B— D = w(C — D). That is,

(—14-2) = v(-2,-3) and
(s—=3,t—5) = w(2,3).
Recall that

p—1D'"+(¢—2" = 1 and

Then
v (=2 +(=3)") = 1 and
w2t +3Y = 16.

Then v = £4/1/97 and w = £/16/97. Let z := 1/+/97. Then v = +=»
and w = +22. Since A = (1 —v)C +vD, we see that

(p,q) = A € {(1-2C+zD, (1+2)C—-=zD }.
Since B = wC + (1 — w)D, we see that
(s,t) = B € {2:20+4(1—-22)D, —22C+(1+22)D }.

Thus there are two possibilities for (p,q) and there are two possibili-
ties for (s,t). This gives four possibilities for (p, g, s,t), each of which
satisfies the constraints.

We evaluate the objective (p—s)*+(¢—t)* = [N(A— B)]* assuming
(p,q) =A=(1—-2)C+ 2D and (s,t) = B = 22C + (1 — 22)D, and
obtain [ N( [(1—2)C + 2D] — [22C' + (1 — 22)D] ) ]*, which equals

[N((1=3)C+Bz-1)D )" = [N((1-32)(C-D))J",
which equals

(1 —32)*[N(C — D)* = (1 -32)*[N((—2,-3))]* = 97(1 — 32)*.
Evaluating the objective assuming the other three possibilities yields

97(1 + 2)* and 97(1 — 2)* and 97(1 + 32)*.
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Recall: z =1/ v/97. Among these four possibilities, the smallest value

of the objective occurs at the first, so (p,q) = A= (1 —2)C' + zD and

(s,t) = B=22C+ (1 —22)D. Then [N(A — B)|* = 97(1 — 32)*.
Recall that we wish to compute

Vp—s)t+ (g — 1),

which equals N(A — B). Thus our final answer is

N(A—B) = {/[N(A-B)* = /97(1 — 32)* = V97(1 — 32),
which equals

(1/2)(1=32) = (1/2) =3 =97 —3. O

42-1. Let p : R — R be defined by p(z) = [e **/2]/[v2r]. Let
X and Y be independent random variables. Assume that X and Y
are both standard normal, 7.e., that both X and Y have probability
density function p. Compute the probability that X < 9Y.

Solution: Let Z := (X,Y), which is an R*valued random variable. Let
v:=(-1,9) € R% Thenv-Z = (-1,9) - (X,Y) = - X +9Y. We
therefore wish to calculate Pr[v - Z > 0]

Let vg := (v/82,0). Then v and vy have the same length. Denote by
R : R? — R? the rotation such that R(v) = vy. Let Zy := R(Z). Then
v-Z =y - Zy. We therefore wish to calculate Pr [vy - Zy > 0].

Define P : R* — R by P(z,y) = [p(z)][p(y)]. Then P is the proba-
bility density function of Z, and so P o R~! is the probability density
function of Zy. For all z,y € R, we have P(x,y) = [eC*"~¥)/2]/[2x].
Because (r,y) — x? + 3? : R? — R is rotationally invariant, it follows
that Po R = P. Thus Z and Z; have the same distribution. We
therefore wish to calculate Pr[vy - Z > 0.

We have vy - Z = (v/82,0) - (X,Y) = v/82X. Then

[vw-Z>0] <  [X>0]

We therefore wish to calculate Pr[X > 0].
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o

Because p is the PDF of X, it follows both that / p =1 and that

—00

o0 [e'¢) 0
Pr[X > 0] = / p. Since p is even, we have / p= / p. Then
0 0 —0o0

SV T R VA N

o 1 o 1
andso/ p=-. ThenPr[X>O]:/ p=-. O
0 2 0 2

46-1. TRUE OR FALSE: For any cyclic group G, for any homomor-
phism f : G — G, there exists an integer n such that, for all x € G,
we have f(x) = 2".

Solution: True. Proof: Given a cyclic group G and a homomorphism
f G — G. We wish to show that there exists an integer n such that,
for all z € G, we have f(x) = 2™
Since G is cyclic, choose a generator a of G. Then, for all g € G,
there exists an integer k£ such that g = a*. Choose an integer n such
that f(a) = a™. Given z € G. We wish to show that f(x) = a™.
Choose an integer m such that = a™. Then

as desired. O

46-2. TRUE OR FALSE: For any Abelian group G, for any homomor-
phism f : G — G, there exists an integer n such that, for all x € G,
we have f(x) = 2".

Solution: False. Counterexample: Let C denote the multiplicative
group {—1,1}. Let G := C @ C. Then G is Abelian. Let e := (1,1),
a:=(1,-1),b:=(=1,1), c:= (=1,—1). Then G = {e, a,b,c}. Also,
ab = ¢, bc = a and ca = b. Let f: G — G be the function defined by:

Let n be an integer, and assume, for all x € G, that f(z) = z". We
aim for a contradiction.
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We have f(a) = a™. Then

b = f(a) = a"
€ {a"|k is an even integer} U {a" | k is an odd integer}
= {epU{a} = {ea}.
However, b ¢ {e, a}, contradiction. O

49-1. Up to isomorphism, how many additive Abelian groups are there
of order 127

Solution: For any integer n > 1, let C,, := Z/(nZ) be the finite additive
cyclic group of order n. By the Structure Theorem for Finite Abelian
Groups, any additive Abelian group is isomorphic to a direct sum of
additive cyclic groups of prime power order. The prime powers that
divide 12 are 1, 2, 3 and 4. Consequently, up to isomorphism, the only
additive Abelian groups of order 12 are

Cy @ Cs, Cy @ Cy @ Cs.

Thus the answer is: two. O

49-2. Up to isomorphism, how many additive Abelian groups G of
order 12 have the property that, forallx € G, x+x+x+x+x+2 =07

Solution: For all x € G, the condition [z +z+z+zx+x+2=0]
is equivalent to [ the order of z is a divisor of 6 |, and this, in turn, is
equivalent to | the order of z is 1 or 2 or 3 or 6 |. By 49-1, we need
only check Cy & C3 and Cy @& Cy @ C5. In Cy & C3, the element (1,1)
has order 12, so G cannot be isomorphic to Cy @ C5. In Cy &b Cy @ Cf,
every element has order 1 or 2 or 3 or 6. Thus G can be isomorphic
to Cy @ Cy @ (5. Thus the answer is: one. O

49-3. Up to isomorphism, how many additive Abelian groups are there
of order 247

Solution: For any integer n > 1, let C,, := Z/(nZ) be the finite additive
cyclic group of order n. By the Structure Theorem for Finite Abelian
Groups, any additive Abelian group is isomorphic to a direct sum of
additive cyclic groups of prime power order. The prime powers that
divide 24 are 1, 2, 3, 4 and 8. Consequently, up to isomorphism, the
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only additive Abelian groups of order 12 are
Cs® (s, CidCo® (s 0@y (.

Thus the answer is: three. O

49-4. Up to isomorphism, how many additive Abelian groups G of
order 24 have the property that, forallz € G, z+x+x+ 2+ 2 =07

Solution: We claim that no such group G exists. Let G be a group of
order 24 such that, forallz € G, x +z+x+ 2+ 2 = 0. We aim for a
contradiction.

Choose x € G\{0}. Let n denote the order of z. Because

T+ x4+ x4+ + = 0,

it follows that n is a divisor of 5, so n € {1,5}. Because #G = 24, it
follows that n is a divisor of 24, so n € {1,2,3,4,6,8,12,24}. Then
n e {1,5}N{1,2,3,4,6,8,12,24} = {1}, so n = 1. That is, the order
of z is 1, and it follows that x = 0. However, x € G\{0}, so = # 0,
contradiction, completing the proof of the claim.

Since no such group G exists, the answer is: zero. O

49-5. Up to isomorphism, how many additive Abelian groups G of
order 24 have the property that, forallz € G,z +x+x +x =07

Solution: For all x € G, the condition [ z+x+x 42 = 0] is equivalent
to [ the order of z is a divisor of 4 |, and this, in turn, is equivalent to
[ the order of z is 1 or 2 or 4 |. By 49-3, we need only check Cs @ C3 and
CydCy®Cyand Co®Cy® Cy @ C3. In Cy @ C3, the element (1,1) has
order 24, so G cannot be isomorphic to Cg @ C5. In Cy & Cy d (s, the
element (1,1, 1) has order 12, so G cannot be isomorphic to Cy&Co@Cs.
In Cy & Cy & Cy @& Cs, the element (1,1,1,1) has order 6, so G cannot
be isomorphic to Cy @ Cy B Cs @ C3. Thus the answer is: zero. O
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59-1. Let f be an analytic function of a complex variable z = z + 1y
given by
f(2) = Bz +5y) +i- (g(x,y)),

where g(x,y) is a real-valued function of the real variables x and y. If
g(0,0) =1, then ¢(7,3) =
Solution: We will compute [¢(7,3)] — [¢(7,0)] and [¢(7,0)] — [¢g(0,0)]
separately, and then add the results to get [¢(7,3)] — [9(0,0)]. We will
then add ¢(0,0), which is given in the problem as 1, and obtain ¢(7, 3).

Define Z : R? — C by Z(x,y) = = + iy. Define h : R* — R? by
h(z,y) = 3z + 5y. Then fo Z = h +ig.

According to the Cauchy-Riemann equations, a counterclockwise 90°
rotation of (O1h, 01g) gives (Ozh, 02g). That is,

0 —1][6h] [ &h
1 0 819 N a29 .
That iS, —ﬁlg = 82h and 81h = 629.

For all z,y € R, h(z,y) = 3z + by. Computing partial derivatives,
for all z,y € R, we get (01h)(z,y) = 3 and (0:h)(x,y) = 5, and so

—(019)(z,y) = 5 and (029)(z,y) = 3.

Multiplying the first equation by —1, and substituting y :— 0, we see,
for all x € R, that (01g)(z,0) = —5. Integrating this equation from
7

x =0tz =7, we see that [¢g(7,0)] — [g(0,0)] :/ (—=5) dx. Then

0
[g(7,0)] — [9(0,0)] = (=5)(7) = —35. Recall that, for all z,y € R,
(029)(x,y) = 3. Substituting x :— 7, we see, for all y € R, that
(029)(7,y) = 3. Integrating this equation from y = 0 to y = 3 yields

9(7,3)] = [9(7,0)] = /0 3dz = (3)(3) = 9. Then
[9(7,3)] = [9(0,0)] = ([9(7.3)] = [9(7,0)]) + ([9(7, 0)] - [g(0,0)])
= 94 (—35) = —26.
Then g(7,3) = [g(0,0)] + (—26) = 1 + (—26) = —25. 0




