
SOLUTIONS TO PRACTICE TEST 1

1. In the xy-plane, the curve with parametric equations x = cos t and

y = sin t, 0 ≤ t ≤ π, has length

(A) 3

(B) π

(C) 3π

(D) 3/2

(E) π/2

Solution: The velocity is given by ẋ = − sin t and ẏ = cos t. The speed

is given by [(− sin t)2 + (cos t)2]
1/2

= [1]1/2 = 1. The length of the

curve is then

∫ π

0

1 dt = π. Answer: (B) �

Alternate solution: The curve is a semicircle of radius 1, so its length

is π. Answer: (B) �

2. Which of the following is an equation of the line tangent to the

graph of y = x+ ex at x = 0.

(A) y = x

(B) y = x+ 1

(C) y = x+ 2

(D) y = 2x

(E) y = 2x+ 1

Solution: The slope is [(d/dx)(x+ ex)]x:→0 = [1 + ex]x:→0 = 1 + e0 = 2.

The y-coordinate of the point of tangency is [x+ ex]x:→0 = 0 + e0 = 1,

so the point of tangency is (0, 1). An equation of the line is therefore

y − 1 = 2(x− 0), or y = 2x+ 1. Answer: (E) �
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3. If V and W are 2-dimensional subspaces of R4, what are the possible

dimensions of V ∩W?

(A) 1 only

(B) 2 only

(C) 0 and 1 only

(D) 0, 1 and 2 only

(E) 0, 1, 2, 3 and 4

Solution: The minimum possible dimension of V +W is

max{dimV, dimW} = max{2, 2} = 2.

The maximum possible dimension of V +W is

min{ (dimV ) + (dimW ) , dimR4 } = min{2 + 2, 4} = 4.

So the set of possible dimensions of V +W is {2, 3, 4}. As

(dimV ) + (dimW ) = (dim (V +W )) + (dim (V ∩W )),

we see that 4 = 2 + 2 = (dim (V +W )) + (dim (V ∩W )), so

dim (V ∩W ) = 4 − (dim (V +W )).

Then the set of possible dimensions of V ∩W is

{ 4− 2 , 4− 3 , 4− 4 } = {2, 1, 0}.

Answer: (D) �

4. Let k be the number of real solutions of the equation ex + x− 2 = 0

in the interval [0, 1], and let n be the number of real solutions that are

not in [0, 1]. Which of the following is true?

(A) k = 0 and n = 1

(B) k = 1 and n = 0

(C) k = n = 1

(D) k > 1

(E) n > 1

Solution: For all x ∈ R, we have [d/dx][ex + x − 2] = ex + 1 > 0, so

ex + x− 2 is increasing in x. So, since [ex + x− 2]x:→0 = 1 + 0− 2 < 0

and [ex + x − 2]x:→0 = e + 1 − 2 > 0, it follows that the equation

ex + x− 2 = 0 has one solution in [0, 1], and no solutions that are not

in [0, 1]. That is, k = 1 and n = 0. Answer: (B) �
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5. Suppose b is a real number and f(x) = 3x2 + bx + 12 defines a

function on the real line, part of which is graphed above. Then f(5) =

(A) 15

(B) 27

(C) 67

(D) 72

(E) 87

Solution: We have f ′(x) = 6x + b, so f ′(2) = 12 + b. From the graph,

f ′(2) = 0. Thus 12 + b = 0, so b = −12. Then f(x) = 3x2 − 12x+ 12,

so f(5) = 3 · 52 − 12 · 5 + 12 = 75− 60 + 12 = 27. Answer: (B) �

Alternate solution: We have f(2) = 3 · 22 + b · 2 + 12. From the graph,

f(2) = 0. Thus 12 + 2b + 12 = 0, so 2b = −24, so b = −12. Then

f(x) = 3x2−12x+12, so f(5) = 3 ·52−12 ·5+12 = 75−60+12 = 27.

Answer: (B) �
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6. Which of the following circles has the greatest number of points of

intersection with the parabola x2 = y + 4.

(A) x2 + y2 = 1

(B) x2 + y2 = 2

(C) x2 + y2 = 9

(D) x2 + y2 = 16

(E) x2 + y2 = 25

Solution:

The parabola in question is the graph of y = x2 − 4, and is ob-

tained by moving y = x2 down four units. Its x-intercepts are −2

and 2, and its y-intercept is −4. It is shown in the figure above in red,

marked “Parabola”. The circles in answers (A),. . . ,(E) are shown in

blue, marked “A”,. . . ,“E”.

The circles A and B have 0 intersection points. The circle C has

4 intersection points. The circle D has 3 intersection points. The circle

E has 2 intersection points. Answer: (C) �

Alternate solution: We will count the intersections in (C). The other

counts are similar, but as we move from (C) to the other parts, the

new versions of a and b, defined below, will be different. Since, below,

we need to compute
√
a+ 4
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Let a := (−1 −
√

1 + 20)/2 and b := (−1 +
√

1 + 20)/2. Then

a+ 4 > 0 and b+ 4 > 0. For all x, y ∈ R,

[ ( x2 + y2 = 9 ) and ( x2 = y + 4 ) ] iff

[ ( y + 4 + y2 = 9 ) and ( x2 = y + 4 ) ] iff

[ ( y2 + y − 5 = 0 ) and ( x2 = y + 4 ) ] iff

[ ( ( y = a ) or ( y = b ) ) and ( x2 = y + 4 ) ] iff

[(y = a) and (x ∈ {±
√
a+ 4})] or [(y = b) and (x ∈ {±

√
b+ 4})].

There are therefore four intersection points:

(
√
a+ 4, a), (−

√
a+ 4, a), (

√
b+ 4, b), (−

√
b+ 4, b)

Now, if you know “Bézout’s Theorem”, you know that, over the real

numbers, the intersection of two distinct quadratics (like x2 + y2 = 9

and x2 = y + 4) cannot have more than four points. This shows that

the intersection counts for (A), (B), (D) and (E) must all be ≤ 4. So

either the problem has two answers, or the only correct answer is (C).

If you don’t know Bézout’s Theorem, or don’t appreciate the kind of

thinking in this paragraph, you can modify the intersection count for

(C) and get the counts for (A), (B), (D) and (E).

As we move from (C) to other parts of the problem, a and b will

change, and, for displaying intersection points, we need to take the

square root of a + 4 and b + 4. So much depends on whether a + 4 is

positive, negative or zero and, also, much depends on whether b+ 4 is

positive, negative or zero. We leave it to the reader to do show that

(A) and (B) have no intersection points. We leave it to the reader to do

show that (D) has three intersection points. We leave it to the reader

to do show that (E) has two intersection points.

Alternate solution: Let c be a real number. We seek to count intersec-

tions of x2 + y2 = c with the parabola x2 = y + 4. To solve (A), we’ll

set c = 1. To solve (B), we’ll set c = 2. To solve (C), we’ll set c = 9.

To solve (D), we’ll set c = 16. To solve (E), we’ll set c = 25.

For all x, y ∈ R,

[ ( x2 + y2 = c ) and ( x2 = y + 4 ) ] iff

[ ( y + 4 + y2 = c ) and ( x2 = y + 4 ) ] iff

[ ( y2 + y − (c− 4) = 0 ) and ( x2 = y + 4 ) ].

Let ∆ := 1 + 4(c− 4). If ∆ < 0, then

[ ( x2 + y2 = c ) and ( x2 = y + 4 ) ]
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has no real solutions; that is, there are no intersection points. In (A),

we have c = 1, so ∆ = 1 + 4 · (−3) < 0. In (B), we have c = 2, so

∆ = 1 + 4 · (−2) < 0. Thus (A) and (B) have no intersection points.

It turns out that ∆ = 0 does not occur in (A),. . . ,(E). So assume,

for the remainder, that ∆ > 0. Define a := (−1 −
√

∆)/2 and define

b := (−1 +
√

∆)/2. Note that a < b. For all x, y ∈ R,

[ ( y2 + y − (c− 4) = 0 ) and ( x2 = y + 4 ) ] iff

[ ( ( y = a ) or ( y = b ) ) and ( x2 = y + 4 ) ].

If a + 4 = 0, then b + 4 > 0, and, in this case, we have three

intersection points:

(0, a), (
√
b+ 4, b), (−

√
b+ 4, b).

In (D), we have c = 16, so ∆ = 1 + 4 · 12 = 49. Then

a = (−1− 7) / 2 = −4,

so a+ 4 = 0. So, for (D), we have three intersection points.

If a+ 4 < 0 and b+ 4 > 0, then we have two intersection points:

(
√
b+ 4, b), (−

√
b+ 4, b).

In (E), we have c = 25, so ∆ = 1 + 4 · 21 = 85. Then

a = (−1−
√

85) / 2 < (−1−
√

49) / 2 = −4

and b = (−1 +
√

85)/2 > −4, so a + 4 < 0 and b + 4 > 0. So, for (E),

we have two intersection points.

If a+ 4 > 0, then b+ 4 > 0, then we have four intersection points:

(
√
a+ 4, a), (−

√
a+ 4, a), (

√
b+ 4, b), (−

√
b+ 4, b).

In (C), we have c = 9, so ∆ = 1 + 4 · 5 = 21. Then

a = (−1−
√

21) / 2 > (−1−
√

49) / 2 = −4.

So, for (C), we have four intersection points. Answer: (C) �
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7.

∫ 3

−3
|x+ 1| dx =

(A) 0

(B) 5

(C) 10

(D) 15

(E) 20

Solution: The integral is equal to[∫ −1
−3
|x+ 1| dx

]
+

[∫ 3

−1
|x+ 1| dx

]
=

[∫ −1
−3

(−x− 1) dx

]
+

[∫ 3

−1
(x+ 1) dx

]
=

[
−x

2

2
− x
]x:→−1
x:→−3

+

[
x2

2
+ x

]x:→3

x:→−1

=

[
−1− 9

2
− 2

]
+

[
9− 1

2
+ 4

]
= −(−4)− 2 + 4 + 4 = 10.

Answer: (C) �

Alternate solution: Between x = −3 and x = 3, the region below

the graph of y = |x + 1| breaks up into two right isosceles trian-

gles. The leftmost triangle has legs of length 2, and therefore has

area (1/2)(2)(2) = 2. The rightmost triangle has legs of length 4, and

therefore has area (1/2)(4)(4) = 8. Total: 2+8 = 10. Answer: (C) �
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8. What is the greatest possible area of a triangular region with one

vertex at the center of a circle of radius 1 and the other two vertices

on the circle?

(A) 1/2

(B) 1

(C)
√

2

(D) π

(E) (1 +
√

2)/4

Solution: Such a triangle is always isosceles with two sides of length 1.

It therefore can be split into two congruent right triangles, both of

hypotenuse 1. If x is the length of one of the legs of one of the two

right triangles, then 0 < x < 1 and, moreover,
√

1− x2 is the length of

the other leg of that triangle. Thus the area inside each right triangle

is (1/2)x
√

1− x2, so the area inside the isosceles triangle is x
√

1− x2.
We wish to maximize f(x) = x

√
1− x2 on 0 < x < 1. We have

f ′(x) =
[√

1− x2
]

+ x

[
−2x

2
√

1− x2

]
=

[
1− x2√
1− x2

]
+

[
−x2√
1− x2

]
=

1− 2x2√
1− x2

.

Then f ′(x) > 0 on 0 < x < 1/
√

2. Also, f ′(x) < 0 on 1/
√

2 < x < 1.

Thus f(x) is increasing on 0 < x < 1/
√

2. Also, f(x) is decreasing

on 1/
√

2 < x < 1. Then f(x) attains a global maximum at x = 1/
√

2.

So, since f(x) = x
√

1− x2, the maximum value is

f

(
1√
2

)
=

[
1√
2

][√
1− 1

2

]
=

[
1√
2

] [
1√
2

]
=

1

2
.

Answer: (A) �
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J =

∫ 1

0

√
1− x4 dx

K =

∫ 1

0

√
1 + x4 dx

L =

∫ 1

0

√
1− x8 dx

9. Which of the following is true for the definite integral shown above?

(A) J < L < 1 < K

(B) J < L < K < 1

(C) L < J < 1 < K

(D) L < J < K < 1

(E) L < 1 < J < K

Solution: On 0 < x < 1, we have:

−1 < −x4 < −x8 < 0 < x4,

which implies 0 < 1− x4 < 1− x8 < 1 < 1 + x4,

which implies
√

1− x4 <
√

1− x8 < 1 <
√

1 + x4.

Thus J < L < 1 < K. Answer: (A) �



10 SOLUTIONS TO PRACTICE TEST 1

10. Let g be a function whose derivative g′ is continuous and has the

graph shown above. Which of the following values of g is the largest?

(A) g(1)

(B) g(2)

(C) g(3)

(D) g(4)

(E) g(5)

Solution: Because g′ > 0 on (0, 2), and because g is continuous on [0, 2],

it follows that g is increasing on [0, 2]. Because g′ < 0 on (2, 5), and

because g is continuous on [2, 5], it follows that g is decreasing on [2, 5].

Then, on [0, 5], g attains its maximum value at 2. Answer: (B) �
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11. Of the following, which is the best approximation of[√
1.5
] [

(266)3/2
]
?

(A) 1, 000

(B) 2, 700

(C) 3, 200

(D) 4, 100

(E) 5, 300

Solution: We have:[√
1.5
] [

(266)3/2
]

=
[√

1.5
] [√

(266)3
]

=
[√

1.5
] [√

266
] [√

(266)2
]

=
[√

(1.5)(266)
]

[266]

=
[√

266 + 133
]

[266]

=
[√

399
]

[266]

≈<
[√

400
]

[266]

= [20] [266]

= 5, 320

Answer: (E) �
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12. Let A be a 2× 2 matrix for which there is a constant k such that

the sum of the entries in each row and each column is k. Which of the

following must be an eigenvector of A?

I.

[
1

0

]
II.

[
0

1

]
III.

[
1

1

]
(A) I only

(B) II only

(C) III only

(D) I and II only

(E) I, II and III

Solution: Choose a, b, c, d such that A =

[
a b

c d

]
. Then

A

[
1

0

]
=

[
a

c

]
and A

[
0

1

]
=

[
b

d

]
.

In particular, if A =

[
0 1

1 0

]
, then

A

[
1

0

]
=

[
0

1

]
and A

[
0

1

]
=

[
1

0

]
,

which shows that I and II are not necessarily eigenvectors.

On the other hand, for any A, we have

A

[
1

1

]
=

[
a+ c

b+ d

]
=

[
k

k

]
= k

[
1

1

]
,

which shows that III is necessarily an eigenvector. Answer: (C) �
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13. A total of x feet of fencing is to form three sides of a level rectan-

gular yard. What is the maximum possible area of the yard, in terms

of x?

(A) x2/9

(B) x2/8

(C) x2/4

(D) x2

(E) 2x2

Solution: Along the three fenced sides, let the side lengths be t feet,

x− 2t feet and t feet. We then wish to maximize the area

A(t) = (x− 2t)t on 0 ≤ t ≤ x/2.

Since the graph of A is a concave down parabola, and since

A(0) = A(x/2) = 0,

it follows that A(t) attains its maximum value

halfway between t = 0 and t = x/2,

i.e., at t = (0 + (x/2))/2 = x/4. The maximum value is

A(x/4) = (x− 2(x/4))(x/4) = (x/2)(x/4) = x2/8.

Answer: (B) �

Alternate Solution: Along the three fenced sides, let the side lengths

be t feet, x− 2t feet and t feet. We then wish to maximize the area

A(t) = (x− 2t)t on 0 ≤ t ≤ x/2.

Then A′(t) = −2t+ x− 2t = x− 4t. Since the graph of A is a concave

down parabola, and since

[ A′(t) = 0 ] ⇔ [ t = x/4 ],

we see that A(t) attains its maximum at t = x/4, with maximum value

A(x/4) = (x− (x/2))(x/4) = (x/2)(x/4) = x2/8. Answer: (B) �

Alternate Solution: Along the three fenced sides, let the side lengths

be t feet, x− 2t feet and t feet. We then wish to maximize the area

A(t) = (x− 2t)t on 0 ≤ t ≤ x/2.
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By the arithmetic-geometric mean inequality, for all a, b ≥ 0, we have:√
ab ≤ (a+ b)/2. Equality happens when a = b. Replacing a by 2t and

b by x − 2t, we see that
√

2t(x− 2t) ≤ x/2. Squaring this, and then

dividing by 2, we get t(x− 2t) ≤ x2/8. That is, A(t) ≤ x2/8. Equality

happens when 2t = x− 2t, i.e., when t = x/4. The maximum value is

then x2/8. Answer: (B) �

14. What is the units digit in the standard decimal expansion of the

number 725?

(A) 1

(B) 3

(C) 5

(D) 7

(E) 9

Solution: In this solution, congruences (≡) are all mod 10. We have

72 = 7 · 7 = 49 ≡ 9, so

73 = 7 · 72 ≡ 7 · 9 = 63 ≡ 3, so

74 = 7 · 73 ≡ 7 · 3 = 21 ≡ 1.

Then 725 = 7 · (74)6 ≡ 7 · 16 = 7. Answer: (D) �

15. Let f be a continuous real-valued function defined on the closed

interval [−2, 3]. Which of the following is NOT necessarily true?

(A) f is bounded.

(B)

∫ 3

−2
f(t) dt exists.

(C) For each c between f(−2) and f(3), there is an x ∈ [−2, 3] such

that f(x) = c.

(D) There is an M in f([−2, 3]) such that

∫ 3

−2
f(t) dt = 5M .

(E) lim
h→0

[f(h)]− [f(0)]

h
exists.

Solution: By the Extreme Value Theorem, (A) is necessarily true. By

the construction of integration, (B) is necessarily true. By the Inter-

mediate Value Theorem, (C) is necessarily true. By the Integral Mean

Value Theorem, (D) is necessarily true. Finally, (E) is NOT necessarily
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true, e.g., define f : R→ R by

f(x) =

{
x · (sin(1/x)), if x 6= 0

0, if x = 0.

Answer: (E) �

16. What is the volume of the solid formed by revolving, about the

x-axis, the region in the first quadrant of the xy-plane bounded by: the

coordinate axes and the graph of the equation y =
1√

1 + x2
?

(A) π/2

(B) π

(C) π2/4

(D) π2/2

(E) ∞

Solution: By the disk method, the volume is∫ ∞
0

π

[
1√

1 + x2

]2
dx = π

∫ ∞
0

dx

1 + x2

= π [arctanx]x:→∞x:→0

= π
[π

2
− 0
]

=
π2

2
.

Answer: (D) �

17. How many real roots does the polynomial 2x5 + 8x− 7 have?

(A) None

(B) One

(C) Two

(D) Three

(E) Five

Solution: We have

• lim
x→−∞

(2x5 + 8x− 7) = lim
x→−∞

2x5 = −∞, and

• lim
x→∞

(2x5 + 8x− 7) = lim
x→∞

2x5 =∞,

so, by the Intermediate Value Theorem, the polynomial 2x5 + 8x − 7

has at least one root.
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On x ∈ R, we have:

d

dx
[2x5 + 8x− 7] = 10x4 + 8 > 0,

so, by either Rolle’s Theorem or the Increasing Test, we conclude that

the polynomial 2x5 + 8x− 7 has at most one root.

Since the polynomial 2x5 + 8x− 7 has at least one and at most one

root, we see that it has exactly one root. Answer: (B) �

18. Let V be the real vector space of all real 2× 3 matrices. Let W be

the real vector space of all real 4 × 1 column vectors. If T is a linear

transformation from V onto W , what is the dimension of the subspace

{v ∈ V |T (v) = 0} of V ?

(A) 2

(B) 3

(C) 4

(D) 5

(E) 6

Solution: By definition of kernel, we have

ker[T ] = {v ∈ V |T (v) = 0}.

We therefore wish to calculate dim (ker[T ]). We have

• dim (dom [T ]) = dimV = 6 and

• dim (im [T ]) = dimW = 4.

So, since

dim (ker[T ]) + dim (im [T ]) = dim (dom [T ]),

we have dim (ker[T ])+4 = 6, and so dim (ker[T ]) = 2. Answer: (A) �
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19. Let f and g be twice-differentiable real-valued functions defined

on R. Assume, for all x > 0, that f ′(x) > g′(x). Then which of the

following inequalities must be true for all x > 0?

(A) f(x) > g(x)

(B) f ′′(x) > g′′(x)

(C) [f(x)]− [f(0)] > [g(x)]− [g(0)]

(D) [f ′(x)]− [f ′(0)] > [g′(x)]− [g′(0)]

(E) [f ′′(x)]− [f ′′(0)] > [g′′(x)]− [g′′(0)]

Solution: The example f(x) = 2x, g(x) = x + 1 shows that (A), (B),

(D) and (E) can all fail. By assumption, on t > 0, we have f ′(t) > g′(t).

So, for all x > 0, by integrating f ′(t) > g′(t), with respect to t, from

t = 0 to t = x, we find that

∫ x

0

[f ′(t)] dt >

∫ x

0

[g′(t)] dt, and, by the

Fundamental Theorem of Calculus, this yields

[f(t)]t:→xt:→0 > [g(t)]t:→xt:→0 ,

or

[f(x)] − [f(0)] > [g(x)] − [g(0)],

which is (C). Answer: (C) �
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20. Let f be the function defined on the real line by

f(x) =

{
x/2, if x is rational;

x/3, if x is irrational.

If D is the set of points of discontinuity of f , then D is the

(A) empty set

(B) set of rational numbers

(C) set of irrational numbers

(D) set of nonzero real numbers

(E) set of real numbers

Solution: Because the rationals and irrationals are both dense in R, we

see, for all c > 0, that lim inf
x→c

[f(x)] = c/3 and that lim sup
x→c

[f(x)] = c/2,

and, therefore, that f is not continuous at c. Because the ratio-

nals and irrationals are both dense in R, we see, for all c < 0, that

lim inf
x→c

[f(x)] = c/2 and that lim sup
x→c

[f(x)] = c/3, and, therefore, that f

is not continuous at c. Finally, lim inf
x→0

[f(x)] ≥ 0 and lim sup
x→0

[f(x)] ≤ 0

and f(0) = 0, and so f is continuous at 0. Answer: (D) �

21. Let P1 be the set of all primes, {2, 3, 5, 7, . . .}, and, for each inte-

ger n, let Pn be the set of all prime multiples of n, {2n, 3n, 5n, 7n, . . .}.
What of the following intersections is nonempty?

(A) P1 ∩ P23

(B) P7 ∩ P21

(C) P12 ∩ P20

(D) P20 ∩ P24

(E) P5 ∩ P25

Solution: For all p, q ∈ P1, we have p 6= 23q. Thus P1 ∩ P23 = ∅.
For all p, q ∈ P1, we have p 6= 3q, and so 7p 6= 21q. Thus P7∩P21 = ∅.
There exist p, q ∈ P1 such that 3p = 5q. (In fact, we can use p = 5

and q = 3.) Thus there exist p, q ∈ P1 such that 12p = 20q. (In fact, we

can use p = 5 and q = 3.) Thus P12∩P20 6= ∅. (In fact, 60 ∈ P12∩P20.)

For all p ∈ P1, we have

either 2 6 | p or 3 6 | p,
so
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either 2 6 | (5p) or 3 6 | (5p).

On the other hand, for all q ∈ P1, we have

both 2 | (6q) or 3 | (6q).

So, for all p, q ∈ P1, we have 5p 6= 6q, so 20p 6= 24q. Thus P20∩P24 = ∅.
For all p, q ∈ P1, we have p 6= 5q, so 5p 6= 25q. Thus P5 ∩ P25 = ∅.
Answer: (C) �

22. Let C(R) be the collection of all continuous functions from R to R.

Then C(R) is a real vector space with vector addition defined by

∀f, g ∈ C(R), ∀x ∈ R, (f + g)(x) = [f(x)] + [g(x)],

and with scalar multiplication defined by

∀f ∈ C(R), ∀r, x ∈ R, (rf)(x) = r · [f(x)].

Which of the following are subspaces of R?

I. {f : f is twice differentiable and f ′′ − 2f ′ + 3f = 0}
II. {g : g is twice differentiable and g′′ = 3g′}

III. {h : h is twice differentiable and h′′ = h+ 1}
(A) I only

(B) I and II only

(C) I and III only

(D) II and III only

(E) I, II and III

Solution: Let V denote the set of all φ ∈ C(R) such that φ is twice

differentiable. Then V is a subspace of C(R).

The map f 7→ f ′′ − 2f ′ + 3f : V → C(R) is linear and its kernel is

I. Thus I is a subspace of V , and, therefore, of C(R).

The map g 7→ g′′−3g′ : V → C(R) is linear and its kernel is II. Thus

II is a subspace of V , and, therefore, of C(R).

Because the constant function −1 is in III, while −2 is not in III, we

see that III is not closed under scalar multiplication. Thus III is NOT

a subspace of C(R).

Answer: (B) �
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23. For what value of b is the line y = 10x tangent to the curve y = ebx

at some point in the xy-plane?

(A) 10/e

(B) 10

(C) 10e

(D) e10

(E) e

Solution: Fix b ∈ R, and assume that the line y = 10x is tangent to

the curve y = ebx. Let x ∈ R be the first coordinate of the point of

tangency. Then

10x = ebx and 10 = bebx.

Dividing the first equation by the second, we get (10x)/10 = ebx/(bebx).

That is, x = 1/b. Then

10/b = 10x = ebx = eb(1/b) = e.

Then b = 10/e. Answer: (A) �

24. Let h be the function defined by h(x) =

∫ x2

0

ex+t dt, for all real

numbers x. Then h′(1) =

(A) e− 1

(B) e2

(C) e2 − e
(D) 2e2

(E) 3e2 − e

Solution: For all x ∈ R, we compute∫ x2

0

ex+t dt =
[
ex+t

]t:→x2
t:→0

= ex+x
2 − ex.

Thus, for all x ∈ R, we have h(x) = ex+x
2 − ex. Differentiating, we see,

for all x ∈ R, that h′(x) = (ex+x
2
)(1 + 2x)− ex.

Then h′(1) = (e2)(3)− e = 3e2 − e. Answer: (E) �
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Alternate Solution: Claim: For all x ∈ R, we have h(x) =

∫ x2+x

x

es ds.

Proof of claim: Given x ∈ R. We wish to prove that h(x) =

∫ x2+x

x

es ds.

Make the change of variables s = x+ t and ds = dt, in the definition

of h(x). This yields h(x) =

∫ x2+x

x

es ds. End of proof of claim.

Define F : R→ R by F (x) =

∫ x

0

es ds. By the claim, for all x ∈ R,

we have f(x) = [F (x2 + x)] − [F (x)]. Differentiating, for all x ∈ R,

we have f ′(x) = [F ′(x2 + x)][2x + 1] − [F ′(x)]. Evaluating this at

x :→ 1 yields f ′(1) = [F ′(2)][3]−[F ′(1)]. By the Fundamental Theorem

of Calculus, for all x ∈ R, F ′(x) = ex. Then F ′(2) = e2 and F ′(1) = e.

Then f ′(1) = [F ′(2)][3]− [F ′(1)] = 3e2 − e. Answer: (E) �

25. Let {an}∞n=1 be defined recursively by a1 = 1 and

for all integers n ≥ 1, an+1 =

(
n+ 2

n

)
an.

Then a30 is equal to

(A) (15)(31)

(B) (30)(31)

(C) 31 / 29

(D) 32 / 30

(E) [32!] / [(30!)(2!)]

Solution: We have

a30 =

(
31

29

)
a29

=

(
31

29

)(
30

28

)
a28

=

(
31

29

)(
30

28

)(
29

27

)
a27

= · · ·

=

(
31

29

)(
30

28

)(
29

27

)
· · ·
(

3

1

)
a1

=
(31!)/(2!)

29!
=

(31)(30)

2
= (15)(31).

Answer: (A) �
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26. For all real x and y, let f(x, y) = x2 − 2xy + y3. Which of the

following is true?

(A) f has all of its relative extrema on the line x = y.

(B) f has all of its relative extrema on the parabola x = y2.

(C) f has a relative minimum at (0, 0).

(D) f has an absolute minimum at (2/3, 2/3).

(E) f has an absolute minimum at (1, 1).

Solution: If a relative extremum of f occurs at a point (x, y) ∈ R2, then,

by Fermat’s Theorem, (x, y) is a critical point of f ; in that case, since f

is everywhere differentiable, we get (∂1f)(x, y) = (∂2f)(x, y) = 0. We

have (∂1f)(x, y) = 2x−2y and (∂2f)(x, y) = −2x+3y2. Then f has all

of its relative extrema on the line 2x− 2y = 0, i.e., on the line x = y.

Thus (A) is true.

We have: [ 2x − 2y = −2x + 3y2 = 0 ] iff [ x = y and 3y2 = 2x ]

iff [ x = y and 3x2 = 2x ] iff [ x = y and (x = 0 or x = 2/3) ] iff

[ (x, y) = (0, 0) or (x, y) = (2/3, 2/3) ]. Thus the two critical points

of f are (0, 0) and (2/3, 2/3).

We calculate that the Hessian of f , evaluated at (x, y), is

(Hf)(x, y) :=

[
(∂1∂1f)(x, y) (∂1∂2f)(x, y)

(∂2∂1f)(x, y) (∂2∂2f)(x, y)

]
=

[
2 −2

−2 6y

]
.

Then

(Hf)(0, 0) =

[
2 −2

−2 0

]
and (Hf)(2/3, 2/3) =

[
2 −2

−2 4

]
.

Because tr ((Hf)(2/3, 2/3)) > 0 and det ((Hf)(2/3, 2/3)) > 0, we

see that (Hf)(0, 0) is positive definite. So, by the Second Derivative

Test, f attains a relative minimum at (2/3, 2/3). Since (2/3, 2/3) is

NOT on the line x = y2, we see that (B) is false.

Because tr ((Hf)(0, 0)) > 0 and det ((Hf)(0, 0)) < 0, we see that

(Hf)(0, 0) is indefinite. So, by the Second Derivative Test, f has a sad-

dle point at (0, 0), and so does not attain a relative extremum at (0, 0).

Then (C) is false.

Because lim
y→−∞

f(0, y) = lim
y→−∞

y3 = −∞, we see that f has no abso-

lute minimum. Then (D) and (E) are false.
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27. Consider the two planes x+ 3y−2z = 7 and 2x+y−3z = 0 in R3.

Which of the following sets is the intersection of these two planes?

(A) ∅
(B) {(0, 3, 1)}
(C) {(x, y, z) |x = t, y = 3t, z = 7− 2t, t ∈ R}
(D) {(x, y, z) |x = 7t, y = 3 + t, z = 1 + 5t, t ∈ R}
(E) {(x, y, z) |x− 2y − z = −7}

Solution: Let P and Q be, respectively, the planes with equations

x+ 3y − 2z = 7 and 2x+ y − 3z = 0,

or, equivalently,

(1, 3,−2) · (x, y, z) = 7 and (2, 1,−3) · (x, y, z) = 0.

The vectors (1, 3,−2) and (2, 1,−3) are perpendicular to P and Q,

respectively. Because (1, 3,−2) is not parallel to (2, 1,−3), it follows

that P and Q are not parallel. Thus 0 < dim (P ∩ Q) < 2, and so

dim (P ∩Q) = 1. This rules out (A), (B) and (E).

We now check (C). Let L be the line described in (C). Replace x, y

and z by t, 3t and 7− 2t, respectively, in the equation x+ 3y− 2z = 7.

This yields (t) + 3 · (3t)− 2 · (7− 2t) = 7, or (1 + 9 + 4)t+ (−14) = 7,

or 14t − 14 = 7. It is NOT true, for all t ∈ R, that 14t − 14 = 7, and

thus L 6⊆ P . This rules out Answer (C).

We now check (D). Let M be the line described in D. Replace x, y

and z by 7t, 3 + t and 1 + 5t, respectively, in the two equations

x+ 3y − 2z = 7 and 2x+ y − 3z = 0.

This yields

(7t)+3·(3+t)−2·(1+5t)=7 and 2·(7t)+(3+t)−3·(1+5t) = 0,

or (7 + 3 − 10)t + (9 − 2) = 7 and (14 + 1 − 15)t + (3 − 3) = 0, or

0t + 7 = 7 and 0t = 0. It IS true, for all t ∈ R, that 0t + 7 = 7 and

0t = 0, so L ⊆ P ∩ Q. So, because dimL = 1 = dim (P ∩ Q), we

conclude that L = P ∩Q. Answer: (D) �
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28. The figure above shows an undirected graph with six vertices.

Enough edges are to be deleted from the graph in order to leave a

spanning tree, which is a connected subgraph having the same six ver-

tices and no cycles. How many edges must be deleted?

(A) One

(B) Two

(C) Three

(D) Four

(E) Five

Solution: The figure separates the plane into five regions – four triangles

and the (unbounded) exterior. Eliminating an edge will reduce the

separation by one region. A spanning tree will not separate the plane;

there will be only one (unbounded) region. Thus we must remove four

edges to obtain a spanning tree. Answer: (D) �
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29. For all positive functions f and g of the real variable x, let ∼ be a

relation defined by

f ∼ g if and only if lim
x→∞

[
f(x)

g(x)

]
= 1.

Which of the following is NOT a consequence of f ∼ g?

(A) f 2 ∼ g2

(B)
√
f ∼ √g

(C) ef ∼ eg

(D) f + g ∼ 2g

(E) g ∼ f

Solution: Since the functions (•)2 : R → R and
√
• : [0,∞) → R and

1/• : (0,∞)→ R are all continuous at 1, we can apply these functions

to the equation lim
x→∞

[
f(x)

g(x)

]
= 1, and obtain, respectively,

lim
x→∞

[
[f(x)]2

[g(x)]2

]
= 1, lim

x→∞

[√
f(x)√
g(x)

]
= 1, lim

x→∞

[
g(x)

f(x)

]
= 1,

which proves f 2 ∼ g2 and
√
f ∼ √g and g ∼ f , and rules out (A) and

(B) and (E).

If we add lim
x→∞

[
f(x)

g(x)

]
= 1 and lim

x→∞

[
g(x)

g(x)

]
= 1, we obtain

lim
x→∞

[
[f(x)] + [g(x)]

g(x)

]
= 2,

and dividing this by 2, we get

lim
x→∞

[
[f(x)] + [g(x)]

2 · [g(x)]

]
= 1,

which proves f + g ∼ 2g, and rules out (D).

Because the function e• : R→ R is continuous at 1, we can apply this

function to the equation lim
x→∞

[
f(x)

g(x)

]
= 1, and obtain lim

x→∞

[
ef(x)

eg(x)

]
= e,

which proves ef 6∼ eg. Answer: (C) �
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30. Let f be a function from a set X to a set Y . Consider the following

statements.

P : For each x ∈ X, there exists y ∈ Y such that f(x) = y.

Q : For each y ∈ Y , there exists x ∈ X such that f(x) = y.

R : There exist x1, x2 ∈ X such that x1 6= x2 and f(x1) = f(x2).

The negation of the statement “f is one-to-one and onto Y ” is

(A) P or (not R)

(B) R or (not P )

(C) R or (not Q)

(D) P and (not R)

(E) R and (not Q)

Solution: Statement P is always true.

Statement Q is equivalent to “f is onto Y ”. Statement R is equiv-

alent to “f is not one-to-one”. The negation of “f is one-to-one and

onto Y ” is “(f is not one-to-one) or (f is not onto Y ).” This is equiv-

alent to [ R or (not Q) ]. Answer: (C) �
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31. Which of the following most closely represents the graph of a

solution to the differential equation
dy

dx
= 1 + y4?

Solution: For all y ∈ R, we have 1 + y4 ≥ 1. Thus any solution to
dy

dx
= 1 + y4 will have the property that all of its tangent lines have

slope ≥ 1. This rules out (B), (C), (D) and (E). Answer: (A) �
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32. Suppose that two binary operations, denoted by ⊕ and �, are

defined on a nonempty set S. Suppose, further, that the following

conditions are satisfied:

(1) ∀x, y ∈ S, x⊕ y ∈ S and x� y ∈ S.

(2) ∀x, y, z ∈ S, (x⊕y)⊕z = x⊕(y⊕z) and (x�y)�z = x�(y�z).

(3) ∀x, y ∈ S, x⊕ y = y ⊕ x.

For each x ∈ S and each integer n ≥ 1, the elements nx, xn ∈ S are

defiend recursively by

• 1x = x1 = x and

• ∀integer k ≥ 1, (k + 1)x = (kx)⊕ x and xk+1 = xk � x.

Which of the following must be true?

I. ∀x, y ∈ S, ∀integer n ≥ 1, (x� y)n = xn � yn.

II. ∀x, y ∈ S, ∀integer n ≥ 1, n(x⊕ y) = (nx)⊕ (ny).

III. ∀x ∈ S, ∀integers m,n ≥ 1, xm � xn = xm+n.

(A) I only

(B) II only

(C) III only

(D) II and III only

(E) I, II and III

Solution: One model of S, ⊕, � is R2×2, matrix addition and ma-

trix multiplication. If we let A and B be any invertible noncommut-

ing matrices in R2×2, then BA 6= AB, so A(BA)B 6= A(AB)B, so

ABAB 6= A2B2. This shows that I is not necessarily true.

Using commutativity and associativity of ⊕, for all x, y ∈ S,

3(x⊕ y) = (x⊕ y)⊕ (x⊕ y)⊕ (x⊕ y)

= (x⊕ x⊕ x)⊕ (y ⊕ y ⊕ y) = (3x)⊕ (3y).

Then II holds for n = 3. A similar argument proves II for any specific

integer n ≥ 1. An induction argument proves II for all integers n ≥ 1.

Using associativity of �, for all x ∈ S,

x3 � x4 = (x� x� x)� (x� x� x� x) = x7 = x3+4.

Then III holds for m = 3 and n = 4. A similar argument proves III for

any specific integers m,n ≥ 1. A double induction argument proves III

for all integers m,n ≥ 1. Answer: (D) �
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33. The Euclidean algorithm, described below, is used to find the

greatest common divisor (GCD) of two positive integers a and b.

INPUT(a)

INPUT(b)

WHILE b > 0

BEGIN

r := a mod b

a := b

b := r

END

GCD:=a

OUTPUT(GCD)

When the algorithm is used to find the greatest common divisor of

a = 273 and b = 110, which of the following is the sequence of computed

values for r?

(A) 2, 26, 1, 0

(B) 2, 53, 1, 0

(C) 53, 2, 1, 0

(D) 53, 4, 1, 0

(E) 53, 5, 1, 0

Solution: Dividing 110 into 273, we obtain a quotient of 2 and a re-

mainder of 53. Using this information, we calculate

gcd(273, 110) = gcd(110, 273)

= gcd(110, 273− 2 · 110) = gcd(110, 53).

Dividing 53 into 110, we obtain a quotient of 2 and a remainder of 4.

Using this information, we calculate

gcd(110, 53) = gcd(53, 110)

= gcd(53, 110− 2 · 53) = gcd(53, 4).

Dividing 4 into 53, we obtain a quotient of 13 and a remainder of 1.

Using this information, we calculate

gcd(53, 4) = gcd(4, 53)

= gcd(4, 53− 13 · 4) = gcd(4, 1).
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Dividing 1 into 4, we obtain a quotient of 4 and a remainder of 1. Using

this information, we calculate

gcd(4, 1) = gcd(1, 4)

= gcd(1, 4− 4 · 1) = gcd(1, 0)

Putting all this together, we get

gcd(273, 110) = gcd(110, 53) = gcd(53, 4)

= gcd(4, 1) = gcd(1, 0) = 1.

The remainders calculated were 53, 4, 1 and 0. Answer: (D) �

34. The minimal distance between any point on the sphere

(x− 2)2 + (y − 1)2 + (z − 3)2 = 1

and any point on the sphere

(x+ 3)2 + (y − 2)2 + (z − 4)2 = 4

is

(A) 0

(B) 4

(C)
√

27

(D) 2
(√

2 + 1
)

(E) 3
(√

3− 1
)

Solution: Call the first sphere S and the second sphere T . Let C be

the center of S and let D be the center of T . Let L be the line segment

from C to D. Let A be the point of intersection of S and L. Let B be

the point of intersection of T and L. The minimal distance from points

of S to points of T is dist(A,B), and this is the number we seek.

Because A and B are points on L, we have

dist(A,B) = [length(L)] − [dist(C,A)] − [dist(D,B)].

We have C = (2, 1, 3) and D = (−3, 2, 4), so the length of L is

dist(C,D) =
√

(2− (−3))2 + (1− 2)2 + (3− 4)2

=
√

25 + 1 + 1 =
√

27 = 3
√

3.

The distance from C to A is the radius of S, which is 1. The distance

from D to B is the radius of T , which is 2.

Thus dist(A,B) = 3
√

3− 1− 2 = 3
(√

3− 1
)
. Answer: (E) �
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Alternate Solution: The gradient of (p − s)2 + (q − t)2 + (r − u)2

w.r.t. p, q, r, s, t, u is

( 2(p− s) , 2(q − t) , 2(r − u) , −2(p− s) , −2(q − t) , −2(r − u) ).

The gradients of (p−2)2+(q−1)2+(r−3)2 and (s+3)2+(t−2)2+(u−4)2

w.r.t. p, q, r, s, t, u are

( 2(p− 2) , 2(q − 1) , 2(r − 3) , 0 , 0 , 0 ) and

( 0 , 0 , 0 , 2(s+ 3) , 2(t− 2) , 2(u− 4) )

Choose p, q, r, s, t, u so as to minimize

(p− s)2 + (q − t)2 + (r − u)2

subject to

(p− 2)2 + (q − 1)2 + (r − 3)2 = 1 and

(s+ 3)2 + (t− 2)2 + (u− 4)2 = 4

We wish to compute√
(p− s)2 + (q − t)2 + (r − u)2.

By Lagrange Multipliers, choose λ, µ ∈ R such that

( 2(p− s) , 2(q − t) , 2(r − u) , −2(p− s) , −2(q − t) , −2(r − u) )

is equal to the λ, µ linear combination of

( 2(p− 2) , 2(q − 1) , 2(r − 3) , 0 , 0 , 0 ) and

( 0 , 0 , 0 , 2(s+ 3) , 2(t− 2) , 2(u− 4) ).

Then

( p− s , q − t , r − u ) = λ · ( p− 2 , q − 1 , r − 3 ) and

( s− p , t− q , u− r ) = µ · ( s+ 3 , t− 2 , u− 4 ).

Let A := (p, q, r) and let B := (s, t, u). Let C := (2, 1, 3) and let

D := (−3, 2, 4). Then A−B = λ(A−C) and B −A = µ(B −D). Let

L be the line in R3 through C and D. Because

(p− 2)2 + (q − 1)2 + (r − 3)2 = 1 and

(s+ 3)2 + (t− 2)2 + (u− 4)2 = 4,

it follows that dist(A,C) = 1 and dist(B,D) = 2. Then

dist(C,D) =
√

(2 + 3)2 + (1− 2)2 + (3− 4)2 =
√

27

> 3 = [dist(A,C)] + [dist(B,D)],
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Thus

dist(C,D) > dist(C,A) + dist(B,D).

On the other hand, by the triangle inequality, we have

dist(C,D) ≤ dist(C,A) + dist(A,D).

Therefore A 6= B. Let L be the line through A and B.

Because A−B = λ(A−C), it follows that B = λC + (1− λ)A, and

so B is on the line in R3 through C and A. This line, which passes

through A and B, must be L. Then C ∈ L.

Because B−A = µ(B−D), it follows that A = µD+ (1−µ)B, and

so A is on the line in R3 through D and B. This line, which passes

through A and B, must be L. Then D ∈ L.

Since C,D ∈ L, we conclude that L is the line through C and D. So,

since A ∈ L, choose v ∈ (0, 1) such that A = (1− v)C + vD. Similarly,

since B ∈ L, choose w ∈ (0, 1) such that B = wC + (1− w)D.

Then A− C = v(D − C) and B −D = w(C −D). That is,

(p− 2, q − 1, r − 3) = v(−5, 1, 1) and

(s+ 3, t− 2, u− 4) = w(5,−1,−1).

Recall that

(p− 2)2 + (q − 1)2 + (r − 3)2 = 1 and

(s+ 3)2 + (t− 2)2 + (u− 4)2 = 4.

Then

v2((−5)2 + 12 + 12) = 1 and

w2(52 + (−1)2 + (−1)2) = 4.

Then v = ±
√

1/27 and w = ±
√

4/27. Let z := 1/
√

27. Then v = ±z
and w = ±2z. Since A = (1− v)C + vD, we see that

(p, q, r) = A ∈ { (1− z)C + zD, (1 + z)C − zD }.

Since B = wC + (1− w)D, we see that

(s, t, u) = B ∈ { 2zC + (1− 2z)D, −2zC + (1 + 2z)D }.

Thus there are two possibilities for (p, q, r) and there are two possibil-

ities for (s, t, u). This gives four possibilities for (p, q, r, s, t, u), each of

which satisfies the constraints.
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We define ‖ • ‖ : R3 → R by ‖(x, y, z)‖ :=
√
x2 + y2 + z2. We

evaluate the objective (p−s)2+(q−t)2+(r−u)2 = ‖A−B‖2 assuming

(p, q, r) = A = (1− z)C + zD and

(s, t, u) = B = 2zC + (1− 2z)D

and obtain ‖[(1− z)C + zD]− [2zC + (1− 2z)D]‖2, which equals

‖(1− 3z)C + (3z − 1)D‖2 = ‖(1− 3z)(C −D)‖2,

which equals (1−3z)2‖C−D‖2 = (1−3z)2‖(5,−1,−1)‖2 = 27(1−3z)2.

Evaluating the objective assuming the other three possibilities yields

27(1 + z)2 and 27(1− z)2 and 27(1 + 3z)2.

Recall: z = 1/
√

27. Among these four possibilities, the smallest value

of the objective occurs at the first, so (p, q, r) = A = (1 − z)C + zD

and (s, t, u) = B = 2zC + (1− 2z)D. Then ‖A−B‖2 = 27(1− 3z)2.

Recall that we wish to compute√
(p− s)2 + (q − t)2 + (r − u)2,

which equals ‖A−B‖. Thus our final answer is

‖A−B‖ =
√
‖A−B‖2 =

√
27(1− 3z)2 =

√
27(1− 3z),

which equals

(1/z)(1− 3z) = (1/z)− 3 =
√

27− 3 = 3
√

3− 3 = 3
(√

3− 1
)
.

Answer: (E) �

42. Let X and Y be discrete random variables on the set of positive

integers. Assume, for each integer n ≥ 1, that the probability that

X = n is 2−n. Assume that Y has the same probability distribution

as X, i.e., assume, for each integer n ≥ 1, that the probability that

Y = n is also 2−n. Assume that X and Y are independent. What is

the probability that at least one of the variables X and Y is greater

than 3?

(A) 1/64

(B) 15/64

(C) 1/4

(D) 3/8

(E) 4/9
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Solution: Let p := Pr [(X > 3) or (Y > 3)]. We wish to compute p.

Let q := Pr [(X ≤ 3) & (Y ≤ 3)]. Then p = 1− q. By independence,

we have q = (Pr [X ≤ 3]) (Pr [Y ≤ 3]). We have

Pr [X ≤ 3] = Pr [X ∈ {1, 2, 3}] = 2−1 + 2−2 + 2−3 = 7/8.

As X and Y are identically distributed, Pr [Y ≤ 3] = Pr [X ≤ 3]. Then

q = (Pr [X ≤ 3]) (Pr [Y ≤ 3])

= (Pr [X ≤ 3])2 = (7/8)2 = 49/64.

Then p = 1− q = 1− (49/64) = 15/64. Answer: (B) �

Alternate Solution: Let p := Pr [(X > 3) or (Y > 3)]. We wish to

compute p.

Let q := Pr [X > 3], r := Pr [Y > 3], s := Pr [(X > 3)&(Y > 3)].

By inclusion-exclusion, p = q+ r− s. Since X and Y are independent,

we get s = rq. Then p = q + r − s = q + r − qr. As X and Y are

identically distributed, we get r = q. Then p = q + r − qr = 2q − q2.
We have 1 − q = Pr [X ∈ {1, 2, 3}] = 2−1 + 2−2 + 2−3 = 7/8. Then

q = 1/8. Then p = 2q− q2 = (1/4)− (1/64) = 15/64. Answer: (B) �

46. Let G be the group of complex numbers {1, i,−1,−i} under mul-

tiplication. Which of the following statements are true about the ho-

momorphisms of G into itself?

I. z 7→ z defines one such homomorphism, where z denotes the

complex conjugate of z.

II. z 7→ z2 defines one such homomorphism

III. For every such homomorphism, there is an integer k such that

the homomorphism has the form z 7→ zk.

(A) None

(B) II only

(C) I and II only

(D) II and III only

(E) I, II and III

Solution: Claim 1: Item I is true. Proof of Claim 1: It is a basic

property of complex conjugation that it distributes over complex mul-

tiplication. That is, for all x, y ∈ C, we have xy = x · y. Consequently,

for all x, y ∈ G, we have xy = x · y. That is, z 7→ z : G → G is a

homomorphism of G. End of proof of Claim 1.
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Claim 2: Item II is true. Proof of Claim 2: Because complex multi-

plication is commutative, for all x, y ∈ C, we have

(xy)2 = xyxy = xxyy = x2 · y2.

Consequently, for all x, y ∈ G, we have (xy)2 = x2 · y2. That is,

z 7→ z2 : G→ G is a homomorphism of G. End of proof of Claim 2.

Claim 3: Item I is true. Proof of Claim 3: Let f : G → G be a

homomorphism. We wish to show that there exists k ∈ Z such that,

for all z ∈ G, we have f(z) = zk.

Because G = {i, i2, i3, i4}, it follows that, for all z ∈ G, there exists

n ∈ {1, 2, 3, 4} such that z = in. Choose k ∈ {1, 2, 3, 4} such that

f(i) = ik. Given z ∈ G. We wish to prove that f(z) = zk.

Choose n ∈ {1, 2, 3, 4} such that z = in. Then

f(z) = f(in) = (f(i))n = (ik)n = (in)k = zk.

End of proof of Claim 3.

Answer: (E) �

49. Up to isomorphism, how many additive Abelian groups G of or-

der 16 have the property that, for all x ∈ G, x+ x+ x+ x = 0?

(A) 0

(B) 1

(C) 2

(D) 3

(E) 5

Solution: For any integer n ≥ 1, let Cn := Z/(nZ) be the finite additive

cyclic group of order n. By the Structure Theorem for Finite Abelian

Groups, any additive Abelian group is isomorphic to a direct sum of

additive cyclic groups of prime power order. The prime powers that

divide 16 are 1, 2, 4 and 16. Consequently, up to isomorphism, the

only additive Abelian groups of order 16 are

C16, C8 ⊕ C2, C4 ⊕ C4, C4 ⊕ C2 ⊕ C2, C2 ⊕ C2 ⊕ C2 ⊕ C2.

For all G ∈ {C16, C8⊕C2}, there exists x ∈ G such that x+x+x+x 6= 0.

For all G ∈ {C4⊕C4, C4⊕C2⊕C2, C2⊕C2⊕C2⊕C2}, for all x ∈ G,

we have x+ x+ x+ x = 0. Thus there are three groups satisfying the

conditions of the problem. Answer: (D) �
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59. Let f be an analytic function of a complex variable z = x + iy

given by

f(z) = (2x+ 3y) + i · (g(x, y)),

where g(x, y) is a real-valued function of the real variables x and y. If

g(2, 3) = 1, then g(7, 3) =

(A) −14

(B) −9

(C) 0

(D) 11

(E) 18

Solution: Define Z : R2 → C by Z(x, y) = x + iy. Define h : R2 → R2

by h(x, y) = 2x+ 3y. Then f ◦ Z = h+ ig.

According to the Cauchy-Riemann equations, a counterclockwise 90◦

rotation of (∂1h, ∂1g) gives (∂2h, ∂2g). That is,[
0 −1

1 0

] [
∂1h

∂1g

]
=

[
∂2h

∂2g

]
.

That is, −∂1g = ∂2h and ∂1h = ∂2g.

For all x, y ∈ R, we have h(x, y) = 2x + 3y. Computing partial

derivatives, for all x, y ∈ R, we get (∂1h)(x, y) = 2 and (∂2h)(x, y) = 3.

So, for all x, y ∈ R, we have

−(∂1g)(x, y) = 3 and (∂2g)(x, y) = 2.

Multiplying the first equation by −1, and substituting y :→ 3, we see,

for all x ∈ R, that (∂1g)(x, 3) = −3. So, integrating this equation from

x = 2 to x = 7, we see that

[g(7, 3)] − [g(2, 3)] =

∫ 7

2

(−3) dx.

So, as

∫ 7

2

(−3) dx = (−3) · (7− 2) = −15, we get

[g(7, 3)] − [g(2, 3)] = −15,

which yields g(7, 3) = [g(2, 3)]− 15, Then, because g(2, 3) = 1, we get

g(7, 3) = 1− 15 = −14. Answer: (A) �
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NOTE: If we had been asked to compute, say, g(7, 5), then we could

use a similar technique to calculate

[g(7, 5)]− [g(7, 3)] =

∫ 5

3

(∂2g)(7, y) dy =

∫ 5

3

2 dy = 2 · (5− 3) = 4.

This then gives g(7, 5) = [g(7, 3)] + 4 = [−14] + 4 = −10.

In fact, given the information in the problem, we can compute the

value of g at any point in R2, because we know the partials of g, and,

also, the value of g at one point, namely, at (2, 3).


