Paul Cusson's question

The main results in this note are:

Theorem 30, due to T. Tao,

and Theorem 42, and Theorem 57.

DEFINITION 1. Let $a, b \in \mathbb{R}$.

$$\begin{array}{l} Then: \hline (a;b) \\ \hline (a;b] \end{array} := \{ x \in \mathbb{R} \mid a < x < b \}, \\ \hline (a;b] \end{array} := \{ x \in \mathbb{R} \mid a < x \leqslant b \}, \\ \hline [a;b] \end{array} := \{ x \in \mathbb{R} \mid a \leqslant x \leqslant b \}, \\ \hline [a;b] \end{array} := \{ x \in \mathbb{R} \mid a \leqslant x \leqslant b \}. \end{array}$$

DEFINITION 2. Let f be a function.

Then \mathbb{D}_f denotes the domain of f. Also, $\mathbb{I}_f := \{f(x) \mid x \in \mathbb{D}_f\}$ denotes the image of f.

DEFINITION 3. Let A and B be sets.

By $[f: A \to B]$, we mean: f is a function and $\mathbb{D}_f = A$ and $\mathbb{I}_f \subseteq B$. By $f: A \dashrightarrow B$, we mean: f is a function and $\mathbb{D}_f \subseteq A$ and $\mathbb{I}_f \subseteq B$.

DEFINITION 4. $\mathbb{N} := \{1, 2, 3, \ldots\}$ and $\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\}.$

Convention: Any subset of \mathbb{R} is given the relative topology

inherited from the standard topology on \mathbb{R} .

NOTE: Any open subset of \mathbb{R} is locally compact and Hausdorff.

NOTE: Any closed subset of any open subset of $\mathbb R$

is locally compact and Hausdorff.

THEOREM 5. Let W be a non \emptyset bounded open subset of \mathbb{R} . Let U be a connected component of W. Then: $\exists s, t \in \mathbb{R} \setminus W$ s.t. s < t and s.t. U = (s; t).

Proof. Since U is a connected component of W, we get: $\emptyset \neq U \subseteq W$. Since W is bounded and since $U \subseteq W$, we get: U is bounded. The topological space \mathbb{R} is locally connected, so,

since W is open in \mathbb{R} and

since U is a connected component of W,

we get: U is a connected open subset of \mathbb{R} .

Since U is a non \emptyset bounded connected open subset of \mathbb{R} ,

choose $s, t \in \mathbb{R}$ s.t. s < t and s.t. U = (s; t).

Want: $s, t \notin W$. Want: $\{s, t\} \cap W = \emptyset$.

Assume: $\{s,t\} \cap W \neq \emptyset$. Want: Contradiction.

Choose $r \in \{s, t\} \bigcap W$. Then: $r \in \{s, t\}$ and $r \in W$.

Since W is open in \mathbb{R} and since $r \in W$,

choose $\delta > 0$ s.t. $(r - \delta; r + \delta) \subseteq W$.

Since $r \in \{s, t\}$ and since $\delta > 0$,

we get: $(s;t) \bigcap (r-\delta;r+\delta) \neq \emptyset$.

Let $I := (r - \delta; r + \delta)$. Then: I is connected and $r \in I \subseteq W$. Since $r \in I$, we get: $I \neq \emptyset$.

Since $I \subseteq W$ and since I is non \emptyset and connected, let V be the connected component of W s.t. $I \subseteq V$

let V be the connected component of W s.t. $I \subseteq V$. We have: $U \bigcap V \supseteq U \bigcap I = (s; t) \bigcap (r - \delta; r + \delta) \neq \emptyset$,

so, since U and V are both connected components of W, we conclude: U = V. Then: $r \in I \subseteq V = U$, so

we conclude: U = V. Then: $r \in I \subseteq V = U$, so $r \in U$. So, since $r \in \{s, t\}$, we get: $r \in \{s, t\} \cap U$. Then $\{s, t\} \cap U \neq \emptyset$. However, $\{s, t\} \cap U = \{s, t\} \cap (s; t) = \emptyset$. Contradiction.

THEOREM 6. Let $c, d, p, r, w \in \mathbb{R}$. Assume: c .Let <math>W be an open subset of (c; d). Assume: $w \in W$ and $p, r \notin W$. Let U be the connected component of W s.t. $w \in U$. Then there exist $s, t \in [p; r] \setminus W$ s.t. s < t and s.t. U = (s; t).

Proof. We have $w \in U \subseteq W$. Since $w \in W$, we get: $W \neq \emptyset$. Since W open in (c; d), and since (c; d) is bounded and open in \mathbb{R} ,

we get: W is a bounded open subset of \mathbb{R} .

So, since U is a connected component of W, by Theorem 5,

choose $s, t \in \mathbb{R} \setminus W$ s.t. s < t and s.t. U = (s; t).

Want: $s, t \in [p; r]$. Want: $p \leq s < t \leq r$.

Since U = (s; t) and $w \in U$, we get: $(s; w) \subseteq U$.

By hypothesis, $p \notin W$, so, since $(s; w) \subseteq U \subseteq W$, we get: $p \notin (s; w)$. By hypothesis, p < w. Since p < w and $p \notin (s; w)$, we get: $p \leq s$. By choice of s and t, we have: s < t. It remains to show: $t \leq r$.

Want: $r \ge t$. Since U = (s; t) and $w \in U$, we get: $(w; t) \subseteq U$. By hypothesis, $r \notin W$, so, since $(w; t) \subseteq U \subseteq W$, we get: $r \notin (w; t)$. By hypothesis, w < r. Since r > w and $r \notin (w; t)$, we get: $r \ge t$. \Box

THEOREM 7. Let
$$a, b \in \mathbb{R}$$
. Assume $a < b$.
Let $X \subseteq (a; b)$. Let $X' \subseteq X$. Assume X' has non \emptyset interior in X
Then: $\exists c, d \in [a; b]$ s.t. $c < d$ and s.t. $\emptyset \neq (c; d) \bigcap X \subseteq X'$.

Proof. Let W denote the interior in X of X'. By hypothesis, $W \neq \emptyset$. Also, W is open in X and $W \subseteq X'$. Since $W \neq \emptyset$, choose $w \in W$. Since W is open in X, choose an open subset V of \mathbb{R} s.t. $W = V \bigcap X$. By hypothesis, $X \subseteq (a; b)$, so: $X = (a; b) \cap X$. Since V and (a; b) are open in \mathbb{R} , we get: $V \bigcap (a; b)$ is open in \mathbb{R} . Let $U := V \bigcap (a; b)$. Then U is open in \mathbb{R} . Also, $W = V \bigcap X = V \bigcap (a; b) \bigcap X = U \bigcap X$, so $W = U \bigcap X$. Since $w \in W = U \bigcap X$, we get: $w \in U$ and $w \in X$. Since $w \in U$ and since U is open in \mathbb{R} , choose $c, d \in \mathbb{R}$ s.t. c < d and s.t. $w \in (c; d) \subseteq U$. Since $(c; d) \subseteq U = V \bigcap (a; b) \subseteq (a; b)$, we get: $(c; d) \subseteq (a; b)$. It follows that $[c; d] \subseteq [a; b]$. Then $c, d \in [a; b]$. It remains to show: $\emptyset \neq (c; d) \bigcap X \subseteq X'$. Since $w \in (c; d)$ and since $w \in X$, we get: $w \in (c; d) \bigcap X.$ Then $\emptyset \neq (c; d) \bigcap X$. Want: $(c; d) \bigcap X \subseteq X'$. Since $(c; d) \subseteq U$, we get: $(c; d) \bigcap X \subseteq U \bigcap X$. $W \subseteq X'$ and $W = U \bigcap X$. Recall: $(c;d) \bigcap X \subseteq U \bigcap X = W \subseteq X'.$ Then:

DEFINITION 8. $\forall S \subseteq \mathbb{R}$, let S° denote the interior in \mathbb{R} of S.

DEFINITION 9. Let
$$f : \mathbb{R} \longrightarrow \mathbb{R}$$
.
Then: \mathbb{D}'_f := $\left\{ x \in (\mathbb{D}_f)^{\circ} \mid \lim_{h \to 0} \frac{(f(x+h)) - (f(x))}{h} \text{ exists} \right\}$
Also, the derivative of f is the function $f' : \mathbb{D}'_f \to \mathbb{R}$
defined by: $\forall x \in \mathbb{D}'_f, \quad f'(x) = \lim_{h \to 0} \frac{(f(x+h)) - (f(x))}{h}.$

DEFINITION 10. Let $f : \mathbb{R} \dashrightarrow \mathbb{R}, \quad j \in \mathbb{N}_0.$ Then: $f^{(j)}$ denotes the jth derivative of f. Also, $\mathbb{D}_f^{(j)} := \mathbb{D}_{f^{(j)}}$ denotes the domain of $f^{(j)}$.

Note: $\forall f : \mathbb{R} \dashrightarrow \mathbb{R}, \quad f^{(0)} = f \text{ and } \mathbb{D}_{f}^{(0)} = \mathbb{D}_{f}.$ Also, $\forall f : \mathbb{R} \dashrightarrow \mathbb{R}, \quad f^{(1)} = f' \text{ and } \mathbb{D}_{f}^{(1)} = \mathbb{D}_{f'} = \mathbb{D}_{f'}'.$

Also, $\forall f : \mathbb{R} \dashrightarrow \mathbb{R}$, $\mathbb{D}_{f}^{(0)} \supseteq \mathbb{D}_{f}^{(1)} \supseteq \mathbb{D}_{f}^{(2)} \supseteq \mathbb{D}_{f}^{(3)} \supseteq \cdots$. In fact, each set is contained in the *interior* in \mathbb{R} of the preceding one.

DEFINITION 11. Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$. Then: $\mathbb{D}_{f}^{(\infty)} := \mathbb{D}_{f}^{(0)} \cap \mathbb{D}_{f}^{(1)} \cap \mathbb{D}_{f}^{(2)} \cap \mathbb{D}_{f}^{(3)} \cap \cdots$. Note that, $\forall f : \mathbb{R} \dashrightarrow \mathbb{R}$, $\mathbb{D}_{f}^{(0)} \cap \mathbb{D}_{f}^{(2)} \cap \mathbb{D}_{f}^{(4)} \cap \mathbb{D}_{f}^{(6)} \cap \cdots = \mathbb{D}_{f}^{(\infty)}$. Also, $\forall f : \mathbb{R} \dashrightarrow \mathbb{R}$, $\forall j \in \mathbb{N}_{0}$, $\mathbb{D}_{f^{(j)}}^{(\infty)} = \mathbb{D}_{f}^{(\infty)}$.

Convention: $0^0 = 1$. Then: $\forall x \in \mathbb{R}, x^0 = 1$. **DEFINITION 12.** Let $f : \mathbb{R} \to \mathbb{R}, k \in \mathbb{N}_0, c \in \mathbb{D}_f^{(k)}$. Then: $P_k^{f,c}$: $\mathbb{R} \to \mathbb{R}$ is defined by: $\forall x \in \mathbb{R}, P_k^{f,c}(x) = \sum_{i=0}^k \left[(f^{(i)}(c)) \cdot \frac{(x-c)^i}{i!} \right]$. **DEFINITION 13.** Let $f : \mathbb{R} \to \mathbb{R}, c \in \mathbb{R}$. By f is real-analytic at c, we mean: $\exists \delta > 0 \ s.t. \ P_k^{f,c} \to f$ pointwise on $(c - \delta; c + \delta)$, as $k \to \infty$.

It is well-known that: $\forall f : \mathbb{R} \dashrightarrow \mathbb{R}, \quad \forall c \in \mathbb{R},$ (*f* is real-analytic at *c*) \Rightarrow ($c \in \mathbb{D}_{f}^{(\infty)}$).

DEFINITION 14. Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$, $S \subseteq \mathbb{R}$. By f is real-analytic on S, we mean: $\forall x \in S$, f is real-analytic at x.

THEOREM 15. Let $\sigma, \tau : \mathbb{R} \dashrightarrow \mathbb{R}$, $I \subseteq \mathbb{R}$, $q \in I$. Assume: I is an interval. Assume: σ and τ are both real-analytic on I. Assume: $\forall j \in \mathbb{N}_0, \ \sigma^{(j)}(q) = \tau^{(j)}(q)$. Then: $\sigma = \tau$ on I.

Theorem 15 is well-known. Its proof is omitted.

THEOREM 16. Let $\beta_0, \beta_1, \beta_2, \ldots \in \mathbb{R}$. Let $c \in \mathbb{R}$. Assume $\{\beta_0, \beta_1, \beta_2, \ldots\}$ is bounded.

Define
$$\phi : \mathbb{R} \to \mathbb{R}$$
 by: $\forall x \in \mathbb{R}, \quad \phi(x) = \sum_{i=0}^{\infty} \left[\beta_i \cdot \frac{(x-c)^i}{i!} \right].$

Then: ϕ is real-analytic on \mathbb{R} .

Also,
$$\forall j \in \mathbb{N}_0, \quad \forall x \in \mathbb{R}, \quad \phi^{(j)}(x) = \sum_{i=0}^{\infty} \left[\beta_{i+j} \cdot \frac{(x-c)^i}{i!} \right].$$

Theorem 16 is well-known. Its proof is omitted.

DEFINITION 17. Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$, $x \in \mathbb{R}$, $M \ge 0$. By f has M-BD at x, we mean:

$$\begin{array}{ll} x \in \mathbb{D}_{f}^{(\infty)} & and & \forall j \in \mathbb{N}_{0}, \quad |f^{(j)}(x)| \leqslant M. \\ By \ f \ has \boxed{M-\text{BED} \ at \ x}, \ we \ mean: \\ x \in \mathbb{D}_{f}^{(\infty)} & and & \forall j \in \mathbb{N}_{0}, \quad |f^{(2j)}(x)| \leqslant M. \end{array}$$

BD stands for "bounded derivatives". BED stands for "bounded even derivatives".

DEFINITION 18. Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$, $x \in \mathbb{R}$. By f has $|\mathbf{BD}|$ at x |, we mean: $\exists M \ge 0$ s.t. f has M-BD at x. By f has **BED** at x, we mean: $\exists M \ge 0$ s.t. f has M-BED at x. Note: $\forall f : \mathbb{R} \dashrightarrow \mathbb{R}, \forall x \in \mathbb{R}, \forall x$ $(f \text{ has BD at } x) \Rightarrow (f \text{ has BED at } x) \Rightarrow (x \in \mathbb{D}_{f}^{(\infty)}).$ **DEFINITION 19.** Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$, $S \subseteq \mathbb{R}$, $M \ge 0$. By f has |M-BD on S |, we mean: $\forall x \in S$, f has M-BD at x. By f has |M-BED on S |, we mean: $\forall x \in S$, f has M-BED at x. **DEFINITION 20.** Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$, $S \subseteq \mathbb{R}$. By f has **PBD** on S, we mean: $\forall x \in S$, f has BD at x. By f has **PBED** on S, we mean: $\forall x \in S, \quad f \text{ has BED at } x.$ By f has **UBD** on S, we mean: $\exists M \ge 0$ s.t. f has M-BD on S. By f has **UBED** on S, we mean: $\exists M \ge 0$ s.t.f has M-BED on S.

PBD stands for "pointwise bounded derivatives".PBED stands for "pointwise bounded even derivatives".UBD stands for "uniformly bounded derivatives".UBED stands for "uniformly bounded even derivatives".

DEFINITION 21. Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$. Then $BD_f := \{x \in \mathbb{D}_f^{(\infty)} | f \text{ has } BD \text{ at } x\}.$ **DEFINITION 22.** Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$, $c \in BD_f$. Then: $P^{f,c}_{\infty} : \mathbb{R} \to \mathbb{R}$ is defined by:

$$\forall x \in \mathbb{R}, \quad P_{\infty}^{f,c}(x) = \sum_{i=0}^{\infty} \left[\left(f^{(i)}(c) \right) \cdot \frac{(x-c)^i}{i!} \right].$$

THEOREM 23. Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$, $c \in BD_f$, $g = P_{\infty}^{f,c}$. Then: q is real-analytic on \mathbb{R} . Also: $\forall j \in \mathbb{N}_0, f^{(j)}(c) = q^{(j)}(c)$. *Proof.* For all $i \in \mathbb{N}_0$, let $\beta_i := f^{(i)}(c)$. Since $c \in BD_f$, we get: $\{\beta_0, \beta_1, \beta_2, \ldots\}$ is bounded. Since $g = P_{\infty}^{f,c}$, we get: $\forall x \in \mathbb{R}, g(x) = \sum_{i=0}^{\infty} \left[\beta_i \cdot \frac{(x-c)^i}{i!} \right].$ Then, by Theorem 16, we get: q is real-analytic on \mathbb{R} . It remains to show: $\forall j \in \mathbb{N}_0, f^{(j)}(c) = g^{(j)}(c).$ Given $j \in \mathbb{N}_0$, want: $f^{(j)}(c) = g^{(j)}(c)$. Want: $g^{(j)}(c) = \beta_j$. By Theorem 16, we get: $g^{(j)}(c) = \sum_{i=1}^{\infty} \left(\beta_{i+j} \cdot \frac{(c-c)^i}{i!} \right).$ Then $g^{(j)}(c) = \sum_{i=0}^{\infty} \left(\beta_{i+j} \cdot \frac{0^i}{i!} \right) = \left[\beta_{0+j} \cdot \frac{0^0}{0!} \right] + \left| \sum_{i=1}^{\infty} \left(\beta_{i+j} \cdot \frac{0^i}{i!} \right) \right|.$ Then $g^{(j)}(c) = [\beta_j \cdot 1] + \left| \sum_{i=1}^{\infty} (\beta_{i+j} \cdot 0) \right| = \beta_j + 0 = \beta_j.$ **THEOREM 24.** Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$, $B \subseteq \mathbb{R}$, $c, x \in B$, $M \ge 0.$ Assume: B is an interval. Assume: f has M-BD on B.

Let
$$j \in \mathbb{N}_0$$
. Then: $|(f(x)) - (P_j^{f,c}(x))| \le M \cdot \frac{|x-c|^{j+1}}{(j+1)!}$.

Proof. Since f has M-BD on B, we get: $B \subseteq \mathbb{D}_f^{(\infty)}$. By Taylor's Theorem, choose ξ strictly between c and x s.t.

$$f(x) = (P_j^{f,c}(x)) + \left((f^{(j+1)}(\xi)) \cdot \frac{(x-c)^{j+1}}{(j+1)!} \right).$$

Then: $(f(x)) - (P_j^{f,c}(x)) = (f^{(j+1)}(\xi)) \cdot \frac{(x-c)^j}{(j+1)!}.$

Then: $|(f(x)) - (P_j^{f,c}(x))| = |f^{(j+1)}(\xi)| \cdot \frac{|x-c|^{j+1}}{(j+1)!}.$

Since B is an interval and $c, x \in B$, we get: $\xi \in B$. So, since f has M-BD on B, we get: $|f^{(j+1)}(\xi)| \leq M$.

Then:
$$|(f(x)) - (P_j^{f,c}(x))| \leq M \cdot \frac{|x-c|^{j+1}}{(j+1)!}$$
.

DEFINITION 25. Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$, $x \in \mathbb{R}$. By f has UBD near x, we mean: $\exists \delta > 0 \text{ s.t. } f$ has UBD on $(x - \delta; x + \delta)$.

THEOREM 26. Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$, $U \subseteq \mathbb{R}$. Assume: $\forall x \in U$, f has UBD near x. Then: f is real-analytic on U.

Proof. Given $c \in U$, want: f is real-analytic at c. **Want:** $\exists \delta > 0$ s.t. $P_j^{f,c} \to f$ pointwise on $(c - \delta; c + \delta)$, as $j \to \infty$. Since $c \in U$, by hypothesis, f has UBD near c, so choose $\delta > 0$ s.t. f has UBD on $(c - \delta; c + \delta)$. Want: $P_j^{f,c} \to f$ pointwise on $(c - \delta; c + \delta)$, as $j \to \infty$. Let $B := (c - \delta; c + \delta)$. B is an interval and $c \in B$ and f has UBD on B. Then: Want: $P_j^{f,c} \to f$ pointwise on B, as $j \to \infty$. Given $x \in B$, want: $P_j^{f,c}(x) \to f(x)$, as $j \to \infty$. Want: $|(f(x)) - (P_j^{f,c}(x))| \to 0$, as $j \to \infty$. Since f has UBD on B, choose $M \ge 0$ s.t. f has M-BD on B. Then, by Theorem 24, $\forall j \in \mathbb{N}_0$, $|(f(x)) - (P_j^{f,c}(x))| \leq M \cdot \frac{|x-c|^{j+1}}{(j+1)!}$. $M \cdot \frac{|x-c|^{j+1}}{(j+1)!} \to 0, \quad \text{as } j \to \infty,$ So, since we conclude: $|(f(x)) - (P_i^{f,c}(x))| \to 0$, as $j \to \infty$. **THEOREM 27.** Let $f, g : \mathbb{R} \dashrightarrow \mathbb{R}, r, s, t \in \mathbb{R}$. $s < t \quad and \quad r \in [s; t].$ $r \in \mathbb{D}_{f}^{(\infty)} \cap \mathbb{D}_{g}^{(\infty)} \quad and \quad (s; t) \subseteq \mathbb{D}_{f}^{(\infty)} \cap \mathbb{D}_{g}^{(\infty)}.$ Assume: Assume: f = q on (s; t). Assume: $\forall j \in \mathbb{N}_0, \quad f^{(j)}(r) = q^{(j)}(r).$ Then: Proof. Given $j \in \mathbb{N}_0$, want: $f^{(j)}(r) = g^{(j)}(r)$. Since f = g on (s; t), we get: $f^{(j)} = g^{(j)}$ on (s; t). Let $\phi := f^{(j)}$ and $\psi := q^{(j)}$. $\begin{array}{ll} \text{Then:} \quad \phi = \psi \text{ on } (s;t). & \textbf{Want:} \ \phi(r) = \psi(r). \\ \text{We have:} \quad \mathbb{D}_{\phi}^{(\infty)} = \mathbb{D}_{f}^{(\infty)} & \text{and} & \mathbb{D}_{\psi}^{(\infty)} = \mathbb{D}_{g}^{(\infty)}. \\ \text{Then:} \quad r \in \mathbb{D}_{\phi}^{(\infty)} \bigcap \mathbb{D}_{\psi}^{(\infty)} & \text{and} & (s;t) \subseteq \mathbb{D}_{\phi}^{(\infty)} \bigcap \mathbb{D}_{\psi}^{(\infty)}. \end{array}$

Since $r \in \mathbb{D}_{\phi}^{(\infty)} \cap \mathbb{D}_{\psi}^{(\infty)} \subseteq \mathbb{D}_{\phi}^{(1)} \cap \mathbb{D}_{\psi}^{(1)}$,

we get: ϕ and ψ are both differentiable at r. Then: ϕ and ψ are both continuous at r. Since $r \in [s;t]$, choose $q_1, q_2, q_3 \cdots \in (s;t)$ s.t. $q_j \to r$, as $j \to \infty$. By continuity, $\phi(q_j) \to \phi(r)$, as $j \to \infty$ and $\psi(q_j) \to \psi(r)$, as $j \to \infty$. Since $\phi = \psi$ on (s;t), we get: $\forall j \in \mathbb{N}, \ \phi(q_j) = \psi(q_j)$. So, letting $j \to \infty$, we get: $\phi(r) = \psi(r)$.

THEOREM 28. Let	$f: \mathbb{R} \dashrightarrow \mathbb{R}, s, t \in \mathbb{R}, M \ge 0.$
Assume: $s < t$.	Assume: $\forall x \in (s; t)$, f has UBD near x.
Let $r \in [s; t]$.	Assume: f has M - BD at r .
Let $N := M \cdot e^{t-s}$.	Then: f has N-BD on $(s; t)$.

Proof. Let c := (s + t)/2. Then $c \in (s; t)$. So, by hypothesis, we get: f has UBD near c. Then f has BD at c. Then $c \in BD_f$. Let $g := P_{\infty}^{f,c}$. By Theorem 23, g is real-analytic on \mathbb{R} . Then $\mathbb{D}_g^{(\infty)} = \mathbb{R}$, so: $r \in \mathbb{D}_g^{(\infty)}$ and $(s; t) \subseteq \mathbb{D}_g^{(\infty)}$. By hypothesis, f has M-BD at r, so we get: $r \in \mathbb{D}_f^{(\infty)}$. By hypothesis, we have: $\forall x \in (s; t), f$ has UBD near x. So, by Theorem 26, f is real-analytic on (s; t). Then: $(s; t) \subseteq \mathbb{D}_f^{(\infty)}$. Then: $r \in \mathbb{D}_f^{(\infty)} \cap \mathbb{D}_g^{(\infty)}$ and $(s; t) \subseteq \mathbb{D}_f^{(\infty)} \cap \mathbb{D}_g^{(\infty)}$. By Theorem 23, we get: $\forall j \in \mathbb{N}_0, f^{(j)}(c) = g^{(j)}(c)$. So, since $c \in (s; t)$ and since f and g are both real-analytic on (s; t),

by Theorem 15, we get: f = g on (s; t). Then, by Theorem 27, we get: $\forall j \in \mathbb{N}_0, f^{(j)}(r) = g^{(j)}(r)$. By hypothesis, f has M-BD at r, so f has BD at r. Then $r \in BD_f$. Let $h := P_{\infty}^{f,r}$. Then, by Theorem 23, h is real-analytic on \mathbb{R} . Also, by Theorem 23, $\forall j \in \mathbb{N}_0, f^{(j)}(r) = h^{(j)}(r)$. Since $\forall j \in \mathbb{N}_0, g^{(j)}(r) = f^{(j)}(r) = h^{(j)}(r)$.

and since g and h are both real-analytic on \mathbb{R} ,

by Theorem 15, we get: g = h on \mathbb{R} . So, since f = g on (s; t), we get: f = h on (s; t). **It therefore suffices to show:** h has N-BD on (s; t). Given $u \in (s; t)$, **want:** h has N-BD at u. Given $j \in \mathbb{N}_0$, **want:** $|h^{(j)}(u)| \leq N$. By hypothesis, $r \in [s; t]$. Since $r, u \in [s; t]$, we get: $|u - r| \leq t - s$. Then $e^{|u - r|} \leq e^{t - s}$. So, since $M \geq 0$, we get: $M \cdot e^{|u - r|} \leq M \cdot e^{t - s}$.

By hypothesis, f has M-BD at r, so: $\forall i \in \mathbb{N}_0, |f^{(i)}(r)| \leq M.$ Since $h = P_{\infty}^{f,r}$, we get: $\forall x \in \mathbb{R}, h(x) = \sum_{i=0}^{\infty} \left[(f^{(i)}(r)) \cdot \frac{(x-r)^i}{i!} \right].$

Then, by Theorem 16, we have: $\forall x \in \mathbb{R}$,

$$h^{(j)}(x) = \sum_{i=0}^{\infty} \left[(f^{(i+j)}(r)) \cdot \frac{(x-r)^i}{i!} \right].$$

Then: $|h^{(j)}(u)| \leq \sum_{i=0}^{\infty} \left[|f^{(i+j)}(r)| \cdot \frac{|u-r|^i}{i!} \right]$
$$\leq \sum_{i=0}^{\infty} \left[M \cdot \frac{|u-r|^i}{i!} \right] = M \cdot \left[\sum_{i=0}^{\infty} \frac{|u-r|^i}{i!} \right]$$
$$= M \cdot e^{|u-r|} \leq M \cdot e^{t-s} = N.$$

THEOREM 29. Let $I \subseteq \mathbb{R}$, $f : \mathbb{R} \dashrightarrow \mathbb{R}$. Assume: I is a non \emptyset bounded open interval. Assume: $\forall x \in I$, f has UBD near x. Then: f has UBD on I.

Proof. Since I is an interval, we get: I is connected. Since I is a non \emptyset bounded connected open subset of \mathbb{R} , choose $s, t \in \mathbb{R}$ s.t. s < ts.t. I = (s; t). and Then: $\forall x \in (s; t), f \text{ has UBD near } x.$ By Theorem 26, f is real-analytic on (s; t). Let r := (s + t)/2. Then $r \in (s; t)$. Then $r \in I$ and $r \in [s; t]$. Since $r \in I$, by assumption, f has UBD near r. Then f has BD at r. Choose $M \ge 0$ s.t. f has M-BD at r. Let $N := M \cdot e^{t-s}$. By Theorem 28, f has N-BD on (s; t). Then f has UBD on (s; t). Then f has UBD on I.

Theorem 30 and the proof below are both due to T. Tao. See https://mathoverflow.net/questions/413165/does-iterating-the-derivative-infinitely-many-times-give-a-smooth-function-whene

THEOREM 30. (*T. Tao*) Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$, $a, b \in \mathbb{R}$. Assume: a < b. Let I := (a; b). Assume: f has PBD on I. Then: f has UBD on I. Proof. Let $V := \{x \in I \mid f$ has UBD near $x\}$. Then V is open in I. By Theorem 29, it suffices to show: V = I.

Let $X := I \setminus V$. Then $V = I \setminus X$. Want: $X = \emptyset$.

Assume: $X \neq \emptyset$. Want: Contradiction. Since I = (a; b), we get: I is open in \mathbb{R} . Since V is open in I and since $X = I \setminus V$, we get: X is closed in I. Since X is closed in Iand since I is open in \mathbb{R} , X is locally compact and Hausdorff. we get: By hypothesis, f has PBD on I, so, since $X = I \setminus V \subseteq I$, f has PBD on X. we get: Then: $X \subseteq \mathbb{D}_{f}^{(\infty)}$. For all $m \in \mathbb{N}$, let $X_m := \{x \in X \mid f \text{ has } m\text{-BD at } x\}$. By continuity, we get: $\forall m \in \mathbb{N}, X_m$ is closed in X. Since f has PBD on X, we get: $X_1 \bigcup X_2 \bigcup X_3 \bigcup \cdots = X$. So, since X is non \emptyset and locally compact and Hausdorff, by the Baire Category Theorem, choose $M \in \mathbb{N}$ s.t. X_M has non \emptyset interior in X. So, since $X = I \setminus V \subseteq I = (a; b)$, by Theorem 7, choose $c, d \in [a; b]$ s.t. c < d and s.t. $\emptyset \neq (c; d) \bigcap X \subseteq X_M$. Since $\emptyset \neq (c; d) \bigcap X$, choose $q \in (c; d) \bigcap X$. Then $q \in X_M$. Also, $q \in (c; d)$ and $q \in X$. Since $q \in (c; d)$ since (c; d) is open in \mathbb{R} , and choose $\delta > 0$ s.t. $(q - \delta; q + \delta) \subseteq (c; d)$. Since $q \in X = I \setminus V$, by definition of V, we get: f does not have UBD near q. Then: f does not have UBD on $(q - \delta; q + \delta)$. since $(q - \delta; q + \delta) \subseteq (c; d)$, we get: So, f does not have UBD on (c; d). Let $K := M \cdot e^{d-c}$. Then f does not have K-BD on (c; d). Choose $p \in (c; d)$ s.t. f does not have K-BD at p. Since c < d, we get: $e^{d-c} \ge 1$. Then: $K \ge M$. By definition of X_M , f has M-BD on X_M . So, since $K \ge M$, we get: f has K-BD on X_M . So, since f does not have K-BD at p, we get: $p \notin X_M$. Since I = (a; b), we get: I is open in \mathbb{R} . Since X_M is closed in Xand since X is closed in I, Then: $I \setminus X_M$ is open in I. we get: X_M is closed in I. So, since I is open in \mathbb{R} , we get: $I \setminus X_M$ is open in \mathbb{R} . Since $c, d \in [a; b]$, we get: $(c; d) \subseteq (a; b)$. Since $(c; d) \subseteq (a; b) = I$, we get: $(c;d)\backslash X_M = (c;d)\bigcap(I\backslash X_M).$ Let $W := (c; d) \setminus X_M$. Then: $W = (c; d) \bigcap (I \setminus X_M).$ Since (c; d) and $I \setminus X_M$ are both open in \mathbb{R} ,

we get: $(c; d) \cap (I \setminus X_M)$ is open in \mathbb{R} . Then W is open in \mathbb{R} . Since $p \in (c; d)$ and $p \notin X_M$, we get: $p \in W$. Then: $W \neq \emptyset$. Since $W = (c; d) \setminus X_M \subseteq (c; d)$, we get: $W \subseteq (c; d)$. Then W is bounded. Then W is a non \emptyset bounded open subset of \mathbb{R} . Recall: $(c;d) \cap X \subseteq X_M.$ Then $[(c; d) \cap X] \setminus X_M = \emptyset$. Then: $W \cap X = [(c; d) \setminus X_M] \cap X = [(c; d) \cap X] \setminus X_M = \emptyset.$ Then: $W \cap X = \emptyset$. Also, $W \subseteq (c; d) \subseteq (a; b) = I$, so $W \subseteq I$. Since $W \subseteq I$ and $W \bigcap X = \emptyset$, we get: $W \subseteq I \setminus X$. $W \subseteq I \setminus X = V$, so, by definition of V, Then we get: $\forall x \in W, f$ has UBD near x. Let U be the connected component of W s.t. $p \in U$. Then: $p \in U \subseteq W$. Then: $\forall x \in U$, f has UBD near x. By Theorem 5, choose $s, t \in \mathbb{R} \setminus W$ s.t. s < t and s.t. U = (s; t). Then: $\{s, t\} \subseteq \mathbb{R} \setminus W$. Recall: $W \subseteq (c; d)$. Then $(s;t) = U \subseteq W \subseteq (c;d)$, so $(s;t) \subseteq (c;d)$, so $[s;t] \subseteq [c;d]$. Then: $s, t \in [c; d]$. Then: $c \leq s < t \leq d$. Then: $e^{t-s} \leq e^{d-c}$. Then: $t - s \leq d - c$. Then: $M \cdot e^{t-s} \leq M \cdot e^{d-c}$. Since $M \in \mathbb{N}$, we get: M > 0. Let $N := M \cdot e^{t-s}$. Recall: $K = M \cdot e^{d-c}$. Then $N \leq K$. Since $W = (c; d) \setminus X_M$ and since $q \in X_M$, we get: $q \notin W$. So, since $(s; t) = U \subseteq W$, we get: $q \notin (s; t)$. Recall: $q \in (c; d)$. Since $q \notin (s; t)$ and since $q \in (c; d)$, we get: $(s; t) \neq (c; d)$. Since $(s; t) \neq (c; d)$, we get: either $s \neq c$ or $t \neq d$. Recall: $c \leqslant s < t \leqslant d.$ either $c < s < t \leq d$ or $c \leq s < t < d$. Then: Then: either c < s < d or c < t < d. Then: either $s \in (c; d)$ or $t \in (c; d)$. $\{s,t\} \bigcap (c;d) \neq \emptyset.$ Choose $r \in \{s, t\} \bigcap (c; d)$. Then: Since $r \in \{s, t\} \subseteq \mathbb{R} \setminus W$, we get: $r \in \mathbb{R} \setminus W$. Then: $r \in (c; d) \setminus W$. By definition of W, we have: $W = (c; d) \setminus X_M$. Since $r \in (c; d) \setminus W = (c; d) \setminus [(c; d) \setminus X_M] = (c; d) \bigcap X_M \subseteq X_M$, by definition of X_M , we get: f has M-BD at r. We have $r \in \{s, t\} \subseteq [s; t]$, so $r \in [s; t]$. $\forall x \in U, f \text{ has UBD near } x.$ Recall: Then, by Theorem 28, f has N-BD on (s; t). So, since $N \leq K$, we get: f has K-BD on (s; t). So, since $p \in U = (s; t)$, we get: f has K-BD at p. By choice of p, f does not have K-BD at p. Contradiction.

THEOREM 31. Let $g: \mathbb{R} \dashrightarrow \mathbb{R}, a, b \in \mathbb{R}, M \ge 0.$ Assume: a < b. Let I := (a; b). Assume: $I \subseteq \mathbb{D}_{q}^{(2)}$ Assume: $|g| \leq M$ on I and $|g''| \leq M$ on I. Let $N := M \cdot \left(\frac{6}{b-a} + \frac{b-a}{6}\right)$. Then: $|g'| \leq N$ on I. *Proof.* Given $x \in I$, want: $|g'(x)| \leq N$. Let $\delta := \frac{b-a}{3}$. Then $\delta > 0$ and $\frac{2M}{\delta} + \frac{M\delta}{2} = N$. Choose $h \in \{\delta, -\delta\}$ s.t. $x + h \in I$. Then $|h| = \delta$. By Taylor's Theorem, choose ξ strictly between x and x + h s.t. $g(x+h) = (g(x)) + (g'(x)) \cdot h + (g''(\xi)) \cdot \frac{h^2}{2}.$ $g'(x) = \frac{(g(x+h)) - (g(x))}{h} - \frac{(g''(\xi)) \cdot h}{2}.$ Then: $|g'(x)| \le \frac{|g(x+h)| + |g(x)|}{|h|} + \frac{|g''(\xi)| \cdot |h|}{2}.$ Then: Since $|g|, |g''| \leq M$ on I and since $x, \xi, x + h \in I$, we get: $|g(x)| \leq M$ and $|g''(\xi)| \leq M$ and $|g(x+h)| \leq M$. Then: $|g'(x)| \leq \frac{2M}{\delta} + \frac{M\delta}{2} = N.$ Recall: $|h| = \delta$. **THEOREM 32.** Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$, $I \subseteq \mathbb{R}$. Assume: I is a non \emptyset bounded open interval. Assume: f has UBED on I. Then: f has UBD on I. *Proof.* Want: $\exists N \ge 0$ s.t. f has N-BD on I. Since f has UBED on I, choose $M \ge 0$ s.t. f has M-BED on I. Since I is a non \emptyset bounded open interval, choose $a, b \in \mathbb{R}$ s.t. a < band s.t. I = (a; b). Let $N := M \cdot \left(\frac{6}{b-a} + \frac{b-a}{6}\right)$. Then $M \le N$. Then $N \ge 0$. **Want:** f has N-BD on I. Given $x \in I$, want: f has N-BD at x. Given $j \in \mathbb{N}_0$, want: $|f^{(j)}(x)| \leq N$.

Case 1: j is even. Proof in Case 1: Since j is even, by choice of M, we have: $|f^{(j)}| \leq M$ on I. So, since $x \in I$, we get: $|f^{(j)}(x)| \leq M$. Then $|f^{(j)}(x)| \leq M \leq N$. End of proof in Case 1.

Case 2: j is odd. Proof in Case 2: Since j - 1 and j + 1 are even, by the choice of M, we have: $|f^{(j-1)}| \leq M$ on I and $|f^{(j+1)}| \leq M$ on I. By hypothesis, f has UBED on I, so: $I \subseteq \mathbb{D}_{f}^{(\infty)}$. Let $g := f^{(j-1)}$. Then $I \subseteq \mathbb{D}_{f}^{(\infty)} = \mathbb{D}_{g}^{(\infty)} \subseteq \mathbb{D}_{g}^{(2)}$, so $I \subseteq \mathbb{D}_{g}^{(2)}$. Also, $g' = f^{(j)}$ and $g'' = f^{(j+1)}$. $|g| \leq M$ on I and $|g''| \leq M$ on I. Then: Then, by Theorem 31, we get: $|g'| \leq N$ on I. So, since $x \in I$, we get: $|g'(x)| \leq N$. Then $|f^{(j)}(x)| = |g'(x)| \leq N$. End of proof in Case 2. \square **THEOREM 33.** Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$, $c, d \in \mathbb{R}$. Assume c < d. Let J := (c; d). Assume f has PBED on J. Then $\exists non \emptyset$ open subintervals U_1, U_2, U_3, \ldots of J $\forall i \in \mathbb{N}, f \text{ has } UBD \text{ on } U_i$ s.t.and $U_1 \bigcup U_2 \bigcup U_3 \bigcup \cdots$ is dense in J. s.t.*Proof.* Since J is second-countable, choose a countable base \mathcal{W} for J s.t., $\forall W \in \mathcal{W}, W \neq \emptyset$. Since \mathcal{W} is countable, it suffices to prove: $\forall W \in \mathcal{W}, \exists \operatorname{non} \emptyset \text{ open subinterval } U \text{ of } J$ s.t. $U \subseteq W$ and s.t. f has UBD on U. Given $W \in \mathcal{W}$, want: $\exists \operatorname{non} \emptyset$ open subinterval U of J s.t. $U \subseteq W$ and s.t. f has UBD on U. $W \neq \emptyset$ $W \subseteq J.$ Since $W \in \mathcal{W}$, we get: and Since $W \in \mathcal{W}$, we get: W is open in J. So, since J is open in \mathbb{R} , we get: W is open in \mathbb{R} . W is locally compact and Hausdorff. Then: For all $m \in \mathbb{N}$, let $C_m := \{x \in W \mid f \text{ has } m\text{-BED at } x\}.$ Since f has PBED on J and since $W \subseteq J$, we get: f has PBED on W. Then $W \subseteq \mathbb{D}_f^{(\infty)}$. So, by continuity, $\forall m \in \mathbb{N}, C_m$ is closed in W. Since f has PBED on W, we get: $C_1 \bigcup C_2 \bigcup C_3 \bigcup \cdots = W$. So, since W is non \emptyset and locally compact and Hausdorff, by the Baire Category Theorem,

choose $M \in \mathbb{N}$ s.t. C_M has non \emptyset interior in W. Then, since W is open in \mathbb{R} , we get: C_M has non \emptyset interior in \mathbb{R} . So choose $s, t \in \mathbb{R}$ s.t. s < t and s.t. $(s; t) \subseteq C_M$. Let U := (s; t). Then: U is a non \emptyset open interval and $U \subseteq C_M$. Since $U \subseteq C_M \subseteq W \subseteq J$ and since U is a non \emptyset open interval, we get: U is a non \emptyset open subinterval of J. As $U \subseteq C_M \subseteq W$, it remains only to show: f has UBD on U. Since $U \subseteq C_M$, by definition of C_M , we get: f has M-BED on U. Then f has UBED on U. Then, by Theorem 32, f has UBD on U. \Box **DEFINITION 34.** Let $f: \mathbb{R} \dashrightarrow \mathbb{R}$. Then $|IBD_f| := (BD_f)^\circ$ denotes the interior in \mathbb{R} of BD_f . **THEOREM 35.** Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$, $c, d \in \mathbb{R}$. Assume c < d. Let J := (c; d). Assume f has PBED on J. Then $\operatorname{IBD}_f \bigcap J$ is dense in J. *Proof.* By Theorem 33, choose non \emptyset open subintervals U_1, U_2, U_3, \ldots of J $\forall i \in \mathbb{N}, f \text{ has UBD on } U_i$ s.t. and s.t. $U_1 \bigcup U_2 \bigcup U_3 \bigcup \cdots$ is dense in J. Then: $\forall i \in \mathbb{N},$ since f has UBD on U_i , it follows that f has BD on U_i , so $U_i \subseteq BD_f$. Then $U \subseteq BD_f$, so $U^\circ \subseteq (BD_f)^\circ$. Let $U := U_1 \bigcup U_2 \bigcup U_3 \bigcup \cdots$. Since $\forall i \in \mathbb{N}, U_i \subseteq J$, we get: $U \subseteq J$. $\forall i \in \mathbb{N}, U_i \text{ is open in } J, \text{ we get:}$ U is open in J. Since So, since J is open in \mathbb{R} , we get: U is open in \mathbb{R} . Then $U^{\circ} = U$. Since $U_1 \bigcup U_2 \bigcup U_3 \bigcup \cdots$ is dense in J, we get: U is dense in J. Since $U = U^{\circ} \subseteq (BD_f)^{\circ} = IBD_f$ and since $U \subseteq J$, we get: $U \subseteq \operatorname{IBD}_f \bigcap J$. So, since U is dense in J, we get: $\operatorname{IBD}_f \bigcap J$ is dense in J. **THEOREM 36.** Let $\phi : \mathbb{R} \dashrightarrow \mathbb{R}$, $s, t \in \mathbb{R}$, $L \ge 0$. Assume: s < t. $(s;t) \subseteq \mathbb{D}_{\phi}^{(2)}$ and ϕ is continuous both at s and at t. Assume: $\phi'' > 0 \ on \ (s; t).$ Assume: $\phi \leq L$ on $\{s, t\}$. Assume: $\phi < L \text{ on } (s; t).$ Then:

Theorem 36 is a special case of the Maximum Principle. This particular special case follows from the Mean Value Theorem. We omit the proof.

THEOREM 37. Let $g : \mathbb{R} \dashrightarrow \mathbb{R}$, $s, t \in \mathbb{R}$, $L \ge 0$. Assume: s < t and $t - s \le 1$.

 $(s;t) \subseteq \mathbb{D}_q^{(2)}$ Assume: and g is continuous both at s and at t. Assume: $|q| \leq L$ on $\{s, t\}$. Let $w \in (s; t)$. Assume $|q(w)| \ge 2L$. $\exists x \in (s;t) \quad s.t. \quad |g''(x)| \ge 8L.$ Then: *Proof.* Choose $h \in \{g, -g\}$ s.t. |g(w)| = h(w). Then $h(w) \ge 2L$. Also, |h| = |g| and |h'| = |g'| and |h''| = |g''|. $(s;t) \subseteq \mathbb{D}_h^{(2)}$ and h is continuous both at s and at t. Also, $\exists x \in (s; t) \quad \text{s.t.} \quad |h''(x)| \ge 8L.$ Want: Assume: |h''| < 8L on (s; t). Want: Contradiction. We have: -8L < h'' < 8L on (s; t). Since h'' > -8L on (s; t), we get: 8L + h'' > 0 on (s; t). Define $Q : \mathbb{R} \to \mathbb{R}$ by: $\forall x \in \mathbb{R}, \quad Q(x) = 4L \cdot (x - s) \cdot (x - t).$ Then: Q'' = 8L on \mathbb{R} . Then: (Q+h)'' > 0 on (s,t). Let $\phi := Q + h$. Then $\phi'' > 0$ on (s; t). Since Q = 0 on $\{s, t\}$ and since $h \leq |h| = |g| \leq L$ on $\{s, t\}$, we get: $Q + h \leq L$ on $\{s, t\}$. Then: $\phi \leq L$ on $\{s, t\}$. $(s;t) \subseteq \mathbb{D}_{\phi}^{(2)}$ and ϕ is continuous both at s and at t. Also, Then, by Theorem 36 (Maximum Principle), we get: $\phi < L$ on (s; t). By hypothesis, we have: $w \in (s; t)$. Then $\phi(w) < L$. Since $(Q(w)) + (h(w)) = \phi(w) < L$, we get: h(w) < L - (Q(w)). Let c := (s + t)/2. The minimum value of Q is Q(c). Then $Q(w) \ge Q(c)$. We calculate: $Q(c) = -L \cdot (t-s)^2$. Since $0 < t - s \leq 1$, we get: $(t - s)^2 \leq 1$. So, since $L \ge 0$, we get: $-L \cdot (t-s)^2 \ge -L$. Then $Q(w) \ge Q(c) = -L \cdot (t-s)^2 \ge -L$, so $-(Q(w)) \le L$. Then $h(w) < L - (Q(w)) \le L + L = 2L$, so h(w) < 2L. Recall, from the start of the proof: $h(w) \ge 2L$. Contradiction. **THEOREM 38.** Let $f : \mathbb{R} \dashrightarrow \mathbb{R}, s, t \in \mathbb{R},$ M > 0.Assume $t - s \leq 1$. Assume s < t. Assume f has M-BED on $\{s, t\}$. Assume f has UBED on (s; t). Then f has 2M-BED on (s; t). *Proof.* Given $p \in (s; t)$, want: f has 2M-BED at p. Given $j \in \mathbb{N}_0$, want: $|f^{(2j)}(p)| \leq 2M$. Assume: $|f^{(2j)}(p)| > 2M$. Want: Contradiction. Since $|f^{(2j)}(p)| > 2M$, we get: $|f^{(2j)}(p)| \ge 2M$. For all $i \in \mathbb{N}_0$, let $L_i := 4^i \cdot M$. Then: $\forall i \in \mathbb{N}_0, \ L_i \ge 0.$ $L_0 = M$ and Also, $\forall i \in \mathbb{N}_0, \quad L_{i+1} = 4L_i.$ For all $i \in \mathbb{N}_0$, let $B_i := \{q \in (s; t) \text{ s.t. } |f^{(2j+2i)}(q)| \ge 2L_i\}.$

Claim: $\forall i \in \mathbb{N}_0, \quad B_i \neq \emptyset$. Proof of Claim: We have $|f^{(2j+2\cdot 0)}(p)| = |f^{(2j)}(p)| \ge 2M = 2L_0$. Also, $p \in (s; t)$. Then $p \in B_0$. Then $B_0 \neq \emptyset$. We proceed by mathematical induction:

Given $i \in \mathbb{N}_0$, assume $B_i \neq \emptyset$, want: $B_{i+1} \neq \emptyset$. Choose $w \in B_i$. Then $w \in (s;t)$ and $|f^{(2j+2i)}(w)| \ge 2L_i$. By hypothesis, f has M-BED on $\{s,t\}$, so $s,t \in \mathbb{D}_f^{(\infty)}$. By hypothesis, f has M-BED on $\{s,t\}$, so $|f^{(2j+2i)}| \le M$ on $\{s,t\}$. By hypothesis, f has UBED on $\{s,t\}$, so $|f^{(2j+2i)}| \le M$ on $\{s,t\}$. By hypothesis, f has UBED on (s;t), so $(s;t) \subseteq \mathbb{D}_f^{(\infty)}$. Let $g := f^{(2j+2i)}$. Then $(s;t) \subseteq \mathbb{D}_f^{(\infty)} = \mathbb{D}_g^{(\infty)} \subseteq \mathbb{D}_g^{(2)}$, so $(s;t) \subseteq \mathbb{D}_g^{(2)}$. Since $s,t \in \mathbb{D}_f^{(\infty)} = D_g^{(\infty)} \subseteq \mathbb{D}_g^{(2)} \subseteq \mathbb{D}_g^{(1)}$,

we get: q is differentiable both at s and at t. Then q is continuous both at s and at t. Also, $|g(w)| = |f^{(2j+2i)}(w)| \ge 2L_i$, so $|q(w)| \ge 2L_i$. $|q| = |f^{(2j+2i)}| \le M \text{ on } \{s, t\},\$ Also, so $|q| \leq M$ on $\{s, t\}$. We have: $M \leq 4^i \cdot M = L_i$. Then $|g| \leq L_i$ on $\{s, t\}$. By Theorem 37, choose $x \in (s; t)$ s.t. $|g''(x)| \ge 8L_i$. Since $q'' = (f^{(2j+2i)})'' = f^{(2j+2i+2)} = f^{(2j+2\cdot(i+1))}$, we get: $|f^{(2j+2\cdot(i+1))}(x)| = |g''(x)|.$ Then $|f^{(2j+2\cdot(i+1))}(x)| = |g''(x)| \ge 8L_i = 2 \cdot 4L_i = 2L_{i+1},$ so $|f^{(2j+2\cdot(i+1))}(x)| \ge 2L_{i+1}.$ Then $x \in B_{i+1}$. Then $B_{i+1} \neq \emptyset$. Also, $x \in (s; t)$. End of proof of Claim.

By hypothesis, f has UBED on (s; t), so choose $K \ge 0$ s.t. f has K-BED on (s; t). By hypothesis, M > 0, so choose $n \in \mathbb{N}_0$ s.t. $2 \cdot 4^n \cdot M > K$. By the Claim, $B_n \ne \emptyset$, so choose $z \in B_n$. Then, by definition of B_n , we get: $z \in (s; t)$ and $|f^{(2j+2n)}(z)| \ge 2L_n$. Then $|f^{(2j+2n)}(z)| \ge 2L_n = 2 \cdot 4^n \cdot M > K$, so $|f^{(2j+2n)}(z)| > K$. On the other hand, since f has K-BED on (s; t) and since $z \in (s; t)$, we get: $|f^{(2j+2n)}(z)| \le K$. Contradiction. \Box **THEOREM 39.** Let $c, d \in \mathbb{R}$. Assume: c < d. Let J := (c; d).

Let $T \subseteq J$. Assume: T is finite. Let $q \in T$. Then: $\exists \delta > 0$ s.t. $(q - \delta; q) \subseteq J \setminus T$.

The preceding result is basic. Its proof is left as an exercise.

THEOREM 40. Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$, $c, d \in \mathbb{R}$. Assume: c < d. Let J := (c; d). Assume: $J \subseteq \mathbb{D}_{f}^{(\infty)}$. Let $T := J \setminus BD_{f}$. Assume: $T \neq \emptyset$. Then: T is infinite.

Proof. Assume: T is finite. Want: Contradiction.
Since T ≠ Ø, choose q ∈ T. Then q ∈ J and q ∉ BD_f.
By Theorem 39, choose δ > 0 s.t. (q − δ; q) ⊆ J\T.
Since (q − δ; q) ⊆ J\T ⊆ J and since q ∈ J, we get: (q − δ; q] ⊆ J.
We have: (q − δ; q) ⊆ J\T = J\(J\BD_f) = J ∩ BD_f ⊆ BD_f, so (q − δ; q) ⊆ BD_f, so f has PBD on (q − δ; q).
So, by Tao's Theorem (Theorem 30), we get: f has UBD on (q − δ; q).
So, since (q − δ; q] ⊆ J ⊆ D^(∞)_f, by continuity, f has M-BD at q.
Then f has BD at q, so q ∈ BD_f. Recall: q ∉ BD_f. Contradiction. □

THEOREM 41. Let $T \subseteq \mathbb{R}$, $\varepsilon > 0$. Assume: T is bounded and infinite. Then: $\exists p, q, r \in T$ s.t. p < q < r and s.t. $r - p \leq \varepsilon$.

Proof. Since T is bounded and infinite, choose a limit point x of T. Let $C := [x - (\varepsilon/2); x + (\varepsilon/2)]$. Then $C \cap T$ is infinite. Choose $p, q, r \in C \cap T$ s.t. p < q < r. Want: $r - p \leq \varepsilon$. Since $p, r \in C \cap T \subseteq C = [x - (\varepsilon/2); x + (\varepsilon/2)]$, we get: $r - p \leq \varepsilon$. \Box

THEOREM 42. Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$, $a, b \in \mathbb{R}$. Assume: a < b. Let I := (a; b). Assume: f has PBED on I. Then: f has PBD on I.

Proof. Want: $I \subseteq BD_f$. Let $V := \operatorname{IBD}_f \bigcap I$. Since IBD_f is open in \mathbb{R} , we get: V is open in I. it suffices to show: $I \subseteq V$. Since $V \subseteq \text{IBD}_f \subseteq \text{BD}_f$, Let $X := I \setminus V$. Want: $X = \emptyset$. Assume $X \neq \emptyset$. Want: Contradiction. Since V is open in I and since $X = I \setminus V$, we get: X is closed in I. Since I = (a; b), we get: I is open in \mathbb{R} . Since X is closed in I and since I is open in \mathbb{R} , X is locally compact and Hausdorff. we get: By hypothesis, f has PBED on I, so, since $X = I \setminus V \subseteq I$, Then: $X \subseteq \mathbb{D}_{f}^{(\infty)}$. it follows that: f has PBED on X. For all $m \in \mathbb{N}$, let $X_m := \{x \in X \mid f \text{ has } m\text{-BED at } x\}$. Then, by continuity, we get: $\forall m \in \mathbb{N}, X_m$ is closed in X.

Since f has PBED on X, we get: $X_1 \bigcup X_2 \bigcup X_3 \bigcup \cdots = X$. So, since X is non \emptyset and locally compact and Hausdorff,

by the Baire Category Theorem,

choose $M \in \mathbb{N}$ s.t. X_M has non \emptyset interior in X. So, since $X = I \setminus V \subseteq I = (a; b)$, by Theorem 7, choose $c, d \in [a; b]$ s.t. c < d and s.t. $\emptyset \neq (c; d) \bigcap X \subseteq X_M$. Then: $a \leq c < d \leq b$. Then: $(c;d) \subseteq (a;b).$ Let J := (c; d). Then: J is open in \mathbb{R} , so $J^{\circ} = J$. Also, $J = (c; d) \subseteq (a; b) = I$, so: $J \subseteq I$. Then $J \setminus V = J \bigcap (I \setminus V)$. Since $J \setminus V = J \cap (I \setminus V) = J \cap X = (c; d) \cap X$, we get: $J \setminus V = (c; d) \bigcap X$. since $\emptyset \neq (c; d) \bigcap X \subseteq X_M$, we get: $\emptyset \neq J \setminus V \subseteq X_M$. So, Since $J \setminus V \neq \emptyset$, we get: $J \subseteq V.$ Since $J \not\subseteq V = \text{IBD}_f \bigcap I$ since $J \subseteq I$, we get: $J \not\subseteq \text{IBD}_f$. and Since $J^{\circ} = J \nsubseteq \mathrm{IBD}_f = (\mathrm{BD}_f)^{\circ}$, we get $J^{\circ} \nsubseteq (\mathrm{BD}_f)^{\circ}$, and so $J \nsubseteq \mathrm{BD}_f$. Then: $J \setminus BD_f \neq \emptyset$. Let $T := J \setminus BD_f$. Then $T \neq \emptyset$. By hypothesis, f has PBED on I, so, since $J \subseteq I$, Then $J \subseteq \mathbb{D}_f^{(\infty)}$. it follows that: f has PBED on J. Then, by Theorem 40, we get: T is infinite. Also, $T = J \setminus BD_f \subseteq J = (c; d)$, so $T \subseteq (c; d)$. Then T is bounded. By Theorem 41, choose $p, q, r \in T$ s.t. p < q < r and s.t. $r - p \leq 1$. Then: $p, q, r \in T \subseteq (c; d)$. Then: $a \leq c .$ Then: $[p; r] \subseteq (c; d).$ By Theorem 35, $\operatorname{IBD}_f \bigcap J$ is dense in J. Let $W := \operatorname{IBD}_f \bigcap J$. Then: W is dense in J. Since $J \subseteq I$, we get: $J = I \bigcap J$. Then $W = J \cap \text{IBD}_f \cap I$. By definition of V, we have: $V = IBD_f \bigcap I$. Then: $W = J \bigcap V$. So, since $J \setminus V = J \setminus (J \cap V)$, we get: $J \setminus V = J \setminus W$. Recall: $\emptyset \neq J \setminus V \subseteq X_M$. Since $J \setminus W = J \setminus V \subseteq X_M$, we get: $J \setminus W \subseteq X_M$. We have $(p; r) \subseteq [p; r] \subseteq (c; d) = J$, so $(p; r) \subseteq J$. (p; r) is an open subset of J. Then: So, since W is dense in J, we get: $W \bigcap (p;r)$ is dense in (p;r). We have $p, q, r \in T = J \setminus BD_f$. Then $p, q, r \notin BD_f$. Since p < q < r, we get: $q \in (p; r)$. Since $q \notin BD_f$, we get: f does not have BD at q. So, since $q \in (p; r)$, we get: f does not have PBD on (p; r). Then f does not have UBD on (p; r). Then, by Theorem 32, f does not have UBED on (p; r).

f does not have 2M-BED on (p; r). Then: $(p;r) \subseteq J \subseteq \mathbb{D}_f^{(\infty)}$ So, since and since $W \cap (p; r)$ is dense in (p; r), by continuity, we get: f does not have 2M-BED on $W \cap (p; r)$. Choose $w \in W \cap (p; r)$ s.t. f does not have 2M-BED at w. Then: $a \leq c .$ Also, $w \in W$. By definition of W, we have: $W = IBD_f \bigcap J$. So, since IBD_f is open in \mathbb{R} , we get: W is an open subset of J. So, since J = (c; d), we get: W is an open subset of (c; d). Since $p, r \notin BD_f \supseteq IBD_f \supseteq IBD_f \bigcap J = W$, we get: $p, r \notin W$. Let U be the connected component of W s.t. $w \in U$. Then: $w \in U \subseteq W$. By Theorem 6, choose $s, t \in [p; r] \setminus W$ s.t. s < t and s.t. U = (s; t). Then $p \leq s < t \leq r$. Since $w \in U = (s; t)$, we get: s < w < t. Then: $a \leqslant c$ Since $p \leq s < t \leq r$, we get: $t - s \leq r - p$. So, since $r - p \leq 1$, we get: $t - s \leq 1$. $(s;t) = U \subseteq W = \operatorname{IBD}_f \bigcap J \subseteq \operatorname{IBD}_f \subseteq \operatorname{BD}_f,$ Since we get: f has PBD on (s; t). Then, by Tao's Theorem (Theorem 30), we get: f has UBD on (s; t). Then: f has UBED on (s; t). Since $M \in \mathbb{N}$, we get: M > 0. $J \setminus W \subseteq X_M$ and J = (c; d) and $[p; r] \subseteq (c; d)$. Recall: Since $s, t \in [p; r] \setminus W \subseteq (c; d) \setminus W = J \setminus W \subseteq X_M$, by definition of X_M , we get: f has M-BED on $\{s, t\}$. Then, by Theorem 38, we get: f has 2M-BED on (s; t). So, since $w \in U = (s; t)$, we get: f has 2M-BED at w. By choice of w, f does not have 2M-BED at w. Contradiction. **DEFINITION 43.** Let $\mu : \mathbb{R} \dashrightarrow \mathbb{R}$, $I \subseteq \mathbb{R}$. By μ is affine on I, we mean: $I \subseteq \mathbb{D}_{\mu}$ and $\exists m, c \in \mathbb{R} \ s.t., \quad \forall x \in I, \ \mu(x) = mx + c.$

The preceding result is basic. Its proof is left as an exercise.

THEOREM 45. Let $a, b \in \mathbb{R}$. Assume a < b. Let I := (a; b). Let $\lambda_0, \lambda_1, \lambda_2 \dots : I \to \mathbb{R}$. Assume: $\forall j \in \mathbb{N}, \lambda_j$ is affine on I. Let $\mu : I \to \mathbb{R}$. Assume: $\lambda_j \to \mu$ pointwise, as $j \to \infty$. Then: μ is affine on I.

THEOREM 46. Let $\mu : \mathbb{R} \dashrightarrow \mathbb{R}$, $I \subseteq \mathbb{R}$. Assume: μ is affine on I. Then: μ is Lipschitz on I.

Proof. Choose $m, c \in \mathbb{R}$ s.t., $\forall x \in I, \quad \mu(x) = mx + c.$ Want: μ is |m|-Lipschitz on I. Given $p, q \in I$, want: $|(\mu(q)) - (\mu(p))| \leq |m| \cdot |q - p|$. We have: $(\mu(q)) - (\mu(p)) = (mq + c) - (mp + c) = m \cdot (q - p)$. Then: $|(\mu(q)) - (\mu(p))| = |m \cdot (q - p)| = |m| \cdot |q - p|$. Then: $|(\mu(q)) - (\mu(p))| \leq |m| \cdot |q - p|$.

THEOREM 47. Let $\phi : \mathbb{R} \dashrightarrow \mathbb{R}$, $a, b \in \mathbb{R}$, $M \ge 0$. Assume: a < b. Let I := (a; b). Assume: ϕ is M-Lipschitz on I. Let $c \in I$. Let $M' := |\phi(c)| + M \cdot (b - a)$. Then: $|\phi| \le M'$ on I.

Proof. Given $x \in I$, want: $|\phi(x)| \leq M'$. Since $c, x \in I = (a; b)$, we get: |x - c| < b - a. So, since $M \geq 0$, we get: $M \cdot |x - c| \leq M \cdot (b - a)$. Since ϕ is M-Lipschitz on I, we get: $|(\phi(x)) - (\phi(c))| \leq M \cdot |x - c|$. Then: $|\phi(x)| = |[\phi(c)] + [(\phi(x)) - (\phi(c))]| \leq |\phi(c)| + |(\phi(x)) - (\phi(c))| \leq |\phi(c)| + M \cdot |x - c| \leq |\phi(c)| + M \cdot (b - a) = M'$.

THEOREM 48. Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$, $a, b \in \mathbb{R}$, $M \ge 0$. Assume: a < b. Let I := (a; b). Assume: ϕ is Lipschitz on I. Then: ϕ is bounded and continuous on I.

Proof. Since ϕ is Lipschitz on I, we get: ϕ is continuous on I. It remains to show: ϕ is bounded on I. Since ϕ is Lipschitz on I, choose $M \ge 0$ s.t. ϕ is M-Lipschitz on I. Let c := (a + b)/2. Then $c \in I$. Let $M' := |\phi(c)| + M \cdot (b - a)$. By Theorem 47, we get: $|\phi| \le M'$ on I. Then ϕ is bounded on I. \Box **DEFINITION 49.** Let $f : \mathbb{R} \to \mathbb{R}$, $a, b \in \mathbb{R}$. Assume: a < b. Let I := (a; b). Let c := (a + b)/2. Assume: f is bounded and measurable on I. Then $f_I^{\#} : I \to \mathbb{R}$ is defined by: $\forall x \in I$, $f_I^{\#}(x) = \int_c^x f$. **THEOREM 50.** Let $f : \mathbb{R} \to \mathbb{R}$, $a, b \in \mathbb{R}$. Assume: a < b. Let I := (a; b). Assume: f is bounded and continuous on I. Then: $(f^{\#})' = f$ on I.

Theorem 50 is a case of the Fundamental Theorem of Calculus.

THEOREM 51. Let $a, b \in \mathbb{R}$. Assume: a < b. Let I := (a; b). Let $f_0, f_1, f_2, \ldots : I \to \mathbb{R}$ be measurable. Let $g : I \to \mathbb{R}$. Let $M \ge 0$. Assume: $\forall j \in \mathbb{N}_0, |f_j| \le M$ on I. Assume: $f_j \to g$ pointwise on I, as $j \to \infty$. Then: g is bounded and measurable on I and $(f_j)_I^{\#} \to g_I^{\#}$ pointwise on I, as $j \to \infty$.

Proof. Since $\forall j \in \mathbb{N}_0, |f_j| \leq M$ on I

and since $f_j \to g$ pointwise on I, as $j \to \infty$,

we get $|g| \leq M$ on I, so g is bounded on I.

Since a pointwise limit of measurable functions is measurable, we get: g is measurable on I.

It remains to show: $(f_j)_I^{\#} \to g_I^{\#}$ pointwise on I, as $j \to \infty$. Given $x \in I$, want: $(f_j)_I^{\#}(x) \to g_I^{\#}(x)$, as $j \to \infty$.

Let c := (a+b)/2. Then: $g_I^{\#}(x) = \int_c^x g$. Also, we have: $\forall j \in \mathbb{N}_0, \quad (f_j)_I^{\#}(x) = \int_c^x f_j$

Since $\forall j \in \mathbb{N}_0, |f_j| \leq M$ on I and

Then:

since $f_j \to g$ pointwise on I, as $j \to \infty$, by the Dominated Convergence Theorem, we get:

$$\int_{c}^{x} f_{j} \to \int_{c}^{x} g, \quad \text{as } j \to \infty.$$
$$(f_{j})_{I}^{\#}(x) \to g_{I}^{\#}(x), \quad \text{as } j \to \infty.$$

THEOREM 52. Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$, $a, b \in \mathbb{R}$, $M \ge 0$. Assume: a < b. Let I := (a; b).

Assume: $|f| \leq M$ on I. Assume: f is measurable on I. $f_I^{\#}$ is M-Lipschitz on I. Then: Proof. Given $s, t \in I$, assume s < t, want: $|(f_I^{\#}(t)) - (f_I^{\#}(s))| \leq M \cdot (t-s).$ $s, t \in I$ and since I is an interval, we get: $[s;t] \subseteq I.$ Since $|f| \leq M$ on [s;t]. Let c := (a+b)/2. Then: $(f_I^{\#}(t)) - (f_I^{\#}(s)) = \left(\int_{-s}^{t} f\right) - \left(\int_{-s}^{s} f\right) = \int_{-s}^{t} f.$ Then: $|(f_I^{\#}(t)) - (f_I^{\#}(s))| \leq \int_{t}^{t} |f|.$ Then: So, since $|f| \leq M$ on [s;t], we get: $|(f_I^{\#}(t)) - (f_I^{\#}(s))| \leq \int^t M.$ $|(f_I^{\#}(t)) - (f_I^{\#}(s))| \leq M \cdot (t-s).$ Then: **THEOREM 53.** Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$, $a, b \in \mathbb{R}$. Assume a < b. Let I := (a; b). f is bounded and measurable on I. Assume: $f_I^{\#}$ is bounded and continuous on I. Then: *Proof.* Since f is bounded on I, choose $M \ge 0$ s.t. $|f| \le M$ on I. By Theorem 52, $f_I^{\#}$ is *M*-Lipschitz on *I*, so $f_I^{\#}$ is Lipschitz on *I*. by Theorem 48, $f_I^{\#}$ is bounded and continuous on *I*. Then. **DEFINITION 54.** Let $f : \mathbb{R} \dashrightarrow \mathbb{R}$, $a, b \in \mathbb{R}$. Assume a < b. Let I := (a; b). Assume: f is bounded and measurable on I. $\left| f_{I}^{\#\#} \right| := (f_{I}^{\#})_{I}^{\#}.$ Then: Implicit in Definition 54 is that, by Theorem 53, $f_I^{\#}$ is bounded and continuous on I, $f_I^{\#}$ is bounded and measurable on I. and so **THEOREM 55.** Let $q : \mathbb{R} \dashrightarrow \mathbb{R}$, $a, b \in \mathbb{R}$. Assume: a < b. Let I := (a; b). Assume: g is bounded and continuous on I. Then: $(g_I^{\#\#})'' = g$ on I. *Proof.* By Theorem 50, we get: $(q_I^{\#})' = q$ on I. Let $h := q_I^{\#}$. Then h' = q. Since g is continuous on I, we get: g is measurable on I.

Then, by Theorem 53, we get: $g_I^{\#}$ is bounded and continuous on I. So, since $h = g_I^{\#}$, we get: h is bounded and continuous on I. So, by Theorem 50, we get: $(h_I^{\#})' = h$ on I. So, since h' = g on I, we get: $(h_I^{\#})'' = g$ on I. Then: $(g_I^{\#\#})'' = ((g_I^{\#})_I^{\#})'' = (h_I^{\#})'' = g$ on I.

THEOREM 56. Let $f : \mathbb{R} \to \mathbb{R}$, $a, b \in \mathbb{R}$. Assume: a < b. Let I := (a; b). Assume: $I \subseteq \mathbb{D}_{f}^{(2)}$. Assume: f'' is bounded and continuous on I. Then: $(f'')_{I}^{\#\#} - f$ is affine on I.

Proof. Let $\phi := (f'')_I^{\#\#}$. Want: $\phi - f$ is affine on I. Want: $(\phi - f)'' = 0$ on I. Want: $\phi'' = f''$ on I. Let g := f''. By hypothesis, g is bounded and continuous on I. Then, by Theorem 55, we get: $(g_I^{\#\#})'' = g$ on I. Then: $\phi'' = ((f'')_I^{\#\#})'' = (g_I^{\#\#})'' = g = f''$ on I.

THEOREM 57. Let $a, b \in \mathbb{R}$. Assume a < b. Let I := (a; b). Let $S := C^{\infty}(I, \mathbb{R})$. Define $L : S \to S$ by: $\forall h \in S$, Lh = h''. Let $f \in S$. Let $g : I \to \mathbb{R}$. Assume $f, Lf, L^2f, \ldots \to g$ pointwise on I. Then: $g \in S$ and Lg = g.

Proof. It suffices to show: q'' = q. $\forall j \in \mathbb{N}_0, \quad L^j f = f^{(2j)}.$ We have: $f^{(2j)} \to q$ pointwise on I, as $j \to \infty$. Then: It follows that: f has PBED on I. Then, by Theorem 42, we get: f has PBD on I. Then, by Tao's Theorem (Theorem 30), we get: f has UBD on I. Then: f has UBED on I. Choose $M \ge 0$ s.t. f has M-BED on I. $\forall j \in \mathbb{N}_0, |f^{(2j)}| \leq M \text{ on } I.$ Then: For all $j \in \mathbb{N}_0$, let $f_j := L^j f$. Then: $\forall j \in \mathbb{N}_0, f_j = f^{(2j)}$. $f_j \to g$ pointwise on I, as $j \to \infty$. Then: $\forall j \in \mathbb{N}_0, |f_j| \leq M \text{ on } I.$ Also, since $f_j \to g$ pointwise on I, as $j \to \infty$, by Theorem 51, Then, g is bounded and measurable on Iand $(f_i)_I^{\#} \to g_I^{\#}$ pointwise on I, as $j \to \infty$. By Theorem 52, we get: $\forall j \in \mathbb{N}_0$, $(f_j)_I^{\#}$ is *M*-Lipschitz on *I*. Let c := (a+b)/2. Then: $\forall j \in \mathbb{N}_0, \ (f_i)_I^{\#}(c) = 0$. Let $M' := M \cdot (b - a)$. Then $M' \ge 0$. $\forall j \in \mathbb{N}_0, \quad M' = |(f_j)_I^{\#}(c)| + M \cdot (b-a).$ Also,

Then, by Theorem 47, we get: $\forall j \in \mathbb{N}_0, \ |(f_j)_I^{\#}| \leq M' \text{ on } I.$ since $(f_j)_I^{\#} \to g_I^{\#}$ pointwise on I, as $j \to \infty$, by Theorem 51, Then, $g_I^{\#}$ is bounded and measurable on Iand $\begin{array}{ccc} g_I & \text{is bounded and industriant on } I \\ (f_j)_I^{\#\#} \to g_I^{\#\#} & \text{pointwise on } I, \text{ as } j \to \infty. \\ f_j \to g & \text{pointwise on } I, \text{ as } j \to \infty. \\ (f_j'')_I^{\#\#} - f_j \to g_I^{\#\#} - g & \text{pointwise on } I, \text{ as } j \to \infty. \end{array}$ Recall: Then: For all $j \in \mathbb{N}_0$, let $\lambda_j := (f_j'')_I^{\#\#} - f_j$. Let $\mu := g_I^{\#\#} - g$. Then $\lambda_j \to \mu$ pointwise on I, as $j \to \infty$. Also, $g = g_I^{\#\#} - \mu$. $f \in S = C^{\infty}(I, \mathbb{R})$ and Since $\forall j \in \mathbb{N}_0, \ f''_j = (L^j f)'' = (f^{(2j)})'' = f^{(2j+2)}, \ \text{we conclude:}$ since $\forall j \in \mathbb{N}_0, \qquad I \subseteq \mathbb{D}_{f_j}^{(2)} \text{ and } f_j'' \text{ is continuous on } I.$ We have: $\forall j \in \mathbb{N}_0, \quad f_j'' = Lf_j = LL^j f = L^{j+1}f = f_{j+1}.$ $\forall j \in \mathbb{N}_0, |f_j''| = |f_{j+1}| \leq M \text{ on } I.$ Then: $\forall j \in \mathbb{N}_0, f_j'' \text{ is bounded on } I.$ Then: Then, by Theorem 56, we have: $\forall j \in \mathbb{N}_0, \ (f''_i)_I^{\#\#} - f_j$ is affine on I. So, since $\forall j \in \mathbb{N}_0, \ \lambda_j = (f_j'')_I^{\#\#} - f_j,$ we get: $\forall j \in \mathbb{N}_0, \ \lambda_j \text{ is affine on } I.$ So, since $\lambda_i \to \mu$ pointwise on I, as $j \to \infty$, by Theorem 45, we get: μ is affine on *I*. So, by Theorem 46, we get: μ is Lipschitz on I. Then, by Theorem 48, we get: μ is bounded and continuous on I. Recall: $q_I^{\#}$ is bounded and measurable on *I*. So, by Theorem 53, $g_I^{\#\#}$ is bounded and continuous on I. Then, since $g = g_I^{\#\#} - \mu$, we get: g is bounded and continuous on I. $(g_I^{\#\#})'' = g.$ Then, by Theorem 55, we get: Since μ is affine on I, we get: Then, by subtracting, we get: So, since $g = g_I^{\#\#} - \mu$, we get: $\mu'' = 0$. $(g_I^{\#\#} - \mu)'' = g$. g'' = g.

So, since $g = g_I^{\#\#} - \mu$, we get: