Paul Cusson's question

The main results in this note are:
Theorem 30, due to T. Tao, and Theorem 42, and Theorem 57.

DEFINITION 1. Let $a, b \in \mathbb{R}$.
Then: $\begin{aligned}(a ; b) & :=\{x \in \mathbb{R} \mid a<x<b\}, & {[a ; b) } & :=\{x \in \mathbb{R} \mid a \leqslant x<b\}, \\ (a ; b] & :=\{x \in \mathbb{R} \mid a<x \leqslant b\}, & {[a ; b] } & :=\{x \in \mathbb{R} \mid a \leqslant x \leqslant b\} .\end{aligned}$
DEFINITION 2. Let f be a function.
Then \mathbb{D}_{f} denotes the domain of f.
Also, $\mathbb{I}_{f}:=\left\{f(x) \mid x \in \mathbb{D}_{f}\right\}$ denotes the image of f.
DEFINITION 3. Let A and B be sets.
By $f: A \rightarrow B$, we mean: f is a function and $\mathbb{D}_{f}=A$ and $\mathbb{I}_{f} \subseteq B$.
By $f: A \rightarrow B$, we mean: f is a function and $\mathbb{D}_{f} \subseteq A$ and $\mathbb{I}_{f} \subseteq B$.
DEFINITION 4. $\mathbb{N}:=\{1,2,3, \ldots\}$ and $\mathbb{N}_{0}=\{0,1,2,3, \ldots\}$.
Convention: Any subset of \mathbb{R} is given the relative topology inherited from the standard topology on \mathbb{R}.
NOTE: Any open subset of \mathbb{R} is locally compact and Hausdorff.
NOTE: Any closed subset of any open subset of \mathbb{R}
is locally compact and Hausdorff.
THEOREM 5. Let W be a non \varnothing bounded open subset of \mathbb{R}.
Let U be a connected component of W.
Then: $\quad \exists s, t \in \mathbb{R} \backslash W \quad$ s.t. $s<t \quad$ and \quad s.t. $U=(s ; t)$.
Proof. Since U is a connected component of W, we get: $\quad \varnothing \neq U \subseteq W$.
Since W is bounded and since $U \subseteq W$, we get: U is bounded.
The topological space \mathbb{R} is locally connected, so,
since W is open in \mathbb{R} and
since U is a connected component of W,
we get: U is a connected open subset of \mathbb{R}.
Since U is a non \varnothing bounded connected open subset of \mathbb{R},
choose $s, t \in \mathbb{R} \quad$ s.t. $s<t \quad$ and \quad s.t. $U=(s ; t)$.
Want: $s, t \notin W$. Want: $\{s, t\} \bigcap W=\varnothing$.
Assume: $\{s, t\} \bigcap W \neq \varnothing$. Want: Contradiction.
Choose $r \in\{s, t\} \bigcap W$. Then: $r \in\{s, t\}$ and $r \in W$.

Since W is open in \mathbb{R} and since $r \in W$,
choose $\delta>0$ s.t. $(r-\delta ; r+\delta) \subseteq W$.
Since $r \in\{s, t\} \quad$ and \quad since $\delta>0$,
we get: $\quad(s ; t) \bigcap(r-\delta ; r+\delta) \neq \varnothing$.
Let $I:=(r-\delta ; r+\delta)$. Then: I is connected and $r \in I \subseteq W$.
Since $r \in I$, we get: $I \neq \varnothing$.
Since $I \subseteq W$ and since I is non \varnothing and connected, let V be the connected component of W s.t. $I \subseteq V$.
We have: $\quad U \bigcap V \supseteq U \bigcap I=(s ; t) \bigcap(r-\delta ; r+\delta) \neq \varnothing$, so, since U and V are both connected components of W, we conclude: $\quad U=V . \quad$ Then: $r \in I \subseteq V=U, \quad$ so $r \in U$.
So, since $r \in\{s, t\}$, we get: $r \in\{s, t\} \bigcap U$. Then $\{s, t\} \bigcap U \neq \varnothing$.
However, $\quad\{s, t\} \cap U=\{s, t\} \bigcap(s ; t)=\varnothing$. Contradiction.
THEOREM 6. Let $c, d, p, r, w \in \mathbb{R}$. Assume: $c<p<w<r<d$.
Let W be an open subset of $(c ; d)$. Assume: $w \in W$ and $p, r \notin W$.
Let U be the connected component of $W \quad$ s.t. $\quad w \in U$.
Then there exist $s, t \in[p ; r] \backslash W \quad$ s.t. $s<t \quad$ and \quad s.t. $U=(s ; t)$.
Proof. We have $w \in U \subseteq W$. Since $w \in W$, we get: $W \neq \varnothing$.
Since W open in $(c ; d)$, and since $(c ; d)$ is bounded and open in \mathbb{R}, we get: $\quad W$ is a bounded open subset of \mathbb{R}.
So, since U is a connected component of W, by Theorem 5 , choose $s, t \in \mathbb{R} \backslash W \quad$ s.t. $s<t \quad$ and \quad s.t. $U=(s ; t)$.
Want: $s, t \in[p ; r]$. Want: $p \leqslant s<t \leqslant r$.
Since $U=(s ; t)$ and $w \in U$, we get: $\quad(s ; w) \subseteq U$.
By hypothesis, $p \notin W$, so, since $(s ; w) \subseteq U \subseteq W$, we get: $p \notin(s ; w)$.
By hypothesis, $p<w$. Since $p<w$ and $p \notin(s ; w)$, we get: $p \leqslant s$.
By choice of s and t, we have: $s<t$. It remains to show: $t \leqslant r$.
Want: $r \geqslant t$. Since $U=(s ; t)$ and $w \in U$, we get: $\quad(w ; t) \subseteq U$.
By hypothesis, $r \notin W$, so, since $(w ; t) \subseteq U \subseteq W$, we get: $r \notin(w ; t)$.
By hypothesis, $w<r$. Since $r>w$ and $r \notin(w ; t)$, we get: $r \geqslant t$.
THEOREM 7. Let $a, b \in \mathbb{R}$. Assume $a<b$.
Let $X \subseteq(a ; b)$. Let $X^{\prime} \subseteq X$. Assume X^{\prime} has non \varnothing interior in X.
Then: $\quad \exists c, d \in[a ; b] \quad$ s.t. $c<d \quad$ and \quad s.t. $\varnothing \neq(c ; d) \bigcap X \subseteq X^{\prime}$.
Proof. Let W denote the interior in X of X^{\prime}. By hypothesis, $W \neq \varnothing$. Also, W is open in X and $W \subseteq X^{\prime}$. Since $W \neq \varnothing$, choose $w \in W$. Since W is open in X, choose an open subset V of \mathbb{R} s.t. $W=V \bigcap X$.

By hypothesis, $X \subseteq(a ; b)$, so: $\quad X=(a ; b) \bigcap X$.
Since V and $(a ; b)$ are open in \mathbb{R}, we get: $V \bigcap(a ; b)$ is open in \mathbb{R}.
Let $U:=V \bigcap(a ; b)$. Then U is open in \mathbb{R}.
Also, $W=V \bigcap X=V \bigcap(a ; b) \bigcap X=U \bigcap X, \quad$ so $W=U \bigcap X$.
Since $w \in W=U \bigcap X$, we get: $w \in U \quad$ and $\quad w \in X$.
Since $w \in U$ and since U is open in \mathbb{R},
choose $c, d \in \mathbb{R} \quad$ s.t. $c<d \quad$ and \quad s.t. $w \in(c ; d) \subseteq U$.
Since $(c ; d) \subseteq U=V \bigcap(a ; b) \subseteq(a ; b)$, we get: $(c ; d) \subseteq(a ; b)$.
It follows that $[c ; d] \subseteq[a ; b]$. Then $c, d \in[a ; b]$.
It remains to show: $\varnothing \neq(c ; d) \bigcap X \subseteq X^{\prime}$.
Since $w \in(c ; d) \quad$ and since $w \in X$, we get: $\quad w \in(c ; d) \bigcap X$.
Then $\varnothing \neq(c ; d) \bigcap X . \quad$ Want: $(c ; d) \bigcap X \subseteq X^{\prime}$.
Since $(c ; d) \subseteq U$, we get: $\quad(c ; d) \bigcap X \subseteq U \bigcap X$.
Recall: $W \subseteq X^{\prime}$ and $W=U \bigcap X$.
Then: $\quad(c ; d) \bigcap X \subseteq U \bigcap X=W \subseteq X^{\prime}$.
DEFINITION 8. $\forall S \subseteq \mathbb{R}, \quad$ let S° denote the interior in \mathbb{R} of S.
DEFINITION 9. Let $f: \mathbb{R} \rightarrow \mathbb{R}$.
Then: $\quad \overline{\mathbb{D}_{f}^{\prime}}:=\left\{x \in\left(\mathbb{D}_{f}\right)^{\circ} \left\lvert\, \lim _{h \rightarrow 0} \frac{(f(x+h))-(f(x))}{h}\right.\right.$ exists $\}$.
Also, the derivative of f is the function $f^{\prime}: \mathbb{D}_{f}^{\prime} \rightarrow \mathbb{R}$

$$
\text { defined by: } \quad \forall x \in \mathbb{D}_{f}^{\prime}, \quad f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{(f(x+h))-(f(x))}{h} .
$$

DEFINITION 10. Let $f: \mathbb{R} \rightarrow \mathbb{R}, \quad j \in \mathbb{N}_{0}$.
Then: $\quad f^{(j)}$ denotes the j th derivative of f.
Also, $\quad \mathbb{D}_{f}^{(j)}:=\mathbb{D}_{f^{(j)}}$ denotes the domain of $f^{(j)}$.
Note: $\quad \forall f: \mathbb{R} \rightarrow \mathbb{R}, \quad f^{(0)}=f$ and $\mathbb{D}_{f}^{(0)}=\mathbb{D}_{f}$.
Also, $\quad \forall f: \mathbb{R} \rightarrow \mathbb{R}, \quad f^{(1)}=f^{\prime}$ and $\mathbb{D}_{f}^{(1)}=\mathbb{D}_{f^{\prime}}=\mathbb{D}_{f}^{\prime}$.
Also, $\quad \forall f: \mathbb{R} \rightarrow \mathbb{R}, \quad \mathbb{D}_{f}^{(0)} \supseteq \mathbb{D}_{f}^{(1)} \supseteq \mathbb{D}_{f}^{(2)} \supseteq \mathbb{D}_{f}^{(3)} \supseteq \cdots$.
In fact, each set is contained in the interior in \mathbb{R} of the preceding one.
DEFINITION 11. Let $f: \mathbb{R} \rightarrow \mathbb{R}$.
Then: $\quad \mathbb{D}_{f}^{(\infty)}:=\mathbb{D}_{f}^{(0)} \bigcap \mathbb{D}_{f}^{(1)} \bigcap \mathbb{D}_{f}^{(2)} \bigcap \mathbb{D}_{f}^{(3)} \bigcap \cdots$.

Note that, $\forall f: \mathbb{R} \longrightarrow \mathbb{R}, \quad \mathbb{D}_{f}^{(0)} \bigcap \mathbb{D}_{f}^{(2)} \bigcap \mathbb{D}_{f}^{(4)} \bigcap \mathbb{D}_{f}^{(6)} \bigcap \cdots=\mathbb{D}_{f}^{(\infty)}$.
Also, $\forall f: \mathbb{R} \rightarrow \mathbb{R}, \forall j \in \mathbb{N}_{0}, \quad \mathbb{D}_{f^{(j)}}^{(\infty)}=\mathbb{D}_{f}^{(\infty)}$.
Convention: $0^{0}=1 . \quad$ Then: $\quad \forall x \in \mathbb{R}, \quad x^{0}=1$.
DEFINITION 12. Let $f: \mathbb{R} \rightarrow \mathbb{R}, \quad k \in \mathbb{N}_{0}, \quad c \in \mathbb{D}_{f}^{(k)}$.
Then: $P_{k}^{f, c}: \mathbb{R} \rightarrow \mathbb{R}$ is defined by:

$$
\forall x \in \mathbb{R}, \quad P_{k}^{f, c}(x)=\sum_{i=0}^{k}\left[\left(f^{(i)}(c)\right) \cdot \frac{(x-c)^{i}}{i!}\right] .
$$

DEFINITION 13. Let $f: \mathbb{R} \rightarrow \mathbb{R}, \quad c \in \mathbb{R}$.
$B y \quad f$ is real-analytic at c, we mean:
$\exists \delta>0$ s.t. $P_{k}^{f, c} \rightarrow f$ pointwise on $(c-\delta ; c+\delta)$, as $k \rightarrow \infty$.
It is well-known that: $\forall f: \mathbb{R} \rightarrow \mathbb{R}, \quad \forall c \in \mathbb{R}$,

$$
(f \text { is real-analytic at } c) \Rightarrow\left(c \in \mathbb{D}_{f}^{(\infty)}\right) .
$$

DEFINITION 14. Let $f: \mathbb{R} \rightarrow \mathbb{R}, \quad S \subseteq \mathbb{R}$.
$B y f$ is real-analytic on S, we mean:
$\forall x \in S, \quad f$ is real-analytic at x.
THEOREM 15. Let $\quad \sigma, \tau: \mathbb{R} \rightarrow \mathbb{R}, \quad I \subseteq \mathbb{R}, \quad q \in I$.
Assume: $\quad I$ is an interval.
Assume: $\quad \sigma$ and τ are both real-analytic on I.
Assume: $\quad \forall j \in \mathbb{N}_{0}, \quad \sigma^{(j)}(q)=\tau^{(j)}(q)$.
Then: $\quad \sigma=\tau$ on I.
Theorem 15 is well-known. Its proof is omitted.
THEOREM 16. Let $\beta_{0}, \beta_{1}, \beta_{2}, \ldots \in \mathbb{R}$. Let $c \in \mathbb{R}$.
Assume $\left\{\beta_{0}, \beta_{1}, \beta_{2}, \ldots\right\}$ is bounded.
Define $\phi: \mathbb{R} \rightarrow \mathbb{R}$ by: $\quad \forall x \in \mathbb{R}, \quad \phi(x)=\sum_{i=0}^{\infty}\left[\beta_{i} \cdot \frac{(x-c)^{i}}{i!}\right]$.
Then: ϕ is real-analytic on \mathbb{R}.
Also, $\quad \forall j \in \mathbb{N}_{0}, \quad \forall x \in \mathbb{R}, \quad \phi^{(j)}(x)=\sum_{i=0}^{\infty}\left[\beta_{i+j} \cdot \frac{(x-c)^{i}}{i!}\right]$.
Theorem 16 is well-known. Its proof is omitted.
DEFINITION 17. Let $f: \mathbb{R} \rightarrow \mathbb{R}, \quad x \in \mathbb{R}, \quad M \geqslant 0$.
By f has M-BD at x, we mean:

$$
x \in \mathbb{D}_{f}^{(\infty)} \quad \text { and } \quad \forall j \in \mathbb{N}_{0}, \quad\left|f^{(j)}(x)\right| \leqslant M
$$

By f has M-BED at x, we mean:

$$
x \in \mathbb{D}_{f}^{(\infty)} \quad \text { and } \quad \forall j \in \mathbb{N}_{0}, \quad\left|f^{(2 j)}(x)\right| \leqslant M
$$

BD stands for "bounded derivatives".
BED stands for "bounded even derivatives".
DEFINITION 18. Let $f: \mathbb{R} \rightarrow \mathbb{R}, \quad x \in \mathbb{R}$.
By f has BD at x, we mean:
$\exists M \geqslant 0 \quad$ s.t. $\quad f$ has $M-B D$ at x.
By f has BED at x, we mean:
$\exists M \geqslant 0 \quad$ s.t. $\quad f$ has $M-B E D$ at x.
Note: $\forall f: \mathbb{R} \rightarrow \mathbb{R}, \forall x \in \mathbb{R}$,

$$
(f \text { has } \mathrm{BD} \text { at } x) \Rightarrow(f \text { has BED at } x) \Rightarrow\left(x \in \mathbb{D}_{f}^{(\infty)}\right)
$$

DEFINITION 19. Let $f: \mathbb{R} \rightarrow \mathbb{R}, \quad S \subseteq \mathbb{R}, \quad M \geqslant 0$.
By f has M-BD on S, we mean:
$\forall x \in S, \quad f$ has $M-B D$ at x.
By f has M-BED on S, we mean:
$\forall x \in S, \quad f$ has $M-B E D$ at x.
DEFINITION 20. Let $f: \mathbb{R} \rightarrow \mathbb{R}, \quad S \subseteq \mathbb{R}$.
By f has PBD on S, we mean:
$\forall x \in S, \quad f$ has $B D$ at x.
By f has PBED on S, we mean:
$\forall x \in S, \quad f$ has BED at x.
By f has UBD on S, we mean:
$\exists M \geqslant 0$ s.t. f has $M-B D$ on S.
By f has UBED on S, we mean:
$\exists M \geqslant 0 \quad$ s.t. $\quad f$ has $M-B E D$ on S.
PBD stands for "pointwise bounded derivatives".
PBED stands for "pointwise bounded even derivatives".
UBD stands for "uniformly bounded derivatives".
UBED stands for "uniformly bounded even derivatives".
DEFINITION 21. Let $f: \mathbb{R} \rightarrow \mathbb{R}$.
Then $\mathrm{BD}_{f}:=\left\{x \in \mathbb{D}_{f}^{(\infty)} \mid f\right.$ has $B D$ at $\left.x\right\}$.

DEFINITION 22. Let $f: \mathbb{R} \rightarrow \mathbb{R}, \quad c \in \mathrm{BD}_{f}$.
Then: $P_{\infty}^{f, c}: \mathbb{R} \rightarrow \mathbb{R}$ is defined by:

$$
\forall x \in \mathbb{R}, \quad P_{\infty}^{f, c}(x)=\sum_{i=0}^{\infty}\left[\left(f^{(i)}(c)\right) \cdot \frac{(x-c)^{i}}{i!}\right] .
$$

THEOREM 23. Let $f: \mathbb{R} \longrightarrow \mathbb{R}, \quad c \in \mathrm{BD}_{f}, \quad g=P_{\infty}^{f, c}$.
Then: g is real-analytic on $\mathbb{R} . \quad$ Also: $\forall j \in \mathbb{N}_{0}, \quad f^{(j)}(c)=g^{(j)}(c)$.
Proof. For all $i \in \mathbb{N}_{0}, \quad$ let $\beta_{i}:=f^{(i)}(c)$.
Since $c \in \mathrm{BD}_{f}$, we get: $\left\{\beta_{0}, \beta_{1}, \beta_{2}, \ldots\right\}$ is bounded.
Since $g=P_{\infty}^{f, c}$, we get: $\quad \forall x \in \mathbb{R}, \quad g(x)=\sum_{i=0}^{\infty}\left[\beta_{i} \cdot \frac{(x-c)^{i}}{i!}\right]$.
Then, by Theorem 16, we get: g is real-analytic on \mathbb{R}.
It remains to show: $\forall j \in \mathbb{N}_{0}, \quad f^{(j)}(c)=g^{(j)}(c)$.
Given $j \in \mathbb{N}_{0}, \quad$ want: $f^{(j)}(c)=g^{(j)}(c) . \quad$ Want: $g^{(j)}(c)=\beta_{j}$.
By Theorem 16, we get: $\quad g^{(j)}(c)=\sum_{i=0}^{\infty}\left(\beta_{i+j} \cdot \frac{(c-c)^{i}}{i!}\right)$.
Then $g^{(j)}(c)=\sum_{i=0}^{\infty}\left(\beta_{i+j} \cdot \frac{0^{i}}{i!}\right)=\left[\beta_{0+j} \cdot \frac{0^{0}}{0!}\right]+\left[\sum_{i=1}^{\infty}\left(\beta_{i+j} \cdot \frac{0^{i}}{i!}\right)\right]$.
Then $g^{(j)}(c)=\left[\beta_{j} \cdot 1\right]+\left[\sum_{i=1}^{\infty}\left(\beta_{i+j} \cdot 0\right)\right]=\beta_{j}+0=\beta_{j}$.
THEOREM 24. Let $f: \mathbb{R} \rightarrow \mathbb{R}, \quad B \subseteq \mathbb{R}, \quad c, x \in B, \quad M \geqslant 0$. Assume: B is an interval. Assume: f has $M-B D$ on B.
Let $j \in \mathbb{N}_{0}$. Then: $\left|(f(x))-\left(P_{j}^{f, c}(x)\right)\right| \leqslant M \cdot \frac{|x-c|^{j+1}}{(j+1)!}$.
Proof. Since f has M - BD on B, we get: $B \subseteq \mathbb{D}_{f}^{(\infty)}$.
By Taylor's Theorem, choose ξ strictly between c and x s.t.

$$
f(x)=\left(P_{j}^{f, c}(x)\right)+\left(\left(f^{(j+1)}(\xi)\right) \cdot \frac{(x-c)^{j+1}}{(j+1)!}\right) .
$$

Then: $\quad(f(x))-\left(P_{j}^{f, c}(x)\right)=\left(f^{(j+1)}(\xi)\right) \cdot \frac{(x-c)^{j+1}}{(j+1)!}$.
Then: $\quad\left|(f(x))-\left(P_{j}^{f, c}(x)\right)\right|=\left|f^{(j+1)}(\xi)\right| \cdot \frac{\left.|x-c|\right|^{j+1}}{(j+1)!}$.
Since B is an interval and $c, x \in B$, we get: $\quad \xi \in B$.
So, since f has M-BD on B, we get: $\quad\left|f^{(j+1)}(\xi)\right| \leqslant M$.

Then: $\quad\left|(f(x))-\left(P_{j}^{f, c}(x)\right)\right| \leqslant M \cdot \frac{\left.|x-c|\right|^{j+1}}{(j+1)!}$.
DEFINITION 25. Let $f: \mathbb{R} \rightarrow \mathbb{R}, \quad x \in \mathbb{R}$.
By f has UBD near x, we mean:
$\exists \delta>0$ s.t. f has UBD on $(x-\delta ; x+\delta)$.
THEOREM 26. Let $f: \mathbb{R} \rightarrow \mathbb{R}, \quad U \subseteq \mathbb{R}$.
Assume: $\forall x \in U, f$ has UBD near x.
Then: $\quad f$ is real-analytic on U.
Proof. Given $c \in U, \quad$ want: f is real-analytic at c.
Want: $\exists \delta>0$ s.t. $P_{j}^{f, c} \rightarrow f$ pointwise on $(c-\delta ; c+\delta)$, as $j \rightarrow \infty$.
Since $c \in U$, by hypothesis, f has UBD near c, so
choose $\delta>0 \quad$ s.t. $\quad f$ has UBD on $(c-\delta ; c+\delta)$.
Want: $P_{j}^{f, c} \rightarrow f$ pointwise on $(c-\delta ; c+\delta)$, as $j \rightarrow \infty$.
Let $B:=(c-\delta ; c+\delta)$.
Then: B is an interval and $c \in B$ and f has UBD on B.
Want: $P_{j}^{f, c} \rightarrow f$ pointwise on B, as $j \rightarrow \infty$.
Given $x \in B$, want: $P_{j}^{f, c}(x) \rightarrow f(x)$, as $j \rightarrow \infty$.
Want: $\left|(f(x))-\left(P_{j}^{f, c}(x)\right)\right| \rightarrow 0$, as $j \rightarrow \infty$.
Since f has UBD on B, choose $M \geqslant 0$ s.t. f has M-BD on B.
Then, by Theorem 24, $\forall j \in \mathbb{N}_{0},\left|(f(x))-\left(P_{j}^{f, c}(x)\right)\right| \leqslant M \cdot \frac{|x-c|^{j+1}}{(j+1)!}$.
So, since $\quad M \cdot \frac{|x-c|^{j+1}}{(j+1)!} \rightarrow 0, \quad$ as $j \rightarrow \infty$,
we conclude: $\quad\left|(f(x))-\left(P_{j}^{f, c}(x)\right)\right| \rightarrow 0$, as $j \rightarrow \infty$.
THEOREM 27. Let $\quad f, g: \mathbb{R} \rightarrow \mathbb{R}, \quad r, s, t \in \mathbb{R}$.
Assume: $s<t$ and $r \in[s ; t]$.
Assume: $\quad r \in \mathbb{D}_{f}^{(\infty)} \bigcap \mathbb{D}_{g}^{(\infty)} \quad$ and $\quad(s ; t) \subseteq \mathbb{D}_{f}^{(\infty)} \bigcap \mathbb{D}_{g}^{(\infty)}$.
Assume: $\quad f=g$ on $(s ; t)$.
Then: $\quad \forall j \in \mathbb{N}_{0}, \quad f^{(j)}(r)=g^{(j)}(r)$.
Proof. Given $j \in \mathbb{N}_{0}$, want: $f^{(j)}(r)=g^{(j)}(r)$.
Since $f=g$ on $(s ; t)$, we get: $f^{(j)}=g^{(j)}$ on $(s ; t)$.
Let $\quad \phi:=f^{(j)} \quad$ and $\quad \psi:=g^{(j)}$.
Then: $\quad \phi=\psi$ on $(s ; t) . \quad$ Want: $\phi(r)=\psi(r)$.
We have: $\quad \mathbb{D}_{\phi}^{(\infty)}=\mathbb{D}_{f}^{(\infty)} \quad$ and $\quad \mathbb{D}_{\psi}^{(\infty)}=\mathbb{D}_{g}^{(\infty)}$.
Then: $\quad r \in \mathbb{D}_{\phi}^{(\infty)} \bigcap \mathbb{D}_{\psi}^{(\infty)} \quad$ and $\quad(s ; t) \subseteq \mathbb{D}_{\phi}^{(\infty)} \bigcap \mathbb{D}_{\psi}^{(\infty)}$.

Since $r \in \mathbb{D}_{\phi}^{(\infty)} \bigcap \mathbb{D}_{\psi}^{(\infty)} \subseteq \mathbb{D}_{\phi}^{(1)} \bigcap \mathbb{D}_{\psi}^{(1)}$,
we get: $\quad \phi$ and ψ are both differentiable at r.
Then: $\quad \phi$ and ψ are both continuous at r.
Since $r \in[s ; t]$, choose $q_{1}, q_{2}, q_{3} \cdots \in(s ; t)$ s.t. $q_{j} \rightarrow r$, as $j \rightarrow \infty$.
By continuity, $\phi\left(q_{j}\right) \rightarrow \phi(r)$, as $j \rightarrow \infty$ and $\psi\left(q_{j}\right) \rightarrow \psi(r)$, as $j \rightarrow \infty$.
Since $\phi=\psi$ on $(s ; t)$, we get: $\forall j \in \mathbb{N}, \quad \phi\left(q_{j}\right)=\psi\left(q_{j}\right)$.
So, letting $j \rightarrow \infty$, we get: $\quad \phi(r)=\psi(r)$.
THEOREM 28. Let $f: \mathbb{R} \rightarrow \mathbb{R}, \quad s, t \in \mathbb{R}, \quad M \geqslant 0$.
Assume: $s<t$. Assume: $\forall x \in(s ; t), f$ has UBD near x.
Let $r \in[s ; t]$. Assume: f has M-BD at r.
Let $N:=M \cdot e^{t-s} . \quad \quad$ Then: $\quad f$ has $N-B D$ on $(s ; t)$.
Proof. Let $c:=(s+t) / 2$. Then $c \in(s ; t)$.
So, by hypothesis, we get: f has UBD near c.
Then f has BD at c. Then $c \in \mathrm{BD}_{f}$. Let $g:=P_{\infty}^{f, c}$.
By Theorem 23, $\quad g$ is real-analytic on \mathbb{R}.
Then $\mathbb{D}_{g}^{(\infty)}=\mathbb{R}$, so: $\quad r \in \mathbb{D}_{g}^{(\infty)} \quad$ and $\quad(s ; t) \subseteq \mathbb{D}_{g}^{(\infty)}$.
By hypothesis, f has M - BD at r, so we get: $\quad r \in \mathbb{D}_{f}^{(\infty)}$.
By hypothesis, we have: $\forall x \in(s ; t), \quad f$ has UBD near x.
So, by Theorem 26, f is real-analytic on $(s ; t)$. Then: $(s ; t) \subseteq \mathbb{D}_{f}^{(\infty)}$.
Then: $\quad r \in \mathbb{D}_{f}^{(\infty)} \bigcap \mathbb{D}_{g}^{(\infty)} \quad$ and $\quad(s ; t) \subseteq \mathbb{D}_{f}^{(\infty)} \bigcap \mathbb{D}_{g}^{(\infty)}$.
By Theorem 23, we get: $\forall j \in \mathbb{N}_{0}, \quad f^{(j)}(c)=g^{(j)}(c)$.
So, since $c \in(s ; t)$ and since f and g are both real-analytic on $(s ; t)$, by Theorem 15, we get: $f=g$ on $(s ; t)$.
Then, by Theorem 27, we get: $\forall j \in \mathbb{N}_{0}, \quad f^{(j)}(r)=g^{(j)}(r)$.
By hypothesis, f has M - BD at r, so f has BD at r. Then $r \in \mathrm{BD}_{f}$.
Let $h:=P_{\infty}^{f, r}$. Then, by Theorem $23, h$ is real-analytic on \mathbb{R}.
Also, by Theorem 23, $\forall j \in \mathbb{N}_{0}, \quad f^{(j)}(r)=h^{(j)}(r)$.
Since $\quad \forall j \in \mathbb{N}_{0}, \quad g^{(j)}(r)=f^{(j)}(r)=h^{(j)}(r)$.
and since $\quad g$ and h are both real-analytic on \mathbb{R}, by Theorem 15, we get: $g=h$ on \mathbb{R}.
So, since $f=g$ on $(s ; t)$, we get: $f=h$ on $(s ; t)$.
It therefore suffices to show: h has $N-\mathrm{BD}$ on $(s ; t)$.
Given $u \in(s ; t)$, want: h has $N-\mathrm{BD}$ at u.
Given $j \in \mathbb{N}_{0}$, want: $\left|h^{(j)}(u)\right| \leqslant N . \quad$ By hypothesis, $r \in[s ; t]$.
Since $r, u \in[s ; t]$, we get: $|u-r| \leqslant t-s$. Then $e^{|u-r|} \leqslant e^{t-s}$.
So, since $M \geqslant 0$, we get: $M \cdot e^{|u-r|} \leqslant M \cdot e^{t-s}$.

By hypothesis, f has M - BD at r, so: $\quad \forall i \in \mathbb{N}_{0}, \quad\left|f^{(i)}(r)\right| \leqslant M$.
Since $h=P_{\infty}^{f, r}$, we get: $\quad \forall x \in \mathbb{R}, h(x)=\sum_{i=0}^{\infty}\left[\left(f^{(i)}(r)\right) \cdot \frac{(x-r)^{i}}{i!}\right]$.
Then, by Theorem 16, we have: $\forall x \in \mathbb{R}$,

$$
\begin{aligned}
h^{(j)}(x) & =\sum_{i=0}^{\infty}\left[\left(f^{(i+j)}(r)\right) \cdot \frac{(x-r)^{i}}{i!}\right] \\
\left|h^{(j)}(u)\right| & \leqslant \sum_{i=0}^{\infty}\left[\left|f^{(i+j)}(r)\right| \cdot \frac{|u-r|^{i}}{i!}\right] \\
& \leqslant \sum_{i=0}^{\infty}\left[M \cdot \frac{|u-r|^{i}}{i!}\right]=M \cdot\left[\sum_{i=0}^{\infty} \frac{|u-r|^{i}}{i!}\right] \\
& =M \cdot e^{|u-r|} \leqslant M \cdot e^{t-s}=N .
\end{aligned}
$$

THEOREM 29. Let $I \subseteq \mathbb{R}, \quad f: \mathbb{R} \rightarrow \mathbb{R}$.
Assume: I is a non \varnothing bounded open interval.
Assume: $\forall x \in I, f$ has UBD near x. Then: f has UBD on I.
Proof. Since I is an interval, we get: I is connected.
Since I is a non \varnothing bounded connected open subset of \mathbb{R}, choose $s, t \in \mathbb{R} \quad$ s.t. $s<t \quad$ and \quad s.t. $I=(s ; t)$.
Then: $\quad \forall x \in(s ; t), \quad f$ has UBD near x.
By Theorem 26, $\quad f$ is real-analytic on $(s ; t)$.
Let $r:=(s+t) / 2$. Then $r \in(s ; t)$. Then $r \in I$ and $r \in[s ; t]$.
Since $r \in I$, by assumption, f has UBD near r.
Then f has BD at r. Choose $M \geqslant 0$ s.t. f has M-BD at r.
Let $N:=M \cdot e^{t-s}$. By Theorem 28, f has $N-\mathrm{BD}$ on $(s ; t)$.
Then f has UBD on $(s ; t)$. Then f has UBD on I.
Theorem 30 and the proof below are both due to T. Tao. See
https://mathoverflow.net/questions/413165/does-iterating-the-derivative-infinitely-many-times-give-a-smooth-function-whene

THEOREM 30. (T. Tao) Let $f: \mathbb{R} \rightarrow \mathbb{R}, \quad a, b \in \mathbb{R}$.
Assume: $a<b$. Let $I:=(a ; b)$.
Assume: f has PBD on I. Then: f has UBD on I.
Proof. Let $V:=\{x \in I \mid f$ has UBD near $x\}$. Then V is open in I.
By Theorem 29, it suffices to show: $\quad V=I$.
Let $X:=I \backslash V$. Then $V=I \backslash X . \quad$ Want: $X=\varnothing$.

Assume: $X \neq \varnothing$. Want: Contradiction.
Since $I=(a ; b)$, we get: $\quad I$ is open in \mathbb{R}.
Since V is open in I and since $X=I \backslash V$, we get: X is closed in I.
Since X is closed in I and since I is open in \mathbb{R},
we get: $\quad X$ is locally compact and Hausdorff.
By hypothesis, f has PBD on I, so, since $X=I \backslash V \subseteq I$,
we get: f has PBD on X.
Then: $X \subseteq \mathbb{D}_{f}^{(\infty)}$. For all $m \in \mathbb{N}$, let $X_{m}:=\{x \in X \mid f$ has m-BD at $x\}$.
By continuity, we get: $\forall m \in \mathbb{N}, X_{m}$ is closed in X.
Since f has PBD on X, we get: $\quad X_{1} \bigcup X_{2} \bigcup X_{3} \bigcup \cdots=X$.
So, since X is non \varnothing and locally compact and Hausdorff, by the Baire Category Theorem,

$$
\text { choose } M \in \mathbb{N} \quad \text { s.t. } \quad X_{M} \text { has non } \varnothing \text { interior in } X .
$$

So, since $X=I \backslash V \subseteq I=(a ; b)$, by Theorem 7, choose $c, d \in[a ; b]$ s.t. $c<d \quad$ and \quad s.t. $\varnothing \neq(c ; d) \bigcap X \subseteq X_{M}$.

Since $\varnothing \neq(c ; d) \bigcap X, \quad$ choose $q \in(c ; d) \bigcap X$.
Then $q \in X_{M}$. Also, $\quad q \in(c ; d) \quad$ and $\quad q \in X$.
Since $q \in(c ; d)$ and \quad since $(c ; d)$ is open in \mathbb{R}, choose $\delta>0 \quad$ s.t. $\quad(q-\delta ; q+\delta) \subseteq(c ; d)$.
Since $q \in X=I \backslash V, \quad$ by definition of V, we get: $\quad f$ does not have UBD near q.
Then: $\quad f$ does not have UBD on $(q-\delta ; q+\delta)$.
So, since $(q-\delta ; q+\delta) \subseteq(c ; d)$, we get: f does not have UBD on $(c ; d)$.
Let $K:=M \cdot e^{d-c}$. Then f does not have K-BD on $(c ; d)$.
Choose $p \in(c ; d) \quad$ s.t. $\quad f$ does not have K-BD at p.
Since $c<d$, we get: $e^{d-c} \geqslant 1$. Then: $K \geqslant M$.
By definition of $X_{M}, \quad f$ has $M-\mathrm{BD}$ on X_{M}.
So, since $K \geqslant M$, we get: $\quad f$ has $K-\mathrm{BD}$ on X_{M}.
So, since f does not have K-BD at p, we get: $\quad p \notin X_{M}$.
Since $I=(a ; b)$, we get: $\quad I$ is open in \mathbb{R}.
Since X_{M} is closed in X and since X is closed in I, we get: $\quad X_{M}$ is closed in $I . \quad$ Then: $I \backslash X_{M}$ is open in I.
So, since I is open in \mathbb{R}, we get: $\quad I \backslash X_{M}$ is open in \mathbb{R}.
Since $c, d \in[a ; b]$, we get: $(c ; d) \subseteq(a ; b)$.
Since $(c ; d) \subseteq(a ; b)=I$, we get: $\quad(c ; d) \backslash X_{M}=(c ; d) \bigcap\left(I \backslash X_{M}\right)$.
Let $W:=(c ; d) \backslash X_{M} . \quad$ Then: $\quad W=(c ; d) \bigcap\left(I \backslash X_{M}\right)$.
Since $(c ; d)$ and $I \backslash X_{M}$ are both open in \mathbb{R},
we get: $\quad(c ; d) \bigcap\left(I \backslash X_{M}\right)$ is open in \mathbb{R}. Then W is open in \mathbb{R}.
Since $p \in(c ; d)$ and $p \notin X_{M}$, we get: $p \in W$. Then: $W \neq \varnothing$.
Since $W=(c ; d) \backslash X_{M} \subseteq(c ; d)$, we get: $W \subseteq(c ; d)$.
Then W is bounded. Then W is a non \varnothing bounded open subset of \mathbb{R}.
Recall: $\quad(c ; d) \bigcap X \subseteq X_{M} . \quad$ Then $[(c ; d) \bigcap X] \backslash X_{M}=\varnothing$.
Then: $\quad W \bigcap X=\left[(c ; d) \backslash X_{M}\right] \bigcap X=[(c ; d) \bigcap X] \backslash X_{M}=\varnothing$.
Then: $W \bigcap X=\varnothing$. Also, $W \subseteq(c ; d) \subseteq(a ; b)=I$, so $W \subseteq I$.
Since $W \subseteq I$ and $W \bigcap X=\varnothing$, we get: $W \subseteq I \backslash X$.
Then $\quad W \subseteq I \backslash X=V, \quad$ so, by definition of V,
we get: $\quad \forall x \in W, \quad f$ has UBD near x.
Let U be the connected component of W s.t. $p \in U$.
Then: $p \in U \subseteq W$. Then: $\forall x \in U, f$ has UBD near x.
By Theorem 5, choose $s, t \in \mathbb{R} \backslash W \quad$ s.t. $s<t \quad$ and s.t. $U=(s ; t)$.
Then: $\quad\{s, t\} \subseteq \mathbb{R} \backslash W$. Recall: $W \subseteq(c ; d)$.
Then $(s ; t)=U \subseteq W \subseteq(c ; d)$, so $(s ; t) \subseteq(c ; d)$, \quad so $[s ; t] \subseteq[c ; d]$.
Then: $s, t \in[c ; d]$. Then: $c \leqslant s<t \leqslant d$.
Then: $t-s \leqslant d-c$. Then: $e^{t-s} \leqslant e^{d-c}$.
Since $M \in \mathbb{N}$, we get: $M>0$. Then: $M \cdot e^{t-s} \leqslant M \cdot e^{d-c}$.
Let $N:=M \cdot e^{t-s}$. Recall: $K=M \cdot e^{d-c}$. Then $N \leqslant K$.
Since $W=(c ; d) \backslash X_{M}$ and since $q \in X_{M}$, we get: $\quad q \notin W$.
So, since $(s ; t)=U \subseteq W$, we get: $q \notin(s ; t)$. Recall: $q \in(c ; d)$.
Since $q \notin(s ; t)$ and since $q \in(c ; d)$, we get: $(s ; t) \neq(c ; d)$.
Since $(s ; t) \neq(c ; d)$, we get: either $s \neq c$ or $t \neq d$.
Recall: $\quad c \leqslant s<t \leqslant d$.
Then: either $c<s<t \leqslant d$ or $c \leqslant s<t<d$.
Then: either $c<s<d$ or $c<t<d$.
Then: either $s \in(c ; d)$ or $t \in(c ; d)$.
Then: $\quad\{s, t\} \bigcap(c ; d) \neq \varnothing$. Choose $r \in\{s, t\} \bigcap(c ; d)$.
Since $r \in\{s, t\} \subseteq \mathbb{R} \backslash W$, we get: $r \in \mathbb{R} \backslash W$. Then: $r \in(c ; d) \backslash W$.
By definition of W, we have: $\quad W=(c ; d) \backslash X_{M}$.
Since $r \in(c ; d) \backslash W=(c ; d) \backslash\left[(c ; d) \backslash X_{M}\right]=(c ; d) \bigcap X_{M} \subseteq X_{M}$, by definition of X_{M}, we get: $\quad f$ has $M-\mathrm{BD}$ at r.
We have $r \in\{s, t\} \subseteq[s ; t], \quad$ so $r \in[s ; t]$.
Recall: $\quad \forall x \in U, f$ has UBD near x.
Then, by Theorem 28, f has N-BD on $(s ; t)$.
So, since $N \leqslant K$, we get: f has K - BD on $(s ; t)$.
So, since $p \in U=(s ; t)$, we get: $\quad f$ has $K-\mathrm{BD}$ at p.
By choice of p, f does not have $K-\mathrm{BD}$ at p. Contradiction.

THEOREM 31. Let $g: \mathbb{R} \rightarrow \mathbb{R}, \quad a, b \in \mathbb{R}, \quad M \geqslant 0$. Assume: $a<b$. Let $I:=(a ; b) . \quad$ Assume: $I \subseteq \mathbb{D}_{g}^{(2)}$.
Assume: $\quad|g| \leqslant M$ on I and $\quad\left|g^{\prime \prime}\right| \leqslant M$ on I.
Let $N:=M \cdot\left(\frac{6}{b-a}+\frac{b-a}{6}\right) . \quad$ Then: $\left|g^{\prime}\right| \leqslant N$ on I.
Proof. Given $x \in I, \quad$ want: $\left|g^{\prime}(x)\right| \leqslant N$.
Let $\delta:=\frac{b-a}{3}$. Then $\delta>0 \quad$ and $\quad \frac{2 M}{\delta}+\frac{M \delta}{2}=N$.
Choose $h \in\{\delta,-\delta\}$ s.t. $x+h \in I$. Then $|h|=\delta$.
By Taylor's Theorem, choose ξ strictly between x and $x+h$ s.t.

$$
g(x+h)=(g(x))+\left(g^{\prime}(x)\right) \cdot h+\left(g^{\prime \prime}(\xi)\right) \cdot \frac{h^{2}}{2} .
$$

Then: $\quad g^{\prime}(x)=\frac{(g(x+h))-(g(x))}{h}-\frac{\left(g^{\prime \prime}(\xi)\right) \cdot h}{2}$.
Then: $\quad\left|g^{\prime}(x)\right| \leqslant \frac{|g(x+h)|+|g(x)|}{|h|}+\frac{\left|g^{\prime \prime}(\xi)\right| \cdot|h|}{2}$.
Since $|g|,\left|g^{\prime \prime}\right| \leqslant M$ on I and since $x, \xi, x+h \in I$, we get:
$|g(x)| \leqslant M \quad$ and $\quad\left|g^{\prime \prime}(\xi)\right| \leqslant M \quad$ and $\quad|g(x+h)| \leqslant M$.
Recall: $|h|=\delta$. Then: $\left|g^{\prime}(x)\right| \leqslant \frac{2 M}{\delta}+\frac{M \delta}{2}=N$.
THEOREM 32. Let $f: \mathbb{R} \rightarrow \mathbb{R}, \quad I \subseteq \mathbb{R}$.
Assume: I is a non \varnothing bounded open interval.
Assume: f has UBED on I. Then: f has UBD on I.
Proof. Want: $\exists N \geqslant 0$ s.t. f has N-BD on I.
Since f has UBED on I, choose $M \geqslant 0$ s.t. f has M-BED on I.
Since I is a non \varnothing bounded open interval, choose $a, b \in \mathbb{R} \quad$ s.t. $a<b \quad$ and \quad s.t. $I=(a ; b)$.
Let $N:=M \cdot\left(\frac{6}{b-a}+\frac{b-a}{6}\right)$. Then $M \leqslant N$. Then $N \geqslant 0$.
Want: f has N-BD on I. Given $x \in I$, want: f has N-BD at x. Given $j \in \mathbb{N}_{0}$, want: $\left|f^{(j)}(x)\right| \leqslant N$.

Case 1: j is even.
Proof in Case 1:
Since j is even, by choice of M, we have: $\quad\left|f^{(j)}\right| \leqslant M$ on I.
So, since $x \in I$, we get: $\left|f^{(j)}(x)\right| \leqslant M$. Then $\left|f^{(j)}(x)\right| \leqslant M \leqslant N$.

End of proof in Case 1.

Case 2: j is odd.
Proof in Case 2:
Since $j-1$ and $j+1$ are even, by the choice of M, we have:

$$
\left|f^{(j-1)}\right| \leqslant M \text { on } I \quad \text { and } \quad\left|f^{(j+1)}\right| \leqslant M \text { on } I .
$$

By hypothesis, f has UBED on I, so: $\quad I \subseteq \mathbb{D}_{f}^{(\infty)}$.
Let $g:=f^{(j-1)}$. Then $I \subseteq \mathbb{D}_{f}^{(\infty)}=\mathbb{D}_{g}^{(\infty)} \subseteq \mathbb{D}_{g}^{(2)}$, so $I \subseteq \mathbb{D}_{g}^{(2)}$.
Also, $\quad g^{\prime}=f^{(j)} \quad$ and $\quad g^{\prime \prime}=f^{(j+1)}$.
Then: $\quad|g| \leqslant M$ on $I \quad$ and $\quad\left|g^{\prime \prime}\right| \leqslant M$ on I.
Then, by Theorem 31, we get: $\left|g^{\prime}\right| \leqslant N$ on I.
So, since $x \in I$, we get: $\left|g^{\prime}(x)\right| \leqslant N$. Then $\left|f^{(j)}(x)\right|=\left|g^{\prime}(x)\right| \leqslant N$.
End of proof in Case 2.
THEOREM 33. Let $f: \mathbb{R} \rightarrow \mathbb{R}, \quad c, d \in \mathbb{R}$.
Assume $c<d$. Let $J:=(c ; d)$. Assume f has PBED on J.
Then \exists non \varnothing open subintervals $U_{1}, U_{2}, U_{3}, \ldots$ of J

$$
\begin{array}{lll}
\text { s.t. } & \forall i \in \mathbb{N}, \quad f \text { has } U B D \text { on } U_{i} & \text { and } \\
\text { s.t. } & U_{1} \bigcup U_{2} \bigcup U_{3} \bigcup \cdots \text { is dense in } J . &
\end{array}
$$

Proof. Since J is second-countable,
choose a countable base \mathcal{W} for J s.t., $\quad \forall W \in \mathcal{W}, \quad W \neq \varnothing$.
Since \mathcal{W} is countable, it suffices to prove:
$\forall W \in \mathcal{W}, \quad \exists$ non \varnothing open subinterval U of J

$$
\text { s.t. } U \subseteq W \quad \text { and } \quad \text { s.t. } f \text { has UBD on } U \text {. }
$$

Given $W \in \mathcal{W}, \quad$ want: \exists non \varnothing open subinterval U of J

$$
\text { s.t. } U \subseteq W \quad \text { and } \quad \text { s.t. } f \text { has UBD on } U \text {. }
$$

Since $W \in \mathcal{W}$, we get: $W \neq \varnothing$ and $\quad W \subseteq J$.
Since $W \in \mathcal{W}$, we get: W is open in J.
So, since J is open in \mathbb{R}, we get: W is open in \mathbb{R}.
Then: W is locally compact and Hausdorff.
For all $m \in \mathbb{N}$, let $C_{m}:=\{x \in W \mid f$ has m-BED at $x\}$.
Since f has PBED on J and since $W \subseteq J$, we get: f has PBED on W.
Then $W \subseteq \mathbb{D}_{f}^{(\infty)}$. So, by continuity, $\forall m \in \mathbb{N}, C_{m}$ is closed in W.
Since f has PBED on W, we get: $\quad C_{1} \bigcup C_{2} \bigcup C_{3} \bigcup \cdots=W$.
So, since W is non \varnothing and locally compact and Hausdorff, by the Baire Category Theorem,

$$
\text { choose } M \in \mathbb{N} \quad \text { s.t. } \quad C_{M} \text { has non } \varnothing \text { interior in } W .
$$

Then, since W is open in \mathbb{R}, we get: $\quad C_{M}$ has non \varnothing interior in \mathbb{R}.

So choose $s, t \in \mathbb{R} \quad$ s.t. $s<t \quad$ and \quad s.t. $(s ; t) \subseteq C_{M}$.
Let $U:=(s ; t)$. Then: U is a non \varnothing open interval and $U \subseteq C_{M}$.
Since $U \subseteq C_{M} \subseteq W \subseteq J$ and since U is a non \varnothing open interval,
we get: $\quad U$ is a non \varnothing open subinterval of J.
As $U \subseteq C_{M} \subseteq W$, it remains only to show: f has UBD on U.
Since $U \subseteq C_{M}$, by definition of C_{M}, we get: f has M-BED on U.
Then f has UBED on U. Then, by Theorem 32, f has UBD on U.
DEFINITION 34. Let $f: \mathbb{R} \rightarrow \mathbb{R}$.
Then $\mathrm{IBD}_{f}:=\left(\mathrm{BD}_{f}\right)^{\circ}$ denotes the interior in \mathbb{R} of BD_{f}.
THEOREM 35. Let $f: \mathbb{R} \rightarrow \mathbb{R}, \quad c, d \in \mathbb{R}$.
Assume $c<d . \quad$ Let $J:=(c ; d)$.
Assume f has $P B E D$ on J. Then $\mathrm{IBD}_{f} \bigcap J$ is dense in J.
Proof. By Theorem 33,
choose non \varnothing open subintervals $U_{1}, U_{2}, U_{3}, \ldots$ of J
s.t. $\forall i \in \mathbb{N}, f$ has UBD on $U_{i} \quad$ and
s.t. $\quad U_{1} \bigcup U_{2} \bigcup U_{3} \bigcup \cdots$ is dense in J.

Then: $\quad \forall i \in \mathbb{N}, \quad$ since f has UBD on U_{i}, it follows that f has BD on U_{i}, so $U_{i} \subseteq \mathrm{BD}_{f}$.
Let $U:=U_{1} \bigcup U_{2} \bigcup U_{3} \bigcup \cdots$. Then $U \subseteq \mathrm{BD}_{f}$, so $U^{\circ} \subseteq\left(B D_{f}\right)^{\circ}$.
Since $\quad \forall i \in \mathbb{N}, U_{i} \subseteq J, \quad$ we get: $\quad U \subseteq J$.
Since $\forall i \in \mathbb{N}, U_{i}$ is open in J, we get: U is open in J.
So, since J is open in \mathbb{R}, we get: U is open in \mathbb{R}. Then $U^{\circ}=U$.
Since $U_{1} \bigcup U_{2} \bigcup U_{3} \bigcup \cdots$ is dense in J, we get: U is dense in J.
Since $U=U^{\circ} \subseteq\left(\mathrm{BD}_{f}\right)^{\circ}=\mathrm{IBD}_{f} \quad$ and since $U \subseteq J$,
we get: $\quad U \subseteq \operatorname{IBD}_{f} \bigcap J$.
So, since U is dense in J, we get: $\operatorname{IBD}_{f} \bigcap J$ is dense in J.
THEOREM 36. Let $\phi: \mathbb{R} \rightarrow \mathbb{R}, s, t \in \mathbb{R}, L \geqslant 0$. Assume: $s<t$. Assume: $\quad(s ; t) \subseteq \mathbb{D}_{\phi}^{(2)} \quad$ and $\quad \phi$ is continuous both at s and at t.
Assume: $\quad \phi^{\prime \prime}>0$ on $(s ; t) . \quad$ Assume: $\phi \leqslant L$ on $\{s, t\}$.
Then: $\quad \phi<L$ on $(s ; t)$.
Theorem 36 is a special case of the Maximum Principle.
This particular special case follows from the Mean Value Theorem.
We omit the proof.
THEOREM 37. Let $g: \mathbb{R} \rightarrow \mathbb{R}, \quad s, t \in \mathbb{R}, \quad L \geqslant 0$.
Assume: $s<t$ and $t-s \leqslant 1$.

Assume: $\quad(s ; t) \subseteq \mathbb{D}_{g}^{(2)} \quad$ and g is continuous both at s and at t. Assume: $|g| \leqslant L$ on $\{s, t\}$. Let $w \in(s ; t)$. Assume $|g(w)| \geqslant 2 L$.
Then: $\exists x \in(s ; t)$ s.t. $\left|g^{\prime \prime}(x)\right| \geqslant 8 L$.
Proof. Choose $h \in\{g,-g\}$ s.t. $|g(w)|=h(w)$. Then $h(w) \geqslant 2 L$.
Also, $\quad|h|=|g| \quad$ and $\quad\left|h^{\prime}\right|=\left|g^{\prime}\right| \quad$ and $\quad\left|h^{\prime \prime}\right|=\left|g^{\prime \prime}\right|$.
Also, $\quad(s ; t) \subseteq \mathbb{D}_{h}^{(2)} \quad$ and $\quad h$ is continuous both at s and at t.
Want: $\exists x \in(s ; t)$ s.t. $\left|h^{\prime \prime}(x)\right| \geqslant 8 L$.
Assume: $\left|h^{\prime \prime}\right|<8 L$ on $(s ; t)$. Want: Contradiction.
We have: $-8 L<h^{\prime \prime}<8 L$ on $(s ; t)$.
Since $h^{\prime \prime}>-8 L$ on $(s ; t)$, we get: $8 L+h^{\prime \prime}>0$ on $(s ; t)$.
Define $Q: \mathbb{R} \rightarrow \mathbb{R}$ by: $\quad \forall x \in \mathbb{R}, \quad Q(x)=4 L \cdot(x-s) \cdot(x-t)$.
Then: $\quad Q^{\prime \prime}=8 L$ on \mathbb{R}. Then: $(Q+h)^{\prime \prime}>0$ on (s, t).
Let $\phi:=Q+h$.
Then $\phi^{\prime \prime}>0$ on $(s ; t)$.
Since $Q=0$ on $\{s, t\} \quad$ and since $h \leqslant|h|=|g| \leqslant L$ on $\{s, t\}$, we get: $Q+h \leqslant L$ on $\{s, t\}$. Then: $\phi \leqslant L$ on $\{s, t\}$.
Also, $\quad(s ; t) \subseteq \mathbb{D}_{\phi}^{(2)} \quad$ and $\quad \phi$ is continuous both at s and at t.
Then, by Theorem 36 (Maximum Principle), we get: $\phi<L$ on $(s ; t)$.
By hypothesis, we have: $w \in(s ; t)$. Then $\phi(w)<L$.
Since $\quad(Q(w))+(h(w))=\phi(w)<L, \quad$ we get: $\quad h(w)<L-(Q(w))$.
Let $c:=(s+t) / 2$. The minimum value of Q is $Q(c)$.
Then $Q(w) \geqslant Q(c)$. We calculate: $\quad Q(c)=-L \cdot(t-s)^{2}$.
Since $0<t-s \leqslant 1$, we get: $(t-s)^{2} \leqslant 1$.
So, since $L \geqslant 0$, we get: $\quad-L \cdot(t-s)^{2} \geqslant-L$.
Then $\quad Q(w) \geqslant Q(c)=-L \cdot(t-s)^{2} \geqslant-L, \quad$ so $\quad-(Q(w)) \leqslant L$.
Then $h(w)<L-(Q(w)) \leqslant L+L=2 L, \quad$ so $\quad h(w)<2 L$.
Recall, from the start of the proof: $h(w) \geqslant 2 L$. Contradiction.
THEOREM 38. Let $f: \mathbb{R} \rightarrow \mathbb{R}, \quad s, t \in \mathbb{R}, \quad M>0$.
Assume $s<t . \quad$ Assume $t-s \leqslant 1$.
Assume f has M-BED on $\{s, t\}$. Assume f has UBED on $(s ; t)$.
Then f has $2 M-B E D$ on $(s ; t)$.
Proof. Given $p \in(s ; t)$, want: f has $2 M$-BED at p.
Given $j \in \mathbb{N}_{0}, \quad$ want: $\left|f^{(2 j)}(p)\right| \leqslant 2 M$.
Assume: $\left|f^{(2 j)}(p)\right|>2 M . \quad$ Want: Contradiction.
Since $\left|f^{(2 j)}(p)\right|>2 M$, we get: $\quad\left|f^{(2 j)}(p)\right| \geqslant 2 M$.
For all $i \in \mathbb{N}_{0}$, let $\quad L_{i}:=4^{i} \cdot M . \quad$ Then: $\quad \forall i \in \mathbb{N}_{0}, \quad L_{i} \geqslant 0$.
Also, $\quad L_{0}=M \quad$ and $\quad \forall i \in \mathbb{N}_{0}, \quad L_{i+1}=4 L_{i}$.
For all $i \in \mathbb{N}_{0}$, let $\quad B_{i}:=\left\{q \in(s ; t)\right.$ s.t. $\left.\left|f^{(2 j+2 i)}(q)\right| \geqslant 2 L_{i}\right\}$.

Claim: $\quad \forall i \in \mathbb{N}_{0}, \quad B_{i} \neq \varnothing$.
Proof of Claim: We have $\left|f^{(2 j+2 \cdot 0)}(p)\right|=\left|f^{(2 j)}(p)\right| \geqslant 2 M=2 L_{0}$.
Also, $p \in(s ; t)$. Then $p \in B_{0}$. Then $B_{0} \neq \varnothing$.
We proceed by mathematical induction:
Given $i \in \mathbb{N}_{0}, \quad$ assume $B_{i} \neq \varnothing, \quad$ want: $B_{i+1} \neq \varnothing$.
Choose $w \in B_{i}$. Then $w \in(s ; t)$ and $\left|f^{(2 j+2 i)}(w)\right| \geqslant 2 L_{i}$.
By hypothesis, f has M-BED on $\{s, t\}$, so $s, t \in \mathbb{D}_{f}^{(\infty)}$.
By hypothesis, f has M-BED on $\{s, t\}, \quad$ so $\left|f^{(2 j+2 i)}\right| \leqslant M$ on $\{s, t\}$.
By hypothesis, f has UBED on $(s ; t)$, so $(s ; t) \subseteq \mathbb{D}_{f}^{(\infty)}$.
Let $g:=f^{(2 j+2 i)}$. Then $(s ; t) \subseteq \mathbb{D}_{f}^{(\infty)}=\mathbb{D}_{g}^{(\infty)} \subseteq \mathbb{D}_{g}^{(2)}$, so $(s ; t) \subseteq \mathbb{D}_{g}^{(2)}$.
Since $s, t \in \mathbb{D}_{f}^{(\infty)}=D_{g}^{(\infty)} \subseteq \mathbb{D}_{g}^{(2)} \subseteq \mathbb{D}_{g}^{(1)}$,
we get: $\quad g$ is differentiable both at s and at t.
Then g is continuous both at s and at t.
Also, $\quad|g(w)|=\left|f^{(2 j+2 i)}(w)\right| \geqslant 2 L_{i}$, so $\quad|g(w)| \geqslant 2 L_{i}$.
Also, $\quad|g|=\left|f^{(2 j+2 i)}\right| \leqslant M$ on $\{s, t\}$, so $\quad|g| \leqslant M$ on $\{s, t\}$.
We have: $M \leqslant 4^{i} \cdot M=L_{i}$. Then $|g| \leqslant L_{i}$ on $\{s, t\}$.
By Theorem 37, choose $x \in(s ; t)$ s.t. $\left|g^{\prime \prime}(x)\right| \geqslant 8 L_{i}$.
Since $g^{\prime \prime}=\left(f^{(2 j+2 i)}\right)^{\prime \prime}=f^{(2 j+2 i+2)}=f^{(2 j+2 \cdot(i+1))}$, we get: $\quad\left|f^{(2 j+2 \cdot(i+1))}(x)\right|=\left|g^{\prime \prime}(x)\right|$.
Then $\left|f^{(2 j+2 \cdot(i+1))}(x)\right|=\left|g^{\prime \prime}(x)\right| \geqslant 8 L_{i}=2 \cdot 4 L_{i}=2 L_{i+1}$, so $\quad\left|f^{(2 j+2 \cdot(i+1))}(x)\right| \geqslant 2 L_{i+1}$.
Also, $x \in(s ; t)$. Then $x \in B_{i+1}$. Then $B_{i+1} \neq \varnothing$.
End of proof of Claim.
By hypothesis, $\quad f$ has UBED on $(s ; t)$, so choose $K \geqslant 0$ s.t. f has K-BED on $(s ; t)$.
By hypothesis, $M>0$, so choose $n \in \mathbb{N}_{0}$ s.t. $2 \cdot 4^{n} \cdot M>K$.
By the Claim, $B_{n} \neq \varnothing, \quad$ so choose $z \in B_{n}$.
Then, by definition of B_{n}, we get: $z \in(s ; t)$ and $\left|f^{(2 j+2 n)}(z)\right| \geqslant 2 L_{n}$.
Then $\left|f^{(2 j+2 n)}(z)\right| \geqslant 2 L_{n}=2 \cdot 4^{n} \cdot M>K, \quad$ so $\left|f^{(2 j+2 n)}(z)\right|>K$.
On the other hand, since f has K-BED on $(s ; t)$ and since $z \in(s ; t)$, we get: $\quad\left|f^{(2 j+2 n)}(z)\right| \leqslant K . \quad$ Contradiction.

THEOREM 39. Let $\quad c, d \in \mathbb{R}$. Assume: $c<d$. Let $J:=(c ; d)$.
Let $T \subseteq J . \quad$ Assume: T is finite. \quad Let $q \in T$.
Then: $\quad \exists \delta>0 \quad$ s.t. $\quad(q-\delta ; q) \subseteq J \backslash T$.
The preceding result is basic. Its proof is left as an exercise.

THEOREM 40. Let $f: \mathbb{R} \rightarrow \mathbb{R}, \quad c, d \in \mathbb{R}$.
Assume: $c<d . \quad$ Let $J:=(c ; d) . \quad$ Assume: $J \subseteq \mathbb{D}_{f}^{(\infty)}$.
Let $T:=J \backslash \mathrm{BD}_{f} . \quad$ Assume: $T \neq \varnothing$. Then: T is infinite.
Proof. Assume: T is finite. Want: Contradiction.
Since $T \neq \varnothing$, choose $q \in T$. Then $q \in J$ and $q \notin \mathrm{BD}_{f}$.
By Theorem 39, choose $\delta>0 \quad$ s.t. $\quad(q-\delta ; q) \subseteq J \backslash T$.
Since $(q-\delta ; q) \subseteq J \backslash T \subseteq J$ and since $q \in J, \quad$ we get: $\quad(q-\delta ; q] \subseteq J$.
We have: $\quad(q-\delta ; q) \subseteq J \backslash T=J \backslash\left(J \backslash \mathrm{BD}_{f}\right)=J \bigcap \mathrm{BD}_{f} \subseteq \mathrm{BD}_{f}$,
so $\quad(q-\delta ; q) \subseteq \mathrm{BD}_{f}, \quad$ so $\quad f$ has PBD on $(q-\delta ; q)$.
So, by Tao's Theorem (Theorem 30), we get: f has UBD on $(q-\delta ; q)$.
Choose $M \geqslant 0 \quad$ s.t. $\quad f$ has M-BD on $(q-\delta ; q)$.
So, since $(q-\delta ; q] \subseteq J \subseteq \mathbb{D}_{f}^{(\infty)}$, by continuity, f has M - BD at q.
Then f has BD at q, so $q \in \mathrm{BD}_{f}$. Recall: $q \notin \mathrm{BD}_{f}$. Contradiction.
THEOREM 41. Let $T \subseteq \mathbb{R}, \quad \varepsilon>0$.
Assume: $\quad T$ is bounded and infinite.
Then: $\exists p, q, r \in T \quad$ s.t. $p<q<r \quad$ and \quad s.t. $r-p \leqslant \varepsilon$.
Proof. Since T is bounded and infinite, choose a limit point x of T.
Let $C:=[x-(\varepsilon / 2) ; x+(\varepsilon / 2)]$. Then $C \bigcap T$ is infinite.
Choose $p, q, r \in C \bigcap T$ s.t. $p<q<r$. Want: $r-p \leqslant \varepsilon$.
Since $p, r \in C \bigcap T \subseteq C=[x-(\varepsilon / 2) ; x+(\varepsilon / 2)]$, we get: $r-p \leqslant \varepsilon$.
THEOREM 42. Let $f: \mathbb{R} \rightarrow-\mathbb{R}, \quad a, b \in \mathbb{R}$.
Assume: $a<b$. Let $I:=(a ; b)$.
Assume: f has PBED on I. Then: f has PBD on I.
Proof. Want: $I \subseteq \mathrm{BD}_{f}$. Let $V:=\operatorname{IBD}_{f} \bigcap I$.
Since IBD_{f} is open in \mathbb{R}, we get: V is open in I.
Since $V \subseteq \mathrm{IBD}_{f} \subseteq \mathrm{BD}_{f}, \quad$ it suffices to show: $I \subseteq V$.
Let $X:=I \backslash V$.
Want: $X=\varnothing$.
Assume $X \neq \varnothing$. Want: Contradiction.
Since V is open in I and since $X=I \backslash V$, we get: X is closed in I.
Since $I=(a ; b)$, we get: $\quad I$ is open in \mathbb{R}.
Since X is closed in I and since I is open in \mathbb{R}, we get: $\quad X$ is locally compact and Hausdorff.
By hypothesis, f has PBED on I, so, since $X=I \backslash V \subseteq I$, it follows that: f has PBED on X. Then: $X \subseteq \mathbb{D}_{f}^{(\infty)}$.
For all $m \in \mathbb{N}$, let $X_{m}:=\{x \in X \mid f$ has m-BED at $x\}$.
Then, by continuity, we get: $\forall m \in \mathbb{N}, \quad X_{m}$ is closed in X.

Since f has PBED on X, we get: $\quad X_{1} \bigcup X_{2} \bigcup X_{3} \bigcup \cdots=X$.
So, since X is non \varnothing and locally compact and Hausdorff, by the Baire Category Theorem,

$$
\text { choose } M \in \mathbb{N} \quad \text { s.t. } \quad X_{M} \text { has non } \varnothing \text { interior in } X .
$$

So, since $X=I \backslash V \subseteq I=(a ; b)$, by Theorem 7, choose $c, d \in[a ; b]$

$$
\text { s.t. } c<d \quad \text { and } \quad \text { s.t. } \varnothing \neq(c ; d) \bigcap X \subseteq X_{M} .
$$

Then: $\quad a \leqslant c<d \leqslant b$. Then: $(c ; d) \subseteq(a ; b)$.
Let $J:=(c ; d)$. Then: J is open in \mathbb{R}, \quad so $J^{\circ}=J$.
Also, $J=(c ; d) \subseteq(a ; b)=I$, so: $\quad J \subseteq I$. Then $J \backslash V=J \bigcap(I \backslash V)$.
Since $J \backslash V=J \bigcap(I \backslash V)=J \bigcap X=(c ; d) \bigcap X$,
we get: $\quad J \backslash V=(c ; d) \bigcap X$.
So, since $\quad \varnothing \neq(c ; d) \bigcap X \subseteq X_{M}$, we get: $\varnothing \neq J \backslash V \subseteq X_{M}$.
Since $J \backslash V \neq \varnothing$, we get: $J \nsubseteq V$.
Since $J \nsubseteq V=\mathrm{IBD}_{f} \bigcap I$ and since $J \subseteq I$, we get: $J \nsubseteq \mathrm{IBD}_{f}$.
Since $J^{\circ}=J \nsubseteq \mathrm{IBD}_{f}=\left(\mathrm{BD}_{f}\right)^{\circ}$, we get $J^{\circ} \ddagger\left(\mathrm{BD}_{f}\right)^{\circ}$, and so $J \nsubseteq \mathrm{BD}_{f}$.
Then: $J \backslash \mathrm{BD}_{f} \neq \varnothing$. Let $T:=J \backslash \mathrm{BD}_{f}$. Then $T \neq \varnothing$.
By hypothesis, $\quad f$ has PBED on I, so, since $J \subseteq I$,
it follows that: $\quad f$ has PBED on J. Then $J \subseteq \mathbb{D}_{f}^{(\infty)}$.
Then, by Theorem 40, we get: T is infinite.
Also, $T=J \backslash \mathrm{BD}_{f} \subseteq J=(c ; d)$, so $T \subseteq(c ; d)$. Then T is bounded.
By Theorem 41, choose $p, q, r \in T$ s.t. $p<q<r$ and s.t. $r-p \leqslant 1$.
Then: $\quad p, q, r \in T \subseteq(c ; d)$. Then: $a \leqslant c<p<q<r<d \leqslant b$.
Then: $[p ; r] \subseteq(c ; d) . \quad$ By Theorem 35, $\operatorname{IBD}_{f} \bigcap J$ is dense in J.
Let $W:=\operatorname{IBD}_{f} \bigcap J . \quad$ Then: W is dense in J.
Since $J \subseteq I$, we get: $J=I \bigcap J$. Then $W=J \bigcap \mathrm{IBD}_{f} \bigcap I$.
By definition of V, we have: $V=\operatorname{IBD}_{f} \bigcap I$. Then: $W=J \bigcap V$.
So, since $J \backslash V=J \backslash(J \bigcap V)$, we get: $\quad J \backslash V=J \backslash W$.
Recall: $\quad \varnothing \neq J \backslash V \subseteq X_{M}$.
Since $\quad J \backslash W=J \backslash V \subseteq X_{M}$, we get: $\quad J \backslash W \subseteq X_{M}$.
We have $(p ; r) \subseteq[p ; r] \subseteq(c ; d)=J, \quad$ so $(p ; r) \subseteq J$.
Then: $\quad(p ; r)$ is an open subset of J.
So, since W is dense in J, we get: $W \bigcap(p ; r)$ is dense in $(p ; r)$.
We have $p, q, r \in T=J \backslash \mathrm{BD}_{f}$. Then $p, q, r \notin \mathrm{BD}_{f}$.
Since $p<q<r$, we get: $\quad q \in(p ; r)$.
Since $q \notin \mathrm{BD}_{f}$, we get: f does not have BD at q.
So, since $q \in(p ; r)$, we get: $\quad f$ does not have PBD on $(p ; r)$.
Then f does not have UBD on $(p ; r)$.
Then, by Theorem 32, $\quad f$ does not have UBED on $(p ; r)$.

Then: $\quad f$ does not have $2 M$-BED on $(p ; r)$.
So, since $\quad(p ; r) \subseteq J \subseteq \mathbb{D}_{f}^{(\infty)} \quad$ and
since $W \bigcap(p ; r)$ is dense in $(p ; r)$, by continuity,
we get: $\quad f$ does not have $2 M$-BED on $W \bigcap(p ; r)$.
Choose $w \in W \bigcap(p ; r)$ s.t. f does not have $2 M$-BED at w.
Then: $a \leqslant c<p<w<r<d \leqslant b$. Also, $w \in W$.
By definition of W, we have: $\quad W=\mathrm{IBD}_{f} \bigcap J$.
So, since IBD_{f} is open in \mathbb{R}, we get: W is an open subset of J.
So, since $J=(c ; d)$, we get: W is an open subset of $(c ; d)$.
Since $p, r \notin \mathrm{BD}_{f} \supseteq \mathrm{IBD}_{f} \supseteq \mathrm{IBD}_{f} \bigcap J=W$, we get: $\quad p, r \notin W$.
Let U be the connected component of W s.t. $w \in U$. Then: $w \in U \subseteq W$.
By Theorem 6, choose $s, t \in[p ; r] \backslash W$ s.t. $s<t$ and s.t. $U=(s ; t)$.
Then $p \leqslant s<t \leqslant r$. Since $w \in U=(s ; t)$, we get: $s<w<t$.
Then: $\quad a \leqslant c<p \leqslant s<w<t \leqslant r<d \leqslant b$.
Since $p \leqslant s<t \leqslant r$, we get: $t-s \leqslant r-p$.
So, since $r-p \leqslant 1$, we get: $t-s \leqslant 1$.
Since $(s ; t)=U \subseteq W=\mathrm{IBD}_{f} \bigcap J \subseteq \mathrm{IBD}_{f} \subseteq \mathrm{BD}_{f}$, we get: $\quad f$ has PBD on $(s ; t)$.
Then, by Tao's Theorem (Theorem 30), we get: f has UBD on $(s ; t)$.
Then: f has UBED on $(s ; t)$. Since $M \in \mathbb{N}$, we get: $M>0$.
Recall: $J \backslash W \subseteq X_{M}$ and $J=(c ; d)$ and $\quad[p ; r] \subseteq(c ; d)$.
Since $s, t \in[p ; r] \backslash W \subseteq(c ; d) \backslash W=J \backslash W \subseteq X_{M}$,
by definition of X_{M}, we get: f has M-BED on $\{s, t\}$.
Then, by Theorem 38, we get: f has $2 M$-BED on $(s ; t)$.
So, since $w \in U=(s ; t)$, we get: $\quad f$ has $2 M$-BED at w.
By choice of w, f does not have $2 M$-BED at w. Contradiction.
DEFINITION 43. Let $\quad \mu: \mathbb{R} \rightarrow \mathbb{R}, \quad I \subseteq \mathbb{R}$.
By μ is affine on I, we mean: $I \subseteq \mathbb{D}_{\mu} \quad$ and $\exists m, c \in \mathbb{R}$ s.t. $, \quad \forall x \in I, \quad \mu(x)=m x+c$.

THEOREM 44. Let $\quad \mu: \mathbb{R} \rightarrow \mathbb{R}, \quad a, b \in \mathbb{R}$.
Assume $a<b$. Let $I:=(a ; b)$. Assume: $I \subseteq \mathbb{D}_{\mu}$.
Then:

$$
\begin{aligned}
& (\mu \text { is affine on } I) \\
\Leftrightarrow \quad & \left(\mu^{\prime \prime}=0 \text { on } I\right) \\
\Leftrightarrow \quad & (\forall p, q \in I, \quad \forall t \in[0 ; 1], \\
& \mu((1-t) \cdot p+t \cdot q)=(1-t) \cdot(\mu(p))+t \cdot(\mu(q))) .
\end{aligned}
$$

The preceding result is basic. Its proof is left as an exercise.

THEOREM 45. Let $a, b \in \mathbb{R}$. Assume $a<b$. Let $I:=(a ; b)$.
Let $\lambda_{0}, \lambda_{1}, \lambda_{2} \ldots: I \rightarrow \mathbb{R}$. Assume: $\forall j \in \mathbb{N}, \quad \lambda_{j}$ is affine on I.
Let $\mu: I \rightarrow \mathbb{R}$. Assume: $\lambda_{j} \rightarrow \mu$ pointwise, as $j \rightarrow \infty$.
Then: $\quad \mu$ is affine on I.
Proof. Given $p, q \in I, \quad t \in[0 ; 1], \quad$ want:

$$
\mu((1-t) p+t q)=(1-t) \cdot(\mu(p))+t \cdot(\mu(q))
$$

Since, $\quad \forall j \in \mathbb{N}_{0}, \quad \lambda_{j}$ is affine on I, \quad we get:
$\forall j \in \mathbb{N}_{0}, \quad \lambda_{j}((1-t) p+t q)=(1-t) \cdot\left(\lambda_{j}(p)\right)+t \cdot\left(\lambda_{j}(q)\right)$.
So, letting $j \rightarrow \infty$, by pointwise convergence, we get:

$$
\mu((1-t) p+t q)=(1-t) \cdot(\mu(p))+t \cdot(\mu(q))
$$

THEOREM 46. Let $\quad \mu: \mathbb{R} \rightarrow \mathbb{R}, \quad I \subseteq \mathbb{R}$.
Assume: μ is affine on $I . \quad$ Then: μ is Lipschitz on I.
Proof. Choose $m, c \in \mathbb{R} \quad$ s.t., $\quad \forall x \in I, \quad \mu(x)=m x+c$.
Want: μ is $|m|$-Lipschitz on I.
Given $p, q \in I, \quad$ want: $|(\mu(q))-(\mu(p))| \leqslant|m| \cdot|q-p|$.
We have: $(\mu(q))-(\mu(p))=(m q+c)-(m p+c)=m \cdot(q-p)$.
Then: $|(\mu(q))-(\mu(p))|=|m \cdot(q-p)|=|m| \cdot|q-p|$.
Then: $|(\mu(q))-(\mu(p))| \leqslant|m| \cdot|q-p|$.
THEOREM 47. Let $\quad \phi: \mathbb{R} \rightarrow \mathbb{R}, \quad a, b \in \mathbb{R}, \quad M \geqslant 0$.
Assume: $a<b$. Let $I:=(a ; b)$. Assume: ϕ is M-Lipschitz on I.
Let $c \in I$. Let $M^{\prime}:=|\phi(c)|+M \cdot(b-a)$. Then: $|\phi| \leqslant M^{\prime}$ on I.
Proof. Given $x \in I$, want: $|\phi(x)| \leqslant M^{\prime}$.
Since $c, x \in I=(a ; b)$, we get: $|x-c|<b-a$.
So, since $M \geqslant 0$, we get: $M \cdot|x-c| \leqslant M \cdot(b-a)$.
Since ϕ is M-Lipschitz on I, we get: $\quad|(\phi(x))-(\phi(c))| \leqslant M \cdot|x-c|$.
Then: $|\phi(x)|=|[\phi(c)]+[(\phi(x))-(\phi(c))]| \leqslant|\phi(c)|+|(\phi(x))-(\phi(c))|$

$$
\leqslant|\phi(c)|+M \cdot|x-c| \leqslant|\phi(c)|+M \cdot(b-a)=M^{\prime} .
$$

THEOREM 48. Let $f: \mathbb{R} \rightarrow \mathbb{R}, \quad a, b \in \mathbb{R}, \quad M \geqslant 0$.
Assume: $a<b$. Let $I:=(a ; b)$. Assume: ϕ is Lipschitz on I.
Then: $\quad \phi$ is bounded and continuous on I.
Proof. Since ϕ is Lipschitz on I, we get: ϕ is continuous on I.
It remains to show: ϕ is bounded on I.
Since ϕ is Lipschitz on I, choose $M \geqslant 0$ s.t. ϕ is M-Lipschitz on I.
Let $c:=(a+b) / 2$. Then $c \in I . \quad$ Let $M^{\prime}:=|\phi(c)|+M \cdot(b-a)$.
By Theorem 47, we get: $|\phi| \leqslant M^{\prime}$ on I. Then ϕ is bounded on I.

DEFINITION 49. Let $f: \mathbb{R} \rightarrow-\mathbb{R}, \quad a, b \in \mathbb{R}$.
Assume: $a<b$. Let $I:=(a ; b)$. Let $c:=(a+b) / 2$.
Assume: $\quad f$ is bounded and measurable on I.
Then $f_{I}^{\#}: I \rightarrow \mathbb{R}$ is defined by: $\forall x \in I, \quad f_{I}^{\#}(x)=\int_{c}^{x} f$.
THEOREM 50. Let $f: \mathbb{R} \rightarrow \mathbb{R}, \quad a, b \in \mathbb{R}$.
Assume: $a<b . \quad$ Let $I:=(a ; b)$.
Assume: $\quad f$ is bounded and continuous on I.
Then: $\quad\left(f^{\#}\right)^{\prime}=f$ on I.
Theorem 50 is a case of the Fundamental Theorem of Calculus.
THEOREM 51. Let $a, b \in \mathbb{R}$. Assume: $a<b$. Let $I:=(a ; b)$.
Let $f_{0}, f_{1}, f_{2}, \ldots: I \rightarrow \mathbb{R}$ be measurable. Let $g: I \rightarrow \mathbb{R}$.
Let $M \geqslant 0 . \quad$ Assume: $\forall j \in \mathbb{N}_{0}, \quad\left|f_{j}\right| \leqslant M$ on I.
Assume: $\quad f_{j} \rightarrow g$ pointwise on I, as $j \rightarrow \infty$.
Then: $\quad g$ is bounded and measurable on $I \quad$ and $\left(f_{j}\right)_{I}^{\#} \rightarrow g_{I}^{\#}$ pointwise on I, as $j \rightarrow \infty$.

Proof. Since $\forall j \in \mathbb{N}_{0}, \quad\left|f_{j}\right| \leqslant M$ on I and since $\quad f_{j} \rightarrow g$ pointwise on I, as $j \rightarrow \infty$, we get $\quad|g| \leqslant M$ on I, \quad so $\quad g$ is bounded on I.
Since a pointwise limit of measurable functions is measurable, we get: $\quad g$ is measurable on I.
It remains to show: $\left(f_{j}\right)_{I}^{\#} \rightarrow g_{I}^{\#}$ pointwise on I, as $j \rightarrow \infty$.
Given $x \in I, \quad$ want: $\left(f_{j}\right)_{I}^{\#}(x) \rightarrow g_{I}^{\#}(x)$, as $j \rightarrow \infty$.
Let $c:=(a+b) / 2 . \quad$ Then: $\quad g_{I}^{\#}(x)=\int_{c}^{x} g$.
Also, we have: $\quad \forall j \in \mathbb{N}_{0}, \quad\left(f_{j}\right)_{I}^{\#}(x)=\int_{c}^{x} f_{j}$
Since $\quad \forall j \in \mathbb{N}_{0}, \quad\left|f_{j}\right| \leqslant M$ on $I \quad$ and
since $\quad f_{j} \rightarrow g$ pointwise on I, as $j \rightarrow \infty$, by the Dominated Convergence Theorem, we get:

$$
\int_{c}^{x} f_{j} \rightarrow \int_{c}^{x} g, \quad \text { as } j \rightarrow \infty .
$$

Then: $\quad\left(f_{j}\right)_{I}^{\#}(x) \rightarrow g_{I}^{\#}(x), \quad$ as $j \rightarrow \infty$.
THEOREM 52. Let $f: \mathbb{R} \rightarrow \mathbb{R}, \quad a, b \in \mathbb{R}, \quad M \geqslant 0$.
Assume: $a<b$. Let $I:=(a ; b)$.

Assume: f is measurable on $I . \quad$ Assume: $|f| \leqslant M$ on I.
Then: $f_{I}^{\#}$ is M-Lipschitz on I.
Proof. Given $s, t \in I, \quad$ assume $s<t$,
want: $\left|\left(f_{I}^{\#}(t)\right)-\left(f_{I}^{\#}(s)\right)\right| \leqslant M \cdot(t-s)$.
Since $s, t \in I$ and since I is an interval, we get: $[s ; t] \subseteq I$.
Then: $|f| \leqslant M$ on $[s ; t]$. Let $c:=(a+b) / 2$.
Then: $\quad\left(f_{I}^{\#}(t)\right)-\left(f_{I}^{\#}(s)\right)=\left(\int_{c}^{t} f\right)-\left(\int_{c}^{s} f\right)=\int_{s}^{t} f$.
Then: $\quad\left|\left(f_{I}^{\#}(t)\right)-\left(f_{I}^{\#}(s)\right)\right| \leqslant \int_{s}^{t}|f|$.
So, since $|f| \leqslant M$ on $[s ; t], \quad$ we get: $\quad\left|\left(f_{I}^{\#}(t)\right)-\left(f_{I}^{\#}(s)\right)\right| \leqslant \int_{s}^{t} M$.
Then: $\quad\left|\left(f_{I}^{\#}(t)\right)-\left(f_{I}^{\#}(s)\right)\right| \leqslant M \cdot(t-s)$.
THEOREM 53. Let $f: \mathbb{R} \rightarrow \mathbb{R}, \quad a, b \in \mathbb{R}$.
Assume $a<b$. Let $I:=(a ; b)$.
Assume: $\quad f$ is bounded and measurable on I.
Then: $\quad f_{I}^{\#}$ is bounded and continuous on I.
Proof. Since f is bounded on I, choose $M \geqslant 0$ s.t. $|f| \leqslant M$ on I.
By Theorem 52, $f_{I}^{\#}$ is M-Lipschitz on I, so $f_{I}^{\#}$ is Lipschitz on I.
Then, by Theorem 48, $f_{I}^{\#}$ is bounded and continuous on I.
DEFINITION 54. Let $f: \mathbb{R} \rightarrow \mathbb{R}, \quad a, b \in \mathbb{R}$.
Assume $a<b$. Let $I:=(a ; b)$.
Assume: $\quad f$ is bounded and measurable on I.
Then: $f_{I}^{\# \#}:=\left(f_{I}^{\#}\right)_{I}^{\#}$.
Implicit in Definition 54 is that, by Theorem 53, $f_{I}^{\#}$ is bounded and continuous on I, and so $\quad f_{I}^{\#}$ is bounded and measurable on I.

THEOREM 55. Let $g: \mathbb{R} \rightarrow \mathbb{R}, \quad a, b \in \mathbb{R}$.
Assume: $a<b$. Let $I:=(a ; b)$.
Assume: $\quad g$ is bounded and continuous on I.
Then: $\quad\left(g_{I}^{\# \#}\right)^{\prime \prime}=g$ on I.
Proof. By Theorem 50, we get: $\left(g_{I}^{\#}\right)^{\prime}=g$ on I.
Let $h:=g_{I}^{\#} . \quad$ Then $h^{\prime}=g$.
Since g is continuous on I, we get: g is measurable on I.

Then, by Theorem 53 , we get: $g_{I}^{\#}$ is bounded and continuous on I. So, since $h=g_{I}^{\#}$, we get: h is bounded and continuous on I.
So, by Theorem 50, we get: $\left(h_{I}^{\#}\right)^{\prime}=h$ on I.
So, since $h^{\prime}=g$ on I, we get: $\left(h_{I}^{\#}\right)^{\prime \prime}=g$ on I.
Then: $\quad\left(g_{I}^{\# \#}\right)^{\prime \prime}=\left(\left(g_{I}^{\#}\right)_{I}^{\#}\right)^{\prime \prime}=\left(h_{I}^{\#}\right)^{\prime \prime}=g$ on I.
THEOREM 56. Let $f: \mathbb{R} \rightarrow \mathbb{R}, \quad a, b \in \mathbb{R}$.
Assume: $a<b . \quad$ Let $I:=(a ; b) . \quad$ Assume: $I \subseteq \mathbb{D}_{f}^{(2)}$.
Assume: $\quad f^{\prime \prime}$ is bounded and continuous on I.
Then: $\quad\left(f^{\prime \prime}\right)_{I}^{\# \#}-f$ is affine on I.
Proof. Let $\phi:=\left(f^{\prime \prime}\right)_{I}^{\# \#} . \quad$ Want: $\phi-f$ is affine on I.
Want: $(\phi-f)^{\prime \prime}=0$ on $I . \quad$ Want: $\phi^{\prime \prime}=f^{\prime \prime}$ on I.
Let $g:=f^{\prime \prime}$. By hypothesis, g is bounded and continuous on I.
Then, by Theorem 55, we get: $\left(g_{I}^{\# \#}\right)^{\prime \prime}=g$ on I.
Then: $\quad \phi^{\prime \prime}=\left(\left(f^{\prime \prime}\right)_{I}^{\# \#}\right)^{\prime \prime}=\left(g_{I}^{\# \#}\right)^{\prime \prime}=g=f^{\prime \prime} \quad$ on I.
THEOREM 57. Let $a, b \in \mathbb{R}$. Assume $a<b$. Let $I:=(a ; b)$.
Let $S:=C^{\infty}(I, \mathbb{R}) . \quad$ Define $L: S \rightarrow S$ by: $\forall h \in S, \quad L h=h^{\prime \prime}$.
Let $f \in S$. Let $g: I \rightarrow \mathbb{R}$. Assume $f, L f, L^{2} f, \ldots \rightarrow g$ pointwise on I.
Then: $g \in S$ and $L g=g$.
Proof. It suffices to show: $g^{\prime \prime}=g$.
We have: $\quad \forall j \in \mathbb{N}_{0}, \quad L^{j} f=f^{(2 j)}$.
Then: $\quad f^{(2 j)} \rightarrow g$ pointwise on I, as $j \rightarrow \infty$.
It follows that: f has PBED on I.
Then, by Theorem 42, we get: f has PBD on I.
Then, by Tao's Theorem (Theorem 30), we get: f has UBD on I.
Then: f has UBED on I. Choose $M \geqslant 0$ s.t. f has M-BED on I.
Then: $\quad \forall j \in \mathbb{N}_{0}, \quad\left|f^{(2 j)}\right| \leqslant M$ on I.
For all $j \in \mathbb{N}_{0}$, let $f_{j}:=L^{j} f . \quad$ Then: $\quad \forall j \in \mathbb{N}_{0}, f_{j}=f^{(2 j)}$.
Then: $\quad f_{j} \rightarrow g$ pointwise on I, as $j \rightarrow \infty$.
Also, $\quad \forall j \in \mathbb{N}_{0}, \quad\left|f_{j}\right| \leqslant M$ on I.
Then, \quad since $f_{j} \rightarrow g$ pointwise on I, as $j \rightarrow \infty, \quad$ by Theorem 51, g is bounded and measurable on I and $\left(f_{j}\right)_{I}^{\#} \rightarrow g_{I}^{\#}$ pointwise on I, as $j \rightarrow \infty$.
By Theorem 52, we get: $\forall j \in \mathbb{N}_{0}, \quad\left(f_{j}\right)_{I}^{\#}$ is M-Lipschitz on I.
Let $c:=(a+b) / 2 . \quad$ Then: $\quad \forall j \in \mathbb{N}_{0}, \quad\left(f_{j}\right)_{I}^{\#}(c)=0$.
Let $M^{\prime}:=M \cdot(b-a) . \quad$ Then $M^{\prime} \geqslant 0$.
Also, $\quad \forall j \in \mathbb{N}_{0}, \quad M^{\prime}=\left|\left(f_{j}\right)_{I}^{\#}(c)\right|+M \cdot(b-a)$.

Then, by Theorem 47, we get: $\forall j \in \mathbb{N}_{0},\left|\left(f_{j}\right)_{I}^{\#}\right| \leqslant M^{\prime}$ on I.
Then, \quad since $\left(f_{j}\right)_{I}^{\#} \rightarrow g_{I}^{\#}$ pointwise on I, as $j \rightarrow \infty$, by Theorem 51, $g_{I}^{\#}$ is bounded and measurable on I and

$$
\left(f_{j}\right)_{I}^{\# \#} \rightarrow g_{I}^{\# \#} \quad \text { pointwise on } I, \text { as } j \rightarrow \infty
$$

Recall: $\quad f_{j} \rightarrow g \quad$ pointwise on I, as $j \rightarrow \infty$.
Then: $\quad\left(f_{j}^{\prime \prime}\right)_{I}^{\# \#}-f_{j} \rightarrow g_{I}^{\# \#}-g \quad$ pointwise on I, as $j \rightarrow \infty$.
For all $j \in \mathbb{N}_{0}$, let $\lambda_{j}:=\left(f_{j}^{\prime \prime}\right)_{I}^{\# \#}-f_{j}$. Let $\mu:=g_{I}^{\# \#}-g$.
Then $\lambda_{j} \rightarrow \mu$ pointwise on I, as $j \rightarrow \infty$. Also, $g=g_{I}^{\# \#}-\mu$.
Since $\quad f \in S=C^{\infty}(I, \mathbb{R}) \quad$ and
since $\quad \forall j \in \mathbb{N}_{0}, \quad f_{j}^{\prime \prime}=\left(L^{j} f\right)^{\prime \prime}=\left(f^{(2 j)}\right)^{\prime \prime}=f^{(2 j+2)}$, we conclude:

$$
\forall j \in \mathbb{N}_{0}, \quad I \subseteq \mathbb{D}_{f_{j}}^{(2)} \text { and } f_{j}^{\prime \prime} \text { is continuous on } I .
$$

We have: $\quad \forall j \in \mathbb{N}_{0}, \quad f_{j}^{\prime \prime}=L f_{j}=L L^{j} f=L^{j+1} f=f_{j+1}$.
Then: $\quad \forall j \in \mathbb{N}_{0}, \quad\left|f_{j}^{\prime \prime}\right|=\left|f_{j+1}\right| \leqslant M$ on I.
Then: $\quad \forall j \in \mathbb{N}_{0}, \quad f_{j}^{\prime \prime}$ is bounded on I.
Then, by Theorem 56, we have: $\forall j \in \mathbb{N}_{0},\left(f_{j}^{\prime \prime}\right)_{I}^{\# \#}-f_{j}$ is affine on I.
So, since $\quad \forall j \in \mathbb{N}_{0}, \quad \lambda_{j}=\left(f_{j}^{\prime \prime}\right)_{I}^{\# \#}-f_{j}$,
we get: $\quad \forall j \in \mathbb{N}_{0}, \quad \lambda_{j}$ is affine on I.
So, since $\quad \lambda_{j} \rightarrow \mu$ pointwise on I, as $j \rightarrow \infty$,
by Theorem 45, we get: μ is affine on I.
So, by Theorem 46, we get: μ is Lipschitz on I.
Then, by Theorem 48, we get: μ is bounded and continuous on I.
Recall: $\quad g_{I}^{\#}$ is bounded and measurable on I.
So, by Theorem 53, $\quad g_{I}^{\# \#}$ is bounded and continuous on I.
Then, since $g=g_{I}^{\# \#}-\mu$, we get: g is bounded and continuous on I.
Then, by Theorem 55, we get:

$$
\begin{aligned}
\left(g_{I}^{\# \#}\right)^{\prime \prime} & =g . \\
\mu^{\prime \prime} & =0 .
\end{aligned}
$$

Then, by subtracting, we get: $\quad\left(g_{I}^{\# \#}-\mu\right)^{\prime \prime}=g$.
So, since $g=g_{I}^{\# \#}-\mu$, we get: $\quad g^{\prime \prime}=g$.

