
Paul Cusson’s question

The main results in this note are:

Theorem 30, due to T. Tao,

and Theorem 42, and Theorem 57.

DEFINITION 1. Let a, b P R.

Then: pa; bq :“ tx P R | a ă x ă bu, ra; bq :“ tx P R | a ď x ă bu,

pa; bs :“ tx P R | a ă x ď bu, ra; bs :“ tx P R | a ď x ď bu.

DEFINITION 2. Let f be a function.

Then Df denotes the domain of f .

Also, If :“ tfpxq |x P Dfu denotes the image of f .

DEFINITION 3. Let A and B be sets.

By f : AÑ B , we mean: f is a function and Df “ A and If Ď B.

By f : A 99K B , we mean: f is a function and Df Ď A and If Ď B.

DEFINITION 4. N :“ t1, 2, 3, . . .u and N0 “ t0, 1, 2, 3, . . .u.

Convention: Any subset of R is given the relative topology

inherited from the standard topology on R.

NOTE: Any open subset of R is locally compact and Hausdorff.

NOTE: Any closed subset of any open subset of R
is locally compact and Hausdorff.

THEOREM 5. Let W be a nonH bounded open subset of R.

Let U be a connected component of W .

Then: Ds, t P RzW s.t. s ă t and s.t. U “ ps; tq.

Proof. Since U is a connected component of W , we get: H ‰ U Ď W .

Since W is bounded and since U Ď W , we get: U is bounded.

The topological space R is locally connected, so,

since W is open in R and

since U is a connected component of W ,

we get: U is a connected open subset of R.

Since U is a nonH bounded connected open subset of R,

choose s, t P R s.t. s ă t and s.t. U “ ps; tq.

Want: s, t R W . Want: ts, tu
Ş

W “ H.

Assume: ts, tu
Ş

W ‰ H. Want: Contradiction.

Choose r P ts, tu
Ş

W . Then: r P ts, tu and r P W .
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Since W is open in R and since r P W ,

choose δ ą 0 s.t. pr ´ δ; r ` δq Ď W .

Since r P ts, tu and since δ ą 0,

we get: ps; tq
Ş

pr ´ δ; r ` δq ‰ H.

Let I :“ pr ´ δ; r ` δq. Then: I is connected and r P I Ď W .

Since r P I, we get: I ‰ H.

Since I Ď W and since I is nonH and connected,

let V be the connected component of W s.t. I Ď V .

We have: U
Ş

V Ě U
Ş

I “ ps; tq
Ş

pr ´ δ; r ` δq ‰ H,

so, since U and V are both connected components of W ,

we conclude: U “ V . Then: r P I Ď V “ U , so r P U .

So, since r P ts, tu, we get: r P ts, tu
Ş

U . Then ts, tu
Ş

U ‰ H.

However, ts, tu
Ş

U “ ts, tu
Ş

ps; tq “ H. Contradiction. �

THEOREM 6. Let c, d, p, r, w P R. Assume: c ă p ă w ă r ă d.

Let W be an open subset of pc; dq. Assume: w P W and p, r R W .

Let U be the connected component of W s.t. w P U .

Then there exist s, t P rp; rszW s.t. s ă t and s.t. U “ ps; tq.

Proof. We have w P U Ď W . Since w P W , we get: W ‰ H.

Since W open in pc; dq, and since pc; dq is bounded and open in R,

we get: W is a bounded open subset of R.

So, since U is a connected component of W , by Theorem 5,

choose s, t P RzW s.t. s ă t and s.t. U “ ps; tq.

Want: s, t P rp; rs. Want: p ď s ă t ď r.

Since U “ ps; tq and w P U , we get: ps;wq Ď U .

By hypothesis, p R W , so, since ps;wq Ď U Ď W , we get: p R ps;wq.

By hypothesis, p ă w. Since p ă w and p R ps;wq, we get: p ď s.

By choice of s and t, we have: s ă t. It remains to show: t ď r.

Want: r ě t. Since U “ ps; tq and w P U , we get: pw; tq Ď U .

By hypothesis, r R W , so, since pw; tq Ď U Ď W , we get: r R pw; tq.

By hypothesis, w ă r. Since r ą w and r R pw; tq, we get: r ě t. �

THEOREM 7. Let a, b P R. Assume a ă b.

Let X Ď pa; bq. Let X 1 Ď X. Assume X 1 has nonH interior in X.

Then: Dc, d P ra; bs s.t. c ă d and s.t. H ‰ pc; dq
Ş

X Ď X 1.

Proof. Let W denote the interior in X of X 1. By hypothesis, W ‰ H.

Also, W is open in X and W Ď X 1. Since W ‰ H, choose w P W .

Since W is open in X, choose an open subset V of R s.t. W “ V
Ş

X.
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By hypothesis, X Ď pa; bq, so: X “ pa; bq
Ş

X.

Since V and pa; bq are open in R, we get: V
Ş

pa; bq is open in R.

Let U :“ V
Ş

pa; bq. Then U is open in R.

Also, W “ V
Ş

X “ V
Ş

pa; bq
Ş

X “ U
Ş

X, so W “ U
Ş

X.

Since w P W “ U
Ş

X, we get: w P U and w P X.

Since w P U and since U is open in R,

choose c, d P R s.t. c ă d and s.t. w P pc; dq Ď U .

Since pc; dq Ď U “ V
Ş

pa; bq Ď pa; bq, we get: pc; dq Ď pa; bq.

It follows that rc; ds Ď ra; bs. Then c, d P ra; bs.

It remains to show: H ‰ pc; dq
Ş

X Ď X 1.

Since w P pc; dq and since w P X, we get: w P pc; dq
Ş

X.

Then H ‰ pc; dq
Ş

X. Want: pc; dq
Ş

X Ď X 1.

Since pc; dq Ď U , we get: pc; dq
Ş

X Ď U
Ş

X.

Recall: W Ď X 1 and W “ U
Ş

X.

Then: pc; dq
Ş

X Ď U
Ş

X “ W Ď X 1. �

DEFINITION 8. @S Ď R, let S˝ denote the interior in R of S.

DEFINITION 9. Let f : R 99K R.

Then: D1f :“

"

x P pDf q
˝

ˇ

ˇ

ˇ

ˇ

lim
hÑ0

pfpx` hqq ´ pfpxqq

h
exists

*

.

Also, the derivative of f is the function f 1 : D1f Ñ R

defined by: @x P D1f , f 1pxq “ lim
hÑ0

pfpx` hqq ´ pfpxqq

h
.

DEFINITION 10. Let f : R 99K R, j P N0.

Then: f pjq denotes the jth derivative of f .

Also, Dpjqf :“ Df pjq denotes the domain of f pjq.

Note: @f : R 99K R, f p0q “ f and Dp0qf “ Df .

Also, @f : R 99K R, f p1q “ f 1 and Dp1qf “ Df 1 “ D1f .

Also, @f : R 99K R, Dp0qf Ě Dp1qf Ě Dp2qf Ě Dp3qf Ě ¨ ¨ ¨ .

In fact, each set is contained in the interior in R of the preceding one.

DEFINITION 11. Let f : R 99K R.

Then: Dp8qf :“ Dp0qf
Ş

Dp1qf
Ş

Dp2qf
Ş

Dp3qf
Ş

¨ ¨ ¨ .
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Note that, @f : R 99K R, Dp0qf
Ş

Dp2qf
Ş

Dp4qf
Ş

Dp6qf
Ş

¨ ¨ ¨ “ Dp8qf .

Also, @f : R 99K R, @j P N0, Dp8q
f pjq “ Dp8qf .

Convention: 00 “ 1. Then: @x P R, x0 “ 1.

DEFINITION 12. Let f : R 99K R, k P N0, c P Dpkqf .

Then: P f,c
k : RÑ R is defined by:

@x P R, P f,c
k pxq “

k
ÿ

i“0

„

pf piqpcqq ¨
px´ cqi

i!



.

DEFINITION 13. Let f : R 99K R, c P R.

By f is real-analytic at c , we mean:

Dδ ą 0 s.t. P f,c
k Ñ f pointwise on pc´ δ; c` δq, as k Ñ 8.

It is well-known that: @f : R 99K R, @c P R,

p f is real-analytic at c q ñ p c P Dp8qf q.

DEFINITION 14. Let f : R 99K R, S Ď R.

By f is real-analytic on S , we mean:

@x P S, f is real-analytic at x.

THEOREM 15. Let σ, τ : R 99K R, I Ď R, q P I.

Assume: I is an interval.

Assume: σ and τ are both real-analytic on I.

Assume: @j P N0, σpjqpqq “ τ pjqpqq.

Then: σ “ τ on I.

Theorem 15 is well-known. Its proof is omitted.

THEOREM 16. Let β0, β1, β2, . . . P R. Let c P R.

Assume tβ0, β1, β2, . . .u is bounded.

Define φ : RÑ R by: @x P R, φpxq “
8
ÿ

i“0

„

βi ¨
px´ cqi

i!



.

Then: φ is real-analytic on R.

Also, @j P N0, @x P R, φpjqpxq “
8
ÿ

i“0

„

βi`j ¨
px´ cqi

i!



.

Theorem 16 is well-known. Its proof is omitted.

DEFINITION 17. Let f : R 99K R, x P R, M ě 0.

By f has M-BD at x , we mean:
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x P Dp8qf and @j P N0, |f pjqpxq| ďM .

By f has M-BED at x , we mean:

x P Dp8qf and @j P N0, |f p2jqpxq| ďM .

BD stands for “bounded derivatives”.

BED stands for “bounded even derivatives”.

DEFINITION 18. Let f : R 99K R, x P R.

By f has BD at x , we mean:

DM ě 0 s.t. f has M-BD at x.

By f has BED at x , we mean:

DM ě 0 s.t. f has M-BED at x.

Note: @f : R 99K R, @x P R,

p f has BD at x q ñ p f has BED at x q ñ p x P Dp8qf q.

DEFINITION 19. Let f : R 99K R, S Ď R, M ě 0.

By f has M-BD on S , we mean:

@x P S, f has M-BD at x.

By f has M-BED on S , we mean:

@x P S, f has M-BED at x.

DEFINITION 20. Let f : R 99K R, S Ď R.

By f has PBD on S , we mean:

@x P S, f has BD at x.

By f has PBED on S , we mean:

@x P S, f has BED at x.

By f has UBD on S , we mean:

DM ě 0 s.t. f has M-BD on S.

By f has UBED on S , we mean:

DM ě 0 s.t. f has M-BED on S.

PBD stands for “pointwise bounded derivatives”.

PBED stands for “pointwise bounded even derivatives”.

UBD stands for “uniformly bounded derivatives”.

UBED stands for “uniformly bounded even derivatives”.

DEFINITION 21. Let f : R 99K R.

Then BDf :“ tx P Dp8qf | f has BD at xu.
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DEFINITION 22. Let f : R 99K R, c P BDf .

Then: P f,c
8 : RÑ R is defined by:

@x P R, P f,c
8 pxq “

8
ÿ

i“0

„

pf piqpcqq ¨
px´ cqi

i!



.

THEOREM 23. Let f : R 99K R, c P BDf , g “ P f,c
8 .

Then: g is real-analytic on R. Also: @j P N0, f pjqpcq “ gpjqpcq.

Proof. For all i P N0, let βi :“ f piqpcq.

Since c P BDf , we get: tβ0, β1, β2, . . .u is bounded.

Since g “ P f,c
8 , we get: @x P R, gpxq “

8
ÿ

i“0

„

βi ¨
px´ cqi

i!



.

Then, by Theorem 16, we get: g is real-analytic on R.

It remains to show: @j P N0, f pjqpcq “ gpjqpcq.

Given j P N0, want: f pjqpcq “ gpjqpcq. Want: gpjqpcq “ βj.

By Theorem 16, we get: gpjqpcq “
8
ÿ

i“0

ˆ

βi`j ¨
pc´ cqi

i!

˙

.

Then gpjqpcq “
8
ÿ

i“0

ˆ

βi`j ¨
0i

i!

˙

“

„

β0`j ¨
00

0!



`

«

8
ÿ

i“1

ˆ

βi`j ¨
0i

i!

˙

ff

.

Then gpjqpcq “ rβj ¨ 1s `

«

8
ÿ

i“1

pβi`j ¨ 0q

ff

“ βj ` 0 “ βj. �

THEOREM 24. Let f : R 99K R, B Ď R, c, x P B, M ě 0.

Assume: B is an interval. Assume: f has M-BD on B.

Let j P N0. Then: |pfpxqq ´ pP f,c
j pxqq| ďM ¨

|x´ c|j`1

pj ` 1q!
.

Proof. Since f has M -BD on B, we get: B Ď Dp8qf .

By Taylor’s Theorem, choose ξ strictly between c and x s.t.

fpxq “ pP f,c
j pxqq `

ˆ

pf pj`1qpξqq ¨
px´ cqj`1

pj ` 1q!

˙

.

Then: pfpxqq ´ pP f,c
j pxqq “ pf pj`1qpξqq ¨

px´ cqj`1

pj ` 1q!
.

Then: |pfpxqq ´ pP f,c
j pxqq| “ |f pj`1qpξq| ¨

|x´ c|j`1

pj ` 1q!
.

Since B is an interval and c, x P B, we get: ξ P B.

So, since f has M -BD on B, we get: |f pj`1qpξq| ďM .



7

Then: |pfpxqq ´ pP f,c
j pxqq| ď M ¨

|x´ c|j`1

pj ` 1q!
. �

DEFINITION 25. Let f : R 99K R, x P R.

By f has UBD near x , we mean:

Dδ ą 0 s.t. f has UBD on px´ δ;x` δq.

THEOREM 26. Let f : R 99K R, U Ď R.

Assume: @x P U , f has UBD near x.

Then: f is real-analytic on U .

Proof. Given c P U , want: f is real-analytic at c.

Want: Dδ ą 0 s.t. P f,c
j Ñ f pointwise on pc´ δ; c` δq, as j Ñ 8.

Since c P U , by hypothesis, f has UBD near c, so

choose δ ą 0 s.t. f has UBD on pc´ δ; c` δq.

Want: P f,c
j Ñ f pointwise on pc´ δ; c` δq, as j Ñ 8.

Let B :“ pc´ δ; c` δq.

Then: B is an interval and c P B and f has UBD on B.

Want: P f,c
j Ñ f pointwise on B, as j Ñ 8.

Given x P B, want: P f,c
j pxq Ñ fpxq, as j Ñ 8.

Want: |pfpxqq ´ pP f,c
j pxqq| Ñ 0, as j Ñ 8.

Since f has UBD on B, choose M ě 0 s.t. f has M -BD on B.

Then, by Theorem 24, @j P N0, |pfpxqq ´ pP
f,c
j pxqq| ďM ¨

|x´ c|j`1

pj ` 1q!
.

So, since M ¨
|x´ c|j`1

pj ` 1q!
Ñ 0, as j Ñ 8,

we conclude: |pfpxqq ´ pP f,c
j pxqq| Ñ 0, as j Ñ 8. �

THEOREM 27. Let f, g : R 99K R, r, s, t P R.

Assume: s ă t and r P rs; ts.

Assume: r P Dp8qf

Ş

Dp8qg and ps; tq Ď Dp8qf

Ş

Dp8qg .

Assume: f “ g on ps; tq.

Then: @j P N0, f pjqprq “ gpjqprq.

Proof. Given j P N0, want: f pjqprq “ gpjqprq.

Since f “ g on ps; tq, we get: f pjq “ gpjq on ps; tq.

Let φ :“ f pjq and ψ :“ gpjq.

Then: φ “ ψ on ps; tq. Want: φprq “ ψprq.

We have: Dp8qφ “ Dp8qf and Dp8qψ “ Dp8qg .

Then: r P Dp8qφ

Ş

Dp8qψ and ps; tq Ď Dp8qφ

Ş

Dp8qψ .
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Since r P Dp8qφ

Ş

Dp8qψ Ď Dp1qφ
Ş

Dp1qψ ,

we get: φ and ψ are both differentiable at r.

Then: φ and ψ are both continuous at r.

Since r P rs; ts, choose q1, q2, q3 ¨ ¨ ¨ P ps; tq s.t. qj Ñ r, as j Ñ 8.

By continuity, φpqjq Ñ φprq, as j Ñ 8 and ψpqjq Ñ ψprq, as j Ñ 8.

Since φ “ ψ on ps; tq, we get: @j P N, φpqjq “ ψpqjq.

So, letting j Ñ 8, we get: φprq “ ψprq. �

THEOREM 28. Let f : R 99K R, s, t P R, M ě 0.

Assume: s ă t. Assume: @x P ps; tq, f has UBD near x.

Let r P rs; ts. Assume: f has M-BD at r.

Let N :“M ¨ et´s. Then: f has N-BD on ps; tq.

Proof. Let c :“ ps` tq{2. Then c P ps; tq.

So, by hypothesis, we get: f has UBD near c.

Then f has BD at c. Then c P BDf . Let g :“ P f,c
8 .

By Theorem 23, g is real-analytic on R.

Then Dp8qg “ R, so: r P Dp8qg and ps; tq Ď Dp8qg .

By hypothesis, f has M -BD at r, so we get: r P Dp8qf .

By hypothesis, we have: @x P ps; tq, f has UBD near x.

So, by Theorem 26, f is real-analytic on ps; tq. Then: ps; tq Ď Dp8qf .

Then: r P Dp8qf

Ş

Dp8qg and ps; tq Ď Dp8qf

Ş

Dp8qg .

By Theorem 23, we get: @j P N0, f pjqpcq “ gpjqpcq.

So, since c P ps; tq and since f and g are both real-analytic on ps; tq,

by Theorem 15, we get: f “ g on ps; tq.

Then, by Theorem 27, we get: @j P N0, f pjqprq “ gpjqprq.

By hypothesis, f has M -BD at r, so f has BD at r. Then r P BDf .

Let h :“ P f,r
8 . Then, by Theorem 23, h is real-analytic on R.

Also, by Theorem 23, @j P N0, f pjqprq “ hpjqprq.

Since @j P N0, gpjqprq “ f pjqprq “ hpjqprq.

and since g and h are both real-analytic on R,

by Theorem 15, we get: g “ h on R.

So, since f “ g on ps; tq, we get: f “ h on ps; tq.

It therefore suffices to show: h has N -BD on ps; tq.

Given u P ps; tq, want: h has N -BD at u.

Given j P N0, want: |hpjqpuq| ď N . By hypothesis, r P rs; ts.

Since r, u P rs; ts, we get: |u´ r| ď t´ s. Then e|u´r| ď et´s.

So, since M ě 0, we get: M ¨ e|u´r| ďM ¨ et´s.
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By hypothesis, f has M -BD at r, so: @i P N0, |f piqprq| ďM .

Since h “ P f,r
8 , we get: @x P R, hpxq “

8
ÿ

i“0

„

pf piqprqq ¨
px´ rqi

i!



.

Then, by Theorem 16, we have: @x P R,

hpjqpxq “

8
ÿ

i“0

„

pf pi`jqprqq ¨
px´ rqi

i!



.

Then: |hpjqpuq| ď
8
ÿ

i“0

„

|f pi`jqprq| ¨
|u´ r|i

i!



ď

8
ÿ

i“0

„

M ¨
|u´ r|i

i!



“ M ¨

«

8
ÿ

i“0

|u´ r|i

i!

ff

“ M ¨ e|u´r| ď M ¨ et´s “ N . �

THEOREM 29. Let I Ď R, f : R 99K R.

Assume: I is a nonH bounded open interval.

Assume: @x P I, f has UBD near x. Then: f has UBD on I.

Proof. Since I is an interval, we get: I is connected.

Since I is a nonH bounded connected open subset of R,

choose s, t P R s.t. s ă t and s.t. I “ ps; tq.

Then: @x P ps; tq, f has UBD near x.

By Theorem 26, f is real-analytic on ps; tq.

Let r :“ ps` tq{2. Then r P ps; tq. Then r P I and r P rs; ts.

Since r P I, by assumption, f has UBD near r.

Then f has BD at r. Choose M ě 0 s.t. f has M -BD at r.

Let N :“M ¨ et´s. By Theorem 28, f has N -BD on ps; tq.

Then f has UBD on ps; tq. Then f has UBD on I. �

Theorem 30 and the proof below are both due to T. Tao. See

https://mathoverflow.net/questions/413165/does-iterating-the-derivative-

infinitely-many-times-give-a-smooth-function-whene

THEOREM 30. (T. Tao) Let f : R 99K R, a, b P R.

Assume: a ă b. Let I :“ pa; bq.

Assume: f has PBD on I. Then: f has UBD on I.

Proof. Let V :“ tx P I | f has UBD near xu. Then V is open in I.

By Theorem 29, it suffices to show: V “ I.

Let X :“ IzV . Then V “ IzX. Want: X “ H.
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Assume: X ‰ H. Want: Contradiction.

Since I “ pa; bq, we get: I is open in R.

Since V is open in I and since X “ IzV , we get: X is closed in I.

Since X is closed in I and since I is open in R,

we get: X is locally compact and Hausdorff.

By hypothesis, f has PBD on I, so, since X “ IzV Ď I,

we get: f has PBD on X.

Then: X Ď Dp8qf . For all m P N, let Xm :“ tx P X | f has m-BD at xu.

By continuity, we get: @m P N, Xm is closed in X.

Since f has PBD on X, we get: X1

Ť

X2

Ť

X3

Ť

¨ ¨ ¨ “ X.

So, since X is nonH and locally compact and Hausdorff,

by the Baire Category Theorem,

choose M P N s.t. XM has nonH interior in X.

So, since X “ IzV Ď I “ pa; bq, by Theorem 7, choose c, d P ra; bs

s.t. c ă d and s.t. H ‰ pc; dq
Ş

X Ď XM .

Since H ‰ pc; dq
Ş

X, choose q P pc; dq
Ş

X.

Then q P XM . Also, q P pc; dq and q P X.

Since q P pc; dq and since pc; dq is open in R,

choose δ ą 0 s.t. pq ´ δ; q ` δq Ď pc; dq.

Since q P X “ IzV , by definition of V ,

we get: f does not have UBD near q.

Then: f does not have UBD on pq ´ δ; q ` δq.

So, since pq ´ δ; q ` δq Ď pc; dq, we get:

f does not have UBD on pc; dq.

Let K :“M ¨ ed´c. Then f does not have K-BD on pc; dq.

Choose p P pc; dq s.t. f does not have K-BD at p.

Since c ă d, we get: ed´c ě 1. Then: K ěM .

By definition of XM , f has M -BD on XM .

So, since K ěM , we get: f has K-BD on XM .

So, since f does not have K-BD at p, we get: p R XM .

Since I “ pa; bq, we get: I is open in R.

Since XM is closed in X and since X is closed in I,

we get: XM is closed in I. Then: IzXM is open in I.

So, since I is open in R, we get: IzXM is open in R.

Since c, d P ra; bs, we get: pc; dq Ď pa; bq.

Since pc; dq Ď pa; bq “ I, we get: pc; dqzXM “ pc; dq
Ş

pIzXMq.

Let W :“ pc; dqzXM . Then: W “ pc; dq
Ş

pIzXMq.

Since pc; dq and IzXM are both open in R,
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we get: pc; dq
Ş

pIzXMq is open in R. Then W is open in R.

Since p P pc; dq and p R XM , we get: p P W . Then: W ‰ H.

Since W “ pc; dqzXM Ď pc; dq, we get: W Ď pc; dq.

Then W is bounded. Then W is a nonH bounded open subset of R.

Recall: pc; dq
Ş

X Ď XM . Then rpc; dq
Ş

XszXM “ H.

Then: W
Ş

X “ rpc; dqzXM s
Ş

X “ rpc; dq
Ş

XszXM “ H.

Then: W
Ş

X “ H. Also, W Ď pc; dq Ď pa; bq “ I, so W Ď I.

Since W Ď I and W
Ş

X “ H, we get: W Ď IzX.

Then W Ď IzX “ V , so, by definition of V ,

we get: @x P W , f has UBD near x.

Let U be the connected component of W s.t. p P U .

Then: p P U Ď W . Then: @x P U , f has UBD near x.

By Theorem 5, choose s, t P RzW s.t. s ă t and s.t. U “ ps; tq.

Then: ts, tu Ď RzW . Recall: W Ď pc; dq.

Then ps; tq “ U Ď W Ď pc; dq, so ps; tq Ď pc; dq, so rs; ts Ď rc; ds.

Then: s, t P rc; ds. Then: c ď s ă t ď d.

Then: t´ s ď d´ c. Then: et´s ď ed´c.

Since M P N, we get: M ą 0. Then: M ¨ et´s ďM ¨ ed´c.

Let N :“M ¨ et´s. Recall: K “M ¨ ed´c. Then N ď K.

Since W “ pc; dqzXM and since q P XM , we get: q R W .

So, since ps; tq “ U Ď W , we get: q R ps; tq. Recall: q P pc; dq.

Since q R ps; tq and since q P pc; dq, we get: ps; tq ‰ pc; dq.

Since ps; tq ‰ pc; dq, we get: either s ‰ c or t ‰ d.

Recall: c ď s ă t ď d.

Then: either c ă s ă t ď d or c ď s ă t ă d.

Then: either c ă s ă d or c ă t ă d.

Then: either s P pc; dq or t P pc; dq.

Then: ts, tu
Ş

pc; dq ‰ H. Choose r P ts, tu
Ş

pc; dq.

Since r P ts, tu Ď RzW , we get: r P RzW . Then: r P pc; dqzW .

By definition of W , we have: W “ pc; dqzXM .

Since r P pc; dqzW “ pc; dqzrpc; dqzXM s “ pc; dq
Ş

XM Ď XM ,

by definition of XM , we get: f has M -BD at r.

We have r P ts, tu Ď rs; ts, so r P rs; ts.

Recall: @x P U , f has UBD near x.

Then, by Theorem 28, f has N -BD on ps; tq.

So, since N ď K, we get: f has K-BD on ps; tq.

So, since p P U “ ps; tq, we get: f has K-BD at p.

By choice of p, f does not have K-BD at p. Contradiction. �
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THEOREM 31. Let g : R 99K R, a, b P R, M ě 0.

Assume: a ă b. Let I :“ pa; bq. Assume: I Ď Dp2qg .

Assume: |g| ďM on I and |g2| ďM on I.

Let N :“M ¨

ˆ

6

b´ a
`
b´ a

6

˙

. Then: |g1| ď N on I.

Proof. Given x P I, want: |g1pxq| ď N .

Let δ :“
b´ a

3
. Then δ ą 0 and

2M

δ
`
Mδ

2
“ N .

Choose h P tδ,´δu s.t. x` h P I. Then |h| “ δ.

By Taylor’s Theorem, choose ξ strictly between x and x` h s.t.

gpx` hq “ pgpxqq ` pg1pxqq ¨ h ` pg2pξqq ¨
h2

2
.

Then: g1pxq “
pgpx` hqq ´ pgpxqq

h
´
pg2pξqq ¨ h

2
.

Then: |g1pxq| ď
|gpx` hq| ` |gpxq|

|h|
`
|g2pξq| ¨ |h|

2
.

Since |g|, |g2| ďM on I and since x, ξ, x` h P I, we get:

|gpxq| ďM and |g2pξq| ďM and |gpx` hq| ďM .

Recall: |h| “ δ. Then: |g1pxq| ď
2M

δ
`
Mδ

2
“ N . �

THEOREM 32. Let f : R 99K R, I Ď R.

Assume: I is a nonH bounded open interval.

Assume: f has UBED on I. Then: f has UBD on I.

Proof. Want: DN ě 0 s.t. f has N -BD on I.

Since f has UBED on I, choose M ě 0 s.t. f has M -BED on I.

Since I is a nonH bounded open interval,

choose a, b P R s.t. a ă b and s.t. I “ pa; bq.

Let N :“M ¨

ˆ

6

b´ a
`
b´ a

6

˙

. Then M ď N . Then N ě 0.

Want: f has N -BD on I. Given x P I, want: f has N -BD at x.

Given j P N0, want: |f pjqpxq| ď N .

Case 1: j is even.

Proof in Case 1:

Since j is even, by choice of M , we have: |f pjq| ďM on I.

So, since x P I, we get: |f pjqpxq| ďM . Then |f pjqpxq| ďM ď N .



13

End of proof in Case 1.

Case 2: j is odd.

Proof in Case 2:

Since j ´ 1 and j ` 1 are even, by the choice of M , we have:

|f pj´1q| ďM on I and |f pj`1q| ďM on I.

By hypothesis, f has UBED on I, so: I Ď Dp8qf .

Let g :“ f pj´1q. Then I Ď Dp8qf “ Dp8qg Ď Dp2qg , so I Ď Dp2qg .

Also, g1 “ f pjq and g2 “ f pj`1q.

Then: |g| ďM on I and |g2| ďM on I.

Then, by Theorem 31, we get: |g1| ď N on I.

So, since x P I, we get: |g1pxq| ď N . Then |f pjqpxq| “ |g1pxq| ď N .

End of proof in Case 2. �

THEOREM 33. Let f : R 99K R, c, d P R.

Assume c ă d. Let J :“ pc; dq. Assume f has PBED on J .

Then DnonH open subintervals U1, U2, U3, . . . of J

s.t. @i P N, f has UBD on Ui and

s.t. U1

Ť

U2

Ť

U3

Ť

¨ ¨ ¨ is dense in J .

Proof. Since J is second-countable,

choose a countable base W for J s.t., @W PW , W ‰ H.

Since W is countable, it suffices to prove:

@W PW , DnonH open subinterval U of J

s.t. U Ď W and s.t. f has UBD on U .

Given W PW , want: DnonH open subinterval U of J

s.t. U Ď W and s.t. f has UBD on U .

Since W PW , we get: W ‰ H and W Ď J .

Since W PW , we get: W is open in J .

So, since J is open in R, we get: W is open in R.

Then: W is locally compact and Hausdorff.

For all m P N, let Cm :“ tx P W | f has m-BED at xu.

Since f has PBED on J and since W Ď J , we get: f has PBED on W .

Then W Ď Dp8qf . So, by continuity, @m P N, Cm is closed in W .

Since f has PBED on W , we get: C1

Ť

C2

Ť

C3

Ť

¨ ¨ ¨ “ W .

So, since W is nonH and locally compact and Hausdorff,

by the Baire Category Theorem,

choose M P N s.t. CM has nonH interior in W .

Then, since W is open in R, we get: CM has nonH interior in R.
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So choose s, t P R s.t. s ă t and s.t. ps; tq Ď CM .

Let U :“ ps; tq. Then: U is a nonH open interval and U Ď CM .

Since U Ď CM Ď W Ď J and since U is a nonH open interval,

we get: U is a nonH open subinterval of J .

As U Ď CM Ď W , it remains only to show: f has UBD on U .

Since U Ď CM , by definition of CM , we get: f has M -BED on U .

Then f has UBED on U . Then, by Theorem 32, f has UBD on U . �

DEFINITION 34. Let f : R 99K R.

Then IBDf :“ pBDf q
˝ denotes the interior in R of BDf .

THEOREM 35. Let f : R 99K R, c, d P R.

Assume c ă d. Let J :“ pc; dq.

Assume f has PBED on J . Then IBDf

Ş

J is dense in J .

Proof. By Theorem 33,

choose nonH open subintervals U1, U2, U3, . . . of J

s.t. @i P N, f has UBD on Ui and

s.t. U1

Ť

U2

Ť

U3

Ť

¨ ¨ ¨ is dense in J .

Then: @i P N, since f has UBD on Ui,

it follows that f has BD on Ui, so Ui Ď BDf .

Let U :“ U1

Ť

U2

Ť

U3

Ť

¨ ¨ ¨ . Then U Ď BDf , so U˝ Ď pBDf q
˝.

Since @i P N, Ui Ď J , we get: U Ď J .

Since @i P N, Ui is open in J , we get: U is open in J .

So, since J is open in R, we get: U is open in R. Then U˝ “ U .

Since U1

Ť

U2

Ť

U3

Ť

¨ ¨ ¨ is dense in J , we get: U is dense in J .

Since U “ U˝ Ď pBDf q
˝ “ IBDf and since U Ď J ,

we get: U Ď IBDf

Ş

J .

So, since U is dense in J , we get: IBDf

Ş

J is dense in J . �

THEOREM 36. Let φ : R 99K R, s, t P R, L ě 0. Assume: s ă t.

Assume: ps; tq Ď Dp2qφ and φ is continuous both at s and at t.

Assume: φ2 ą 0 on ps; tq. Assume: φ ď L on ts, tu.

Then: φ ă L on ps; tq.

Theorem 36 is a special case of the Maximum Principle.

This particular special case follows from the Mean Value Theorem.

We omit the proof.

THEOREM 37. Let g : R 99K R, s, t P R, L ě 0.

Assume: s ă t and t´ s ď 1.
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Assume: ps; tq Ď Dp2qg and g is continuous both at s and at t.

Assume: |g| ď L on ts, tu. Let w P ps; tq. Assume |gpwq| ě 2L.

Then: Dx P ps; tq s.t. |g2pxq| ě 8L.

Proof. Choose h P tg,´gu s.t. |gpwq| “ hpwq. Then hpwq ě 2L.

Also, |h| “ |g| and |h1| “ |g1| and |h2| “ |g2|.

Also, ps; tq Ď Dp2qh and h is continuous both at s and at t.

Want: Dx P ps; tq s.t. |h2pxq| ě 8L.

Assume: |h2| ă 8L on ps; tq. Want: Contradiction.

We have: ´8L ă h2 ă 8L on ps; tq.

Since h2 ą ´8L on ps; tq, we get: 8L` h2 ą 0 on ps; tq.

Define Q : RÑ R by: @x P R, Qpxq “ 4L ¨ px´ sq ¨ px´ tq.

Then: Q2 “ 8L on R. Then: pQ` hq2 ą 0 on ps, tq.

Let φ :“ Q` h. Then φ2 ą 0 on ps; tq.

Since Q “ 0 on ts, tu and since h ď |h| “ |g| ď L on ts, tu,

we get: Q` h ď L on ts, tu. Then: φ ď L on ts, tu.

Also, ps; tq Ď Dp2qφ and φ is continuous both at s and at t.

Then, by Theorem 36 (Maximum Principle), we get: φ ă L on ps; tq.

By hypothesis, we have: w P ps; tq. Then φpwq ă L.

Since pQpwqq`phpwqq “ φpwq ă L, we get: hpwq ă L´pQpwqq.

Let c :“ ps` tq{2. The minimum value of Q is Qpcq.

Then Qpwq ě Qpcq. We calculate: Qpcq “ ´L ¨ pt´ sq2.

Since 0 ă t´ s ď 1, we get: pt´ sq2 ď 1.

So, since L ě 0, we get: ´L ¨ pt´ sq2 ě ´L.

Then Qpwq ě Qpcq “ ´L ¨ pt´ sq2 ě ´L, so ´pQpwqq ď L.

Then hpwq ă L´ pQpwqq ď L` L “ 2L, so hpwq ă 2L.

Recall, from the start of the proof: hpwq ě 2L. Contradiction. �

THEOREM 38. Let f : R 99K R, s, t P R, M ą 0.

Assume s ă t. Assume t´ s ď 1.

Assume f has M-BED on ts, tu. Assume f has UBED on ps; tq.

Then f has 2M-BED on ps; tq.

Proof. Given p P ps; tq, want: f has 2M -BED at p.

Given j P N0, want: |f p2jqppq| ď 2M .

Assume: |f p2jqppq| ą 2M . Want: Contradiction.

Since |f p2jqppq| ą 2M , we get: |f p2jqppq| ě 2M .

For all i P N0, let Li :“ 4i ¨M . Then: @i P N0, Li ě 0.

Also, L0 “M and @i P N0, Li`1 “ 4Li.

For all i P N0, let Bi :“ tq P ps; tq s.t. |f p2j`2iqpqq| ě 2Liu.
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Claim: @i P N0, Bi ‰ H.

Proof of Claim: We have |f p2j`2¨0qppq| “ |f p2jqppq| ě 2M “ 2L0.

Also, p P ps; tq. Then p P B0. Then B0 ‰ H.

We proceed by mathematical induction:

Given i P N0, assume Bi ‰ H, want: Bi`1 ‰ H.

Choose w P Bi. Then w P ps; tq and |f p2j`2iqpwq| ě 2Li.

By hypothesis, f has M -BED on ts, tu, so s, t P Dp8qf .

By hypothesis, f has M -BED on ts, tu, so |f p2j`2iq| ďM on ts, tu.

By hypothesis, f has UBED on ps; tq, so ps; tq Ď Dp8qf .

Let g :“ f p2j`2iq. Then ps; tq Ď Dp8qf “ Dp8qg Ď Dp2qg , so ps; tq Ď Dp2qg .

Since s, t P Dp8qf “ D
p8q
g Ď Dp2qg Ď Dp1qg ,

we get: g is differentiable both at s and at t.

Then g is continuous both at s and at t.

Also, |gpwq| “ |f p2j`2iqpwq| ě 2Li, so |gpwq| ě 2Li.

Also, |g| “ |f p2j`2iq| ďM on ts, tu, so |g| ďM on ts, tu.

We have: M ď 4i ¨M “ Li. Then |g| ď Li on ts, tu.

By Theorem 37, choose x P ps; tq s.t. |g2pxq| ě 8Li.

Since g2 “ pf p2j`2iqq2 “ f p2j`2i`2q “ f p2j`2¨pi`1qq,

we get: |f p2j`2¨pi`1qqpxq| “ |g2pxq|.

Then |f p2j`2¨pi`1qqpxq| “ |g2pxq| ě 8Li “ 2 ¨ 4Li “ 2Li`1,

so |f p2j`2¨pi`1qqpxq| ě 2Li`1.

Also, x P ps; tq. Then x P Bi`1. Then Bi`1 ‰ H.

End of proof of Claim.

By hypothesis, f has UBED on ps; tq, so

choose K ě 0 s.t. f has K-BED on ps; tq.

By hypothesis, M ą 0, so choose n P N0 s.t. 2 ¨ 4n ¨M ą K.

By the Claim, Bn ‰ H, so choose z P Bn.

Then, by definition of Bn, we get: z P ps; tq and |f p2j`2nqpzq| ě 2Ln.

Then |f p2j`2nqpzq| ě 2Ln “ 2 ¨ 4n ¨M ą K, so |f p2j`2nqpzq| ą K.

On the other hand, since f has K-BED on ps; tq and since z P ps; tq,

we get: |f p2j`2nqpzq| ď K. Contradiction. �

THEOREM 39. Let c, d P R. Assume: c ă d. Let J :“ pc; dq.

Let T Ď J . Assume: T is finite. Let q P T .

Then: Dδ ą 0 s.t. pq ´ δ; qq Ď JzT .

The preceding result is basic. Its proof is left as an exercise.



17

THEOREM 40. Let f : R 99K R, c, d P R.

Assume: c ă d. Let J :“ pc; dq. Assume: J Ď Dp8qf .

Let T :“ JzBDf . Assume: T ‰ H. Then: T is infinite.

Proof. Assume: T is finite. Want: Contradiction.

Since T ‰ H, choose q P T . Then q P J and q R BDf .

By Theorem 39, choose δ ą 0 s.t. pq ´ δ; qq Ď JzT .

Since pq ´ δ; qq Ď JzT Ď J and since q P J , we get: pq ´ δ; qs Ď J .

We have: pq ´ δ; qq Ď JzT “ JzpJzBDf q “ J
Ş

BDf Ď BDf ,

so pq ´ δ; qq Ď BDf , so f has PBD on pq ´ δ; qq.

So, by Tao’s Theorem (Theorem 30), we get: f has UBD on pq´δ; qq.

Choose M ě 0 s.t. f has M -BD on pq ´ δ; qq.

So, since pq ´ δ; qs Ď J Ď Dp8qf , by continuity, f has M -BD at q.

Then f has BD at q, so q P BDf . Recall: q R BDf . Contradiction. �

THEOREM 41. Let T Ď R, ε ą 0.

Assume: T is bounded and infinite.

Then: Dp, q, r P T s.t. p ă q ă r and s.t. r ´ p ď ε.

Proof. Since T is bounded and infinite, choose a limit point x of T .

Let C :“ rx´ pε{2q;x` pε{2qs. Then C
Ş

T is infinite.

Choose p, q, r P C
Ş

T s.t. p ă q ă r. Want: r ´ p ď ε.

Since p, r P C
Ş

T Ď C “ rx´pε{2q;x`pε{2qs, we get: r´p ď ε. �

THEOREM 42. Let f : R 99K R, a, b P R.

Assume: a ă b. Let I :“ pa; bq.

Assume: f has PBED on I. Then: f has PBD on I.

Proof. Want: I Ď BDf . Let V :“ IBDf

Ş

I.

Since IBDf is open in R, we get: V is open in I.

Since V Ď IBDf Ď BDf , it suffices to show: I Ď V .

Let X :“ IzV . Want: X “ H.

Assume X ‰ H. Want: Contradiction.

Since V is open in I and since X “ IzV , we get: X is closed in I.

Since I “ pa; bq, we get: I is open in R.

Since X is closed in I and since I is open in R,

we get: X is locally compact and Hausdorff.

By hypothesis, f has PBED on I, so, since X “ IzV Ď I,

it follows that: f has PBED on X. Then: X Ď Dp8qf .

For all m P N, let Xm :“ tx P X | f has m-BED at xu.

Then, by continuity, we get: @m P N, Xm is closed in X.
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Since f has PBED on X, we get: X1

Ť

X2

Ť

X3

Ť

¨ ¨ ¨ “ X.

So, since X is nonH and locally compact and Hausdorff,

by the Baire Category Theorem,

choose M P N s.t. XM has nonH interior in X.

So, since X “ IzV Ď I “ pa; bq, by Theorem 7, choose c, d P ra; bs

s.t. c ă d and s.t. H ‰ pc; dq
Ş

X Ď XM .

Then: a ď c ă d ď b. Then: pc; dq Ď pa; bq.

Let J :“ pc; dq. Then: J is open in R, so J˝ “ J .

Also, J “ pc; dq Ď pa; bq “ I, so: J Ď I. Then JzV “ J
Ş

pIzV q.

Since JzV “ J
Ş

pIzV q “ J
Ş

X “ pc; dq
Ş

X,

we get: JzV “ pc; dq
Ş

X.

So, since H ‰ pc; dq
Ş

X Ď XM , we get: H ‰ JzV Ď XM .

Since JzV ‰ H, we get: J Ę V .

Since J Ę V “ IBDf

Ş

I and since J Ď I, we get: J Ę IBDf .

Since J˝ “ J Ę IBDf “ pBDf q
˝, we get J˝ Ę pBDf q

˝, and so J Ę BDf .

Then: JzBDf ‰ H. Let T :“ JzBDf . Then T ‰ H.

By hypothesis, f has PBED on I, so, since J Ď I,

it follows that: f has PBED on J . Then J Ď Dp8qf .

Then, by Theorem 40, we get: T is infinite.

Also, T “ JzBDf Ď J “ pc; dq, so T Ď pc; dq. Then T is bounded.

By Theorem 41, choose p, q, r P T s.t. p ă q ă r and s.t. r ´ p ď 1.

Then: p, q, r P T Ď pc; dq. Then: a ď c ă p ă q ă r ă d ď b.

Then: rp; rs Ď pc; dq. By Theorem 35, IBDf

Ş

J is dense in J .

Let W :“ IBDf

Ş

J . Then: W is dense in J .

Since J Ď I, we get: J “ I
Ş

J . Then W “ J
Ş

IBDf

Ş

I.

By definition of V , we have: V “ IBDf

Ş

I. Then: W “ J
Ş

V .

So, since JzV “ JzpJ
Ş

V q, we get: JzV “ JzW .

Recall: H ‰ JzV Ď XM .

Since JzW “ JzV Ď XM , we get: JzW Ď XM .

We have pp; rq Ď rp; rs Ď pc; dq “ J , so pp; rq Ď J .

Then: pp; rq is an open subset of J .

So, since W is dense in J , we get: W
Ş

pp; rq is dense in pp; rq.

We have p, q, r P T “ JzBDf . Then p, q, r R BDf .

Since p ă q ă r, we get: q P pp; rq.

Since q R BDf , we get: f does not have BD at q.

So, since q P pp; rq, we get: f does not have PBD on pp; rq.

Then f does not have UBD on pp; rq.

Then, by Theorem 32, f does not have UBED on pp; rq.
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Then: f does not have 2M -BED on pp; rq.

So, since pp; rq Ď J Ď Dp8qf and

since W
Ş

pp; rq is dense in pp; rq, by continuity,

we get: f does not have 2M -BED on W
Ş

pp; rq.

Choose w P W
Ş

pp; rq s.t. f does not have 2M -BED at w.

Then: a ď c ă p ă w ă r ă d ď b. Also, w P W .

By definition of W , we have: W “ IBDf

Ş

J .

So, since IBDf is open in R, we get: W is an open subset of J .

So, since J “ pc; dq, we get: W is an open subset of pc; dq.

Since p, r R BDf Ě IBDf Ě IBDf

Ş

J “ W , we get: p, r R W .

Let U be the connected component ofW s.t. w P U . Then: w P U Ď W .

By Theorem 6, choose s, t P rp; rszW s.t. s ă t and s.t. U “ ps; tq.

Then p ď s ă t ď r. Since w P U “ ps; tq, we get: s ă w ă t.

Then: a ď c ă p ď s ă w ă t ď r ă d ď b.

Since p ď s ă t ď r, we get: t´ s ď r ´ p.

So, since r ´ p ď 1, we get: t´ s ď 1.

Since ps; tq “ U Ď W “ IBDf

Ş

J Ď IBDf Ď BDf ,

we get: f has PBD on ps; tq.

Then, by Tao’s Theorem (Theorem 30), we get: f has UBD on ps; tq.

Then: f has UBED on ps; tq. Since M P N, we get: M ą 0.

Recall: JzW Ď XM and J “ pc; dq and rp; rs Ď pc; dq.

Since s, t P rp; rszW Ď pc; dqzW “ JzW Ď XM ,

by definition of XM , we get: f has M -BED on ts, tu.

Then, by Theorem 38, we get: f has 2M -BED on ps; tq.

So, since w P U “ ps; tq, we get: f has 2M -BED at w.

By choice of w, f does not have 2M -BED at w. Contradiction. �

DEFINITION 43. Let µ : R 99K R, I Ď R.

By µ is affine on I , we mean: I Ď Dµ and

Dm, c P R s.t., @x P I, µpxq “ mx` c.

THEOREM 44. Let µ : R 99K R, a, b P R.

Assume a ă b. Let I :“ pa; bq. Assume: I Ď Dµ.

Then:
`

µ is affine on I
˘

ô
`

µ2 “ 0 on I
˘

ô
`

@p, q P I, @t P r0; 1s,

µp p1´ tq ¨ p` t ¨ q q “ p1´ tq ¨ pµppqq` t ¨ pµpqqq
˘

.

The preceding result is basic. Its proof is left as an exercise.
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THEOREM 45. Let a, b P R. Assume a ă b. Let I :“ pa; bq.

Let λ0, λ1, λ2 . . . : I Ñ R. Assume: @j P N, λj is affine on I.

Let µ : I Ñ R. Assume: λj Ñ µ pointwise, as j Ñ 8.

Then: µ is affine on I.

Proof. Given p, q P I, t P r0; 1s, want:

µp p1´ tqp` tq q “ p1´ tq ¨ pµppqq ` t ¨ pµpqqq.

Since, @j P N0, λj is affine on I, we get:

@j P N0, λjp p1´ tqp` tq q “ p1´ tq ¨ pλjppqq ` t ¨ pλjpqqq.

So, letting j Ñ 8, by pointwise convergence, we get:

µp p1´ tqp` tq q “ p1´ tq ¨ pµppqq ` t ¨ pµpqqq. �

THEOREM 46. Let µ : R 99K R, I Ď R.

Assume: µ is affine on I. Then: µ is Lipschitz on I.

Proof. Choose m, c P R s.t., @x P I, µpxq “ mx` c.

Want: µ is |m|-Lipschitz on I.

Given p, q P I, want: |pµpqqq ´ pµppqq| ď |m| ¨ |q ´ p|.

We have: pµpqqq ´ pµppqq “ pmq ` cq ´ pmp` cq “ m ¨ pq ´ pq.

Then: |pµpqqq ´ pµppqq| “ |m ¨ pq ´ pq| “ |m| ¨ |q ´ p|.

Then: |pµpqqq ´ pµppqq| ď |m| ¨ |q ´ p|. �

THEOREM 47. Let φ : R 99K R, a, b P R, M ě 0.

Assume: a ă b. Let I :“ pa; bq. Assume: φ is M-Lipschitz on I.

Let c P I. Let M 1 :“ |φpcq| `M ¨ pb´ aq. Then: |φ| ďM 1 on I.

Proof. Given x P I, want: |φpxq| ďM 1.

Since c, x P I “ pa; bq, we get: |x´ c| ă b´ a.

So, since M ě 0, we get: M ¨ |x´ c| ďM ¨ pb´ aq.

Since φ is M -Lipschitz on I, we get: |pφpxqq ´ pφpcqq| ďM ¨ |x´ c|.

Then: |φpxq| “ |rφpcqs ` rpφpxqq ´ pφpcqqs| ď |φpcq| ` |pφpxqq ´ pφpcqq|

ď |φpcq| `M ¨ |x´ c| ď |φpcq| `M ¨ pb´ aq “M 1. �

THEOREM 48. Let f : R 99K R, a, b P R, M ě 0.

Assume: a ă b. Let I :“ pa; bq. Assume: φ is Lipschitz on I.

Then: φ is bounded and continuous on I.

Proof. Since φ is Lipschitz on I, we get: φ is continuous on I.

It remains to show: φ is bounded on I.

Since φ is Lipschitz on I, choose M ě 0 s.t. φ is M -Lipschitz on I.

Let c :“ pa` bq{2. Then c P I. Let M 1 :“ |φpcq| `M ¨ pb´ aq.

By Theorem 47, we get: |φ| ďM 1 on I. Then φ is bounded on I. �
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DEFINITION 49. Let f : R 99K R, a, b P R.

Assume: a ă b. Let I :“ pa; bq. Let c :“ pa` bq{2.

Assume: f is bounded and measurable on I.

Then f#
I : I Ñ R is defined by: @x P I, f#

I pxq “

ż x

c

f .

THEOREM 50. Let f : R 99K R, a, b P R.

Assume: a ă b. Let I :“ pa; bq.

Assume: f is bounded and continuous on I.

Then: pf#q1 “ f on I.

Theorem 50 is a case of the Fundamental Theorem of Calculus.

THEOREM 51. Let a, b P R. Assume: a ă b. Let I :“ pa; bq.

Let f0, f1, f2, . . . : I Ñ R be measurable. Let g : I Ñ R.

Let M ě 0. Assume: @j P N0, |fj| ďM on I.

Assume: fj Ñ g pointwise on I, as j Ñ 8.

Then: g is bounded and measurable on I and

pfjq
#
I Ñ g#I pointwise on I, as j Ñ 8.

Proof. Since @j P N0, |fj| ďM on I

and since fj Ñ g pointwise on I, as j Ñ 8,

we get |g| ďM on I, so g is bounded on I.

Since a pointwise limit of measurable functions is measurable,

we get: g is measurable on I.

It remains to show: pfjq
#
I Ñ g#I pointwise on I, as j Ñ 8.

Given x P I, want: pfjq
#
I pxq Ñ g#I pxq, as j Ñ 8.

Let c :“ pa` bq{2. Then: g#I pxq “

ż x

c

g.

Also, we have: @j P N0, pfjq
#
I pxq “

ż x

c

fj

Since @j P N0, |fj| ďM on I and

since fj Ñ g pointwise on I, as j Ñ 8,

by the Dominated Convergence Theorem, we get:
ż x

c

fj Ñ

ż x

c

g, as j Ñ 8.

Then: pfjq
#
I pxq Ñ g#I pxq, as j Ñ 8. �

THEOREM 52. Let f : R 99K R, a, b P R, M ě 0.

Assume: a ă b. Let I :“ pa; bq.
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Assume: f is measurable on I. Assume: |f | ďM on I.

Then: f#
I is M-Lipschitz on I.

Proof. Given s, t P I, assume s ă t,

want: |pf#
I ptqq ´ pf

#
I psqq| ďM ¨ pt´ sq.

Since s, t P I and since I is an interval, we get: rs; ts Ď I.

Then: |f | ďM on rs; ts. Let c :“ pa` bq{2.

Then: pf#
I ptqq ´ pf

#
I psqq “

ˆ
ż t

c

f

˙

´

ˆ
ż s

c

f

˙

“

ż t

s

f .

Then: |pf#
I ptqq ´ pf

#
I psqq| ď

ż t

s

|f |.

So, since |f | ďM on rs; ts, we get: |pf#
I ptqq ´ pf

#
I psqq| ď

ż t

s

M .

Then: |pf#
I ptqq ´ pf

#
I psqq| ďM ¨ pt´ sq. �

THEOREM 53. Let f : R 99K R, a, b P R.

Assume a ă b. Let I :“ pa; bq.

Assume: f is bounded and measurable on I.

Then: f#
I is bounded and continuous on I.

Proof. Since f is bounded on I, choose M ě 0 s.t. |f | ďM on I.

By Theorem 52, f#
I is M -Lipschitz on I, so f#

I is Lipschitz on I.

Then, by Theorem 48, f#
I is bounded and continuous on I. �

DEFINITION 54. Let f : R 99K R, a, b P R.

Assume a ă b. Let I :“ pa; bq.

Assume: f is bounded and measurable on I.

Then: f##
I :“ pf#

I q
#
I .

Implicit in Definition 54 is that, by Theorem 53,

f#
I is bounded and continuous on I,

and so f#
I is bounded and measurable on I.

THEOREM 55. Let g : R 99K R, a, b P R.

Assume: a ă b. Let I :“ pa; bq.

Assume: g is bounded and continuous on I.

Then: pg##
I q2 “ g on I.

Proof. By Theorem 50, we get: pg#I q
1 “ g on I.

Let h :“ g#I . Then h1 “ g.

Since g is continuous on I, we get: g is measurable on I.
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Then, by Theorem 53, we get: g#I is bounded and continuous on I.

So, since h “ g#I , we get: h is bounded and continuous on I.

So, by Theorem 50, we get: ph#I q
1 “ h on I.

So, since h1 “ g on I, we get: ph#I q
2 “ g on I.

Then: pg##
I q2 “ ppg#I q

#
I q
2 “ ph#I q

2 “ g on I. �

THEOREM 56. Let f : R 99K R, a, b P R.

Assume: a ă b. Let I :“ pa; bq. Assume: I Ď Dp2qf .

Assume: f2 is bounded and continuous on I.

Then: pf2q##
I ´ f is affine on I.

Proof. Let φ :“ pf2q##
I . Want: φ´ f is affine on I.

Want: pφ´ fq2 “ 0 on I. Want: φ2 “ f2 on I.

Let g :“ f2. By hypothesis, g is bounded and continuous on I.

Then, by Theorem 55, we get: pg##
I q2 “ g on I.

Then: φ2 “ ppf2q##
I q2 “ pg##

I q2 “ g “ f2 on I. �

THEOREM 57. Let a, b P R. Assume a ă b. Let I :“ pa; bq.

Let S :“ C8pI,Rq. Define L : S Ñ S by: @h P S, Lh “ h2.

Let f P S. Let g : I Ñ R. Assume f, Lf, L2f, . . .Ñ g pointwise on I.

Then: g P S and Lg “ g.

Proof. It suffices to show: g2 “ g.

We have: @j P N0, Ljf “ f p2jq.

Then: f p2jq Ñ g pointwise on I, as j Ñ 8.

It follows that: f has PBED on I.

Then, by Theorem 42, we get: f has PBD on I.

Then, by Tao’s Theorem (Theorem 30), we get: f has UBD on I.

Then: f has UBED on I. Choose M ě 0 s.t. f has M -BED on I.

Then: @j P N0, |f p2jq| ďM on I.

For all j P N0, let fj :“ Ljf . Then: @j P N0, fj “ f p2jq.

Then: fj Ñ g pointwise on I, as j Ñ 8.

Also, @j P N0, |fj| ďM on I.

Then, since fj Ñ g pointwise on I, as j Ñ 8, by Theorem 51,

g is bounded and measurable on I and

pfjq
#
I Ñ g#I pointwise on I, as j Ñ 8.

By Theorem 52, we get: @j P N0, pfjq
#
I is M -Lipschitz on I.

Let c :“ pa` bq{2. Then: @j P N0, pfjq
#
I pcq “ 0.

Let M 1 :“M ¨ pb´ aq. Then M 1 ě 0.

Also, @j P N0, M 1 “ |pfjq
#
I pcq| `M ¨ pb´ aq.
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Then, by Theorem 47, we get: @j P N0, |pfjq
#
I | ďM 1 on I.

Then, since pfjq
#
I Ñ g#I pointwise on I, as j Ñ 8, by Theorem 51,

g#I is bounded and measurable on I and

pfjq
##
I Ñ g##

I pointwise on I, as j Ñ 8.

Recall: fj Ñ g pointwise on I, as j Ñ 8.

Then: pf2j q
##
I ´ fj Ñ g##

I ´ g pointwise on I, as j Ñ 8.

For all j P N0, let λj :“ pf2j q
##
I ´ fj. Let µ :“ g##

I ´ g.

Then λj Ñ µ pointwise on I, as j Ñ 8. Also, g “ g##
I ´ µ.

Since f P S “ C8pI,Rq and

since @j P N0, f2j “ pL
jfq2 “ pf p2jqq2 “ f p2j`2q, we conclude:

@j P N0, I Ď Dp2qfj and f2j is continuous on I.

We have: @j P N0, f2j “ Lfj “ LLjf “ Lj`1f “ fj`1.

Then: @j P N0, |f2j | “ |fj`1| ďM on I.

Then: @j P N0, f2j is bounded on I.

Then, by Theorem 56, we have: @j P N0, pf2j q
##
I ´ fj is affine on I.

So, since @j P N0, λj “ pf
2
j q

##
I ´ fj,

we get: @j P N0, λj is affine on I.

So, since λj Ñ µ pointwise on I, as j Ñ 8,

by Theorem 45, we get: µ is affine on I.

So, by Theorem 46, we get: µ is Lipschitz on I.

Then, by Theorem 48, we get: µ is bounded and continuous on I.

Recall: g#I is bounded and measurable on I.

So, by Theorem 53, g##
I is bounded and continuous on I.

Then, since g “ g##
I ´µ, we get: g is bounded and continuous on I.

Then, by Theorem 55, we get: pg##
I q2 “ g.

Since µ is affine on I, we get: µ2 “ 0.

Then, by subtracting, we get: pg##
I ´ µq2 “ g.

So, since g “ g##
I ´ µ, we get: g2 “ g. �


