Points of Density and Continuity in Probability

The main results in this note are:
Theorem 18, Theorem 22, Theorem 24.
DEFINITION 1. Let \mathcal{S} be a set of sets.

$$
\text { Then: } \quad \bigcup \mathcal{S}:= \begin{cases}\varnothing, & \text { if } \mathcal{S}=\varnothing \\ \bigcup_{S \in \mathcal{S}} S, & \text { if } \mathcal{S} \neq \varnothing\end{cases}
$$

We make a similar convention that an empty sum is equal to 0 .
DEFINITION 2. We define $\# \varnothing:=0$.
For any nonempty finite set S,
$\# S$ denotes the number of elements in S.
For any infinite set S, we define $\# S:=\infty$.
DEFINITION 3. Let $\mathbb{R}^{*}:=\{-\infty\} \bigcup \mathbb{R} \bigcup\{\infty\}$.
For all $a, b \in \mathbb{R}^{*}$, let

$$
\begin{aligned}
(a ; b) & :=\left\{x \in \mathbb{R}^{*} \mid a<x<b\right\}, & {[a ; b) } & :=\left\{x \in \mathbb{R}^{*} \mid a \leqslant x<b\right\}, \\
(a ; b] & :=\left\{x \in \mathbb{R}^{*} \mid a<x \leqslant b\right\}, & {[a ; b] } & :=\left\{x \in \mathbb{R}^{*} \mid a \leqslant x \leqslant b\right\} .
\end{aligned}
$$

DEFINITION 4. For all $x \in \mathbb{R}^{2}$, for all $r>0$, let

$$
B_{x}^{r}:=\left\{y \in \mathbb{R}^{2} \text { s.t. }|y-x|<r\right\} .
$$

That is: $\quad B_{x}^{r}$ is the open disk about x of radius r.
Let $\quad \mathcal{B}:=\left\{B_{x}^{r} \mid x \in \mathbb{R}^{2}, r>0\right\}$.
Let \mathcal{T} denote the standard topology on \mathbb{R}^{2}, so \mathcal{T} is the set of open subsets of \mathbb{R}^{2}.
Then: $\quad \forall U \in \mathcal{T}, U$ is Lebesgue-measurable. Also, $\mathcal{B} \subseteq \mathcal{T} \backslash\{\varnothing\}$.
DEFINITION 5. Let $x \in \mathbb{R}^{2}, \quad r>0, \quad C:=B_{x}^{r}$.

$$
\text { Then: } \quad \begin{aligned}
\operatorname{rad} C & :=r \quad \text { and } \quad \operatorname{cent} C:=x \quad \text { and } \\
& \forall s>0, \quad s \cdot C:=B_{x}^{s \cdot r} .
\end{aligned}
$$

According to the next theorem, if two disks meet, then the triple of the larger covers the smaller.

THEOREM 6. Let $F, G \in \mathcal{B}$.
Assume: $\quad \operatorname{rad} F \leqslant \operatorname{rad} G$ and $F \bigcap_{1} G \neq \varnothing . \quad$ Then: $\quad 3 \cdot G \supseteq F$.

Proof. \quad Given $a \in F, \quad$ want: $a \in 3 \cdot G$.
Since $F \bigcap G \neq \varnothing$, choose $p \in F \bigcap G$. Then: $p \in F$ and $p \in G$.
Let $\quad x:=\operatorname{cent} F, \quad y:=\operatorname{cent} G, \quad r:=\operatorname{rad} F, \quad s:=\operatorname{rad} G$.
Then, by hypothesis, we have: $r \leqslant s$.
Also, $\quad F=B_{x}^{r} \quad$ and $\quad G=B_{y}^{s} \quad$ and $\quad 3 \cdot G=B_{y}^{3 s}$.
Want: $a \in B_{y}^{3 s}$. Want: $|a-y|<3 s$.
Since $a \in F=B_{x}^{r}$, we get: $\quad|a-x|<r$.
Since $p \in F=B_{x}^{r}$, we get: $\quad|p-x|<r$.
Since $p \in G=B_{y}^{s}$, we get: $\quad|p-y|<s$.
Since $r \leqslant s$, we get: $\quad r+r+s \leqslant 3 s$.
Then $|a-y| \leqslant|a-x|+|x-p|+|p-y|<r+r+s \leqslant 3 s$.
Let $\mathbb{N}:=\{1,2,3, \ldots\}$ be the set of positive integers.
We use "pw-dj" to abbreviate "pairwise-disjoint".
For any set \mathcal{S} of sets, by \mathcal{S} is pw-dj,

$$
\text { we mean: } \quad \forall S, T \in \mathcal{S}, \quad(S \neq T) \Rightarrow(S \bigcap T=\varnothing) \text {. }
$$

For any sequence $\left(S_{1}, S_{2}, \ldots\right)$ of sets, by $\left(S_{1}, S_{2}, \ldots\right)$ is pw-dj .

$$
\text { we mean: } \quad \forall i, j \in \mathbb{N}, \quad(i \neq j) \Rightarrow\left(S_{i} \bigcap S_{j}=\varnothing\right) \text {. }
$$

For any $\mathcal{C} \subseteq \mathcal{B}, \quad$ for any $s>0, \quad$ we define: $s \cdot \mathcal{C}:=\{s \cdot C \mid C \in \mathcal{C}\}$.

THEOREM 7. Let $\mathcal{F} \subseteq \mathcal{B}$. Assume \mathcal{F} is finite.
Then: $\quad \exists p w-d j \mathcal{E} \subseteq \mathcal{F}$ s.t. $\bigcup(3 \cdot \mathcal{E}) \supseteq \bigcup \mathcal{F}$.
Proof. Let $n:=\# \mathcal{F}$.
In case $n=0$, let $\mathcal{E}:=\varnothing . \quad$ We therefore assume $n \geqslant 1$.
By induction on n, we also assume: $\forall \mathcal{Q} \subseteq \mathcal{B}$,

$$
(\# \mathcal{Q}<n) \Rightarrow(\exists \mathrm{pw}-\mathrm{dj} \mathcal{P} \subseteq \mathcal{Q} \text { s.t. } \bigcup(3 \cdot \mathcal{P}) \supseteq \bigcup \mathcal{Q}) .
$$

Let $R:=\{\operatorname{rad} F \mid F \in \mathcal{F}\} . \quad$ Then R is a finite subset of \mathbb{R}.
Let $r:=\max R$. Then $r \in R, \quad$ so choose $G \in \mathcal{F}$ s.t. $\operatorname{rad} G=r$.
Since $G \in \mathcal{F} \subseteq \mathcal{B} \subseteq \mathcal{T} \backslash\{\varnothing\}$, we get: $\quad G \neq \varnothing$.
Let $\mathcal{Q}:=\{F \in \mathcal{F} \mid F \bigcap G=\varnothing\}$. Then $\mathcal{Q} \subseteq \mathcal{F}$ and $G \notin \mathcal{Q}$.
Then $\quad \mathcal{Q} \subseteq \mathcal{F} \backslash\{G\}, \quad$ so: $\quad \# \mathcal{Q} \leqslant \#(\mathcal{F} \backslash\{G\})$.
Since $G \in \mathcal{F}$ and since \mathcal{F} is finite, we get: $\#(\mathcal{F} \backslash\{G\})<\# \mathcal{F}$.
Since $\# \mathcal{Q} \leqslant \#(\mathcal{F} \backslash\{G\})<\# \mathcal{F}=n$, by the induction assumption,

$$
\text { choose } \quad \text { a pw-dj } \mathcal{P} \subseteq \mathcal{Q} \text { s.t. } \bigcup(3 \cdot \mathcal{P}) \supseteq \bigcup \mathcal{Q} \text {. }
$$

Since $\quad \mathcal{P} \subseteq \mathcal{Q}, \quad$ by definition of \mathcal{Q},
we get: $\quad \forall P \in \mathcal{P}, \quad P \bigcap G=\varnothing$.
So, since \mathcal{P} is pw-dj, we get: $\mathcal{P} \bigcup\{G\}$ is pw-dj.

Since $\mathcal{P} \subseteq \mathcal{Q} \subseteq \mathcal{F} \quad$ and since $G \in \mathcal{F}, \quad$ we get: $\quad \mathcal{P} \bigcup\{G\} \subseteq \mathcal{F}$.
Let $\mathcal{E}:=\mathcal{P} \bigcup\{G\}$. Then: \mathcal{E} is pw-dj and $\mathcal{E} \subseteq \mathcal{F}$.
It remains only to show: $\bigcup(3 \cdot \mathcal{E}) \supseteq \bigcup \mathcal{F}$.
Want: $\forall F \in \mathcal{F}, \quad F \subseteq \bigcup(3 \cdot \mathcal{E})$.
Given $\quad F \in \mathcal{F}$, want: $F \subseteq \bigcup(3 \cdot \mathcal{E})$.
Case 1: $F \in \mathcal{Q}$. Proof in Case 1:
Since $\mathcal{P} \subseteq \mathcal{P} \bigcup\{G\}=\mathcal{E}$, we get $3 \cdot \mathcal{P} \subseteq 3 \cdot \mathcal{E}$, so $\quad \bigcup(3 \cdot \mathcal{P}) \subseteq \bigcup(3 \cdot \mathcal{E})$.
By the choice of \mathcal{P}, we have:
Since $F \in \mathcal{Q}$, we get:
$\bigcup(3 \cdot \mathcal{P}) \supseteq \bigcup \mathcal{Q}$.
$F \subseteq \bigcup \mathcal{Q}$.

Then: $\quad F \subseteq \bigcup \mathcal{Q} \subseteq \bigcup(3 \cdot \mathcal{P}) \subseteq \bigcup(3 \cdot \mathcal{E})$.
End of proof in Case 1.
Case 2: $F \notin \mathcal{Q} . \quad$ Proof in Case 2: Recall: $F \in \mathcal{F}$.
So, by definition of R, we have: $\operatorname{rad} F \in R$. Then $\operatorname{rad} F \leqslant \max R$.
Since $\quad F \in \mathcal{F}$ and $F \notin \mathcal{Q}, \quad$ by definition of \mathcal{Q}, \quad we get: $F \bigcap G \neq \varnothing$.
So, \quad since $\quad \operatorname{rad} F \leqslant \max R=r=\operatorname{rad} G$,
by Theorem 6 , we get: $\quad 3 \cdot G \supseteq F$.
Since $G \in \mathcal{P} \bigcup\{G\}=\mathcal{E}$, we get $3 \cdot G \in 3 \cdot \mathcal{E}$, so $\quad 3 \cdot G \subseteq \bigcup(3 \cdot \mathcal{E})$.
Then: $\quad F \subseteq 3 \cdot G \subseteq \bigcup(3 \cdot \mathcal{E})$.
End of proof in Case 2.
Let λ denote Lebesgue-outer-measure on \mathbb{R}^{2}.

THEOREM 8.

Let $\left(A_{1}, A_{2}, \ldots\right)$ be a sequence of Lebesgue-measurable subsets of \mathbb{R}^{2}.
Then: as $k \rightarrow \infty, \quad \lambda\left(A_{1} \bigcup \cdots \bigcup A_{k}\right) \rightarrow \lambda\left(A_{1} \bigcup A_{2} \bigcup \cdots\right)$.
Proof. For all $\quad k \in \mathbb{N}$, let $\quad D_{k}:=A_{k} \backslash\left(A_{1} \bigcup \cdots \bigcup A_{k-1}\right)$.
Then, $\quad \forall k \in \mathbb{N}, \quad D_{k}$ is Lebesgue-measurable and, $\quad \forall k \in \mathbb{N}, \quad D_{1} \bigcup \cdots \bigcup D_{k}=A_{1} \bigcup \cdots \bigcup A_{k}$ and $\quad D_{1} \bigcup D_{2} \bigcup \cdots=A_{1} \bigcup A_{2} \bigcup \cdots$ and $\quad\left(D_{1}, D_{2}, \ldots\right)$ is pw-dj.
Since $\quad\left(D_{1}, D_{2}, \ldots\right)$ is pw-dj, by countable-additivity of λ, we get

$$
\lambda\left(D_{1} \bigcup D_{2} \bigcup \cdots\right)=\left(\lambda\left(D_{1}\right)\right)+\left(\lambda\left(D_{2}\right)\right)+\cdots ;
$$

also, by finite-additivity of λ, we get

$$
\forall k \in \mathbb{N}, \quad \lambda\left(D_{1} \cup \cdots \bigcup D_{k}\right)=\left(\lambda\left(D_{1}\right)\right)+\cdots+\left(\lambda\left(D_{k}\right)\right)
$$

By definition of infinite-summation, we have

$$
\text { as } k \rightarrow \infty, \quad\left(\lambda\left(D_{1}\right)\right)+\cdots+\left(\lambda\left(D_{k}\right)\right) \rightarrow\left(\lambda\left(D_{1}\right)\right)+\left(\lambda\left(D_{2}\right)\right)+\cdots .
$$

Then: \quad as $k \rightarrow \infty, \quad \lambda\left(D_{1} \bigcup \cdots \bigcup D_{k}\right) \rightarrow \lambda\left(D_{1} \bigcup D_{2} \bigcup \cdots\right)$.
Then: \quad as $k \rightarrow \infty, \quad \lambda\left(A_{1} \bigcup \cdots \bigcup A_{k}\right) \rightarrow \lambda\left(A_{1} \bigcup A_{2} \bigcup \cdots\right)$.
The next result says: for any collection of open disks, if its union has finite Lebesgue-measure, then
\exists finite pw-dj subcollection that covers at least 10% of that union.
THEOREM 9. Let $\mathcal{A} \subseteq \mathcal{B}$. Assume: $\lambda(\bigcup \mathcal{A})<\infty$.
Then: $\quad \exists$ finite $p w-d j \mathcal{E} \subseteq \mathcal{A} \quad$ s.t. $\quad \lambda(\bigcup \mathcal{E}) \geqslant 0.1 \cdot(\lambda(\bigcup \mathcal{A}))$.
Proof. In case $\lambda(\bigcup \mathcal{A})=0, \quad$ let $\mathcal{E}:=\varnothing$.
We therefore assume $\lambda(\bigcup \mathcal{A}) \neq 0$. Then $\lambda(\bigcup \mathcal{A})>0$.
By hypothesis, $\lambda(\bigcup \mathcal{A})<\infty$. Let $c:=\lambda(\bigcup \mathcal{A})$.

$$
\text { Then } 0<c<\infty \text {. Then: } 0.9 \cdot c<c \text {. }
$$

Since $\bigcup \mathcal{A}$ is Lindelöf, choose $A_{1}, A_{2}, \ldots \in \mathcal{A}$ s.t. $\quad A_{1} \bigcup A_{2} \bigcup \cdots=\bigcup \mathcal{A}$.

Since $\quad A_{1}, A_{2}, \ldots \in \mathcal{A} \subseteq \mathcal{B} \subseteq \mathcal{T}$, we get:
$\left(A_{1}, A_{2}, \ldots\right)$ is a sequence of Lebesgue-measurable subsets of \mathbb{R}^{2}.
So, by Theorem 8, we have:
as $k \rightarrow \infty, \quad \lambda\left(A_{1} \bigcup \cdots \bigcup A_{k}\right) \rightarrow \lambda\left(A_{1} \bigcup A_{2} \bigcup \cdots\right)$.
So, since $\quad 0.9 \cdot c<c=\lambda(\bigcup \mathcal{A})=\lambda\left(A_{1} \bigcup A_{2} \bigcup \cdots\right)$,
choose $k \in \mathbb{N}$ s.t. $\lambda\left(A_{1} \bigcup \cdots \bigcup A_{k}\right) \geqslant 0.9 \cdot c$.
Let $\mathcal{F}:=\left\{A_{1}, \ldots, A_{k}\right\}$. Then $\quad \lambda(\bigcup \mathcal{F}) \geqslant 0.9 \cdot c \quad$ and $\quad \mathcal{F} \subseteq \mathcal{A}$.
Also, \mathcal{F} is finite, so, since $\mathcal{F} \subseteq \mathcal{A} \subseteq \mathcal{B}$, by Theorem 7,
choose a pw-dj $\mathcal{E} \subseteq \mathcal{F}$ s.t. $\bigcup(3 \cdot \mathcal{E}) \supseteq \bigcup \mathcal{F}$.
Since $\mathcal{E} \subseteq \mathcal{F} \quad$ and \quad since \mathcal{F} is finite, we get: \mathcal{E} is finite.
Since $\mathcal{E} \subseteq \mathcal{F} \subseteq \mathcal{A}$, it remains only to show: $\lambda(\bigcup \mathcal{E}) \geqslant 0.1 \cdot(\lambda(\bigcup \mathcal{A}))$.
Since $c=\lambda(\bigcup \mathcal{A})$, we want: $\lambda(\bigcup \mathcal{E}) \geqslant 0.1 \cdot c$.
We have: $\quad \forall B \in \mathcal{B}, \quad \lambda(3 \cdot B)=9 \cdot(\lambda(B))$.
Since $\bigcup \mathcal{F} \subseteq \bigcup(3 \cdot \mathcal{E})$, by monotonicity and subadditivity of λ, $\lambda(\bigcup \mathcal{F}) \leqslant \sum_{E \in \mathcal{E}}(\lambda(3 \cdot E))$.
Since $\lambda(\bigcup \mathcal{F}) \leqslant \sum_{E \in \mathcal{E}}(\lambda(3 \cdot E))=\sum_{E \in \mathcal{E}}(9 \cdot(\lambda(E)))=9 \cdot \sum_{E \in \mathcal{E}}(\lambda(E))$,
we get: $\quad(1 / 9) \cdot(\lambda(\bigcup \mathcal{F})) \leqslant \sum_{E \in \mathcal{E}}(\lambda(E))$.
Since $\mathcal{E} \subseteq \mathcal{B} \subseteq \mathcal{T}$, we get: $\quad \forall E \in \mathcal{E}, \quad E$ is Lebesgue-measurable.
So, since \mathcal{E} is finite and pw-dj, by finite-additivity of λ, we get:

$$
\lambda(\bigcup \mathcal{E})=\sum_{E \in \mathcal{E}}(\lambda(E))
$$

Since $\lambda(\bigcup \mathcal{F}) \geqslant 0.9 \cdot c$, we get: $\quad(1 / 9) \cdot(\lambda(\bigcup \mathcal{F})) \geqslant 0.1 \cdot c$.
Then $\quad \lambda(\bigcup \mathcal{E})=\sum_{E \in \mathcal{E}}(\lambda(E)) \geqslant(1 / 9) \cdot(\lambda(\bigcup \mathcal{F})) \geqslant 0.1 \cdot c$.
Let A and B be sets.
By B is a superset of A, we will mean: $B \supseteq A$.
Let \mathcal{B} be a set of sets and let A be a set.
By \mathcal{B} is a covering of A, we will mean:
$\bigcup \mathcal{B}$ is a superset of A.
DEFINITION 10. Let $Q \subseteq \mathbb{R}^{2}, \quad \mathcal{V} \subseteq \mathcal{B}$.
By \mathcal{V} is a fine-covering of Q, we mean:
$\forall x \in Q, \quad \forall \delta>0, \quad \exists V \in \mathcal{V}$ s.t. $\quad(x \in V) \&(\operatorname{rad} V<\delta)$.
NOTE: A fine-covering is a covering, i.e.: $\forall Q \subseteq \mathbb{R}^{2}, \quad \forall \mathcal{V} \subseteq \mathcal{B}$,
if \mathcal{V} is a fine-covering of Q, \quad then $\quad \bigcup \mathcal{V} \supseteq Q$.
Let Q be a set and let \mathcal{P} be a set of sets. We'll say

$$
\mathcal{P} \text { is inside } Q \quad \text { if: } \quad \bigcup \mathcal{P} \subseteq Q .
$$

According to the next theorem, for any fine-covering $\mathcal{V} \subseteq \mathcal{B}$ of a set $Q \subseteq \mathbb{R}^{2}$, for any open $W \subseteq \mathbb{R}^{2}$,
there is a subset of \mathcal{V} that is both inside W and a fine-covering of $Q \bigcap W$.

THEOREM 11. Let $\quad Q, W \subseteq \mathbb{R}^{2}, \quad \mathcal{V} \subseteq \mathcal{B}$.
Assume: $\quad W \in \mathcal{T}$ and \mathcal{V} is a fine-covering of Q.
Let $\mathcal{V}^{\prime}:=\{V \in \mathcal{V} \mid V \subseteq W\}$. Then: \mathcal{V}^{\prime} is a fine-covering of $Q \bigcap W$.
Proof. Given $\quad x \in Q \bigcap W, \quad \delta>0$,
want: $\quad \exists V \in \mathcal{V}^{\prime}$ s.t. $(x \in V) \&(\operatorname{rad} V<\delta)$.
Since $\quad x \in Q \bigcap W \subseteq W$ and $W \in \mathcal{T}, \quad$ choose $\beta>0 \quad$ s.t. $\quad B_{x}^{\beta} \subseteq W$.
Let $\alpha:=\min \{\beta / 2, \delta\}$. Then $\alpha>0$ and $\alpha \leqslant \beta / 2$ and $\alpha \leqslant \delta$.
Since $\quad x \in Q \bigcap W \subseteq Q$ and $\alpha>0$ and \mathcal{V} is a fine-covering of Q, choose $\quad V \in \mathcal{V} \quad$ s.t. $\quad(x \in V) \&(\operatorname{rad} V<\alpha)$.
Since $\operatorname{rad} V<\alpha \leqslant \delta, \quad$ it remains only to show: $V \in \mathcal{V}^{\prime}$.

By definition of $\mathcal{V}^{\prime}, \quad$ since $V \in \mathcal{V}, \quad$ we wish to show: $\quad V \subseteq W$. Given $v \in V, \quad$ want: $v \in W$.
Since $B_{x}^{\beta} \subseteq W$, it suffices to show: $v \in B_{x}^{\beta}$. Want: $|v-x|<\beta$.
Since $V \in \mathcal{V} \subseteq \mathcal{B}, \quad$ choose $c \in \mathbb{R}^{2}$ and $r>0$ s.t. $V=B_{c}^{r}$.
Since $v, x \in V=B_{c}^{r}$, we get: $\quad|v-c|<r$ and $|x-c|<r$.
Since $r=\operatorname{rad} B_{c}^{r}=\operatorname{rad} V<\alpha \leqslant \beta / 2$, we get: $2 r<\beta$.
Then: $\quad|v-x| \leqslant|v-c|+|c-x|<r+r=2 r<\beta$.
According to the next theorem,
for any fine-covering $\mathcal{V} \subseteq \mathcal{B}$ of a set $Q \subseteq \mathbb{R}^{2}$,
for any open $W \subseteq \mathbb{R}^{2} \quad$ that is a superset of Q,
there is a subset of \mathcal{V} that is
both inside W and a fine-covering of Q.
THEOREM 12. Let $\quad W \subseteq \mathbb{R}^{2}, \quad Q \subseteq W, \quad \mathcal{V} \subseteq \mathcal{B}$.
Assume: $\quad W \in \mathcal{T}$ and \mathcal{V} is a fine-covering of Q.
Let $\mathcal{V}^{\prime}:=\{V \in \mathcal{V} \mid V \subseteq W\}$. Then: \mathcal{V}^{\prime} is a fine-covering of Q.
Proof. Since $Q \subseteq W$, we get:
So, by Theorem 11, we get: $\quad \mathcal{V}^{\prime}$ is a fine-covering of Q.
According to the Carathéodory-condition,
$\forall Q \subseteq \mathbb{R}^{2}, \quad Q$ is Lebesgue-measurable iff $\forall S \subseteq \mathbb{R}^{2}, \quad \lambda(S)=[\lambda(S \bigcap Q)]+[\lambda(S \backslash Q)]$.
That is: $\quad Q$ is Lebesgue-measurable iff $\quad Q$ "splits all sets well".

According to the next theorem,
for any $Q \subseteq \mathbb{R}^{2}$ of finite Lebesgue-outer-measure,
for any fine-covering \mathcal{V} of Q,
there is a finite pw-dj subset of \mathcal{V} covering at least 1% of Q.
THEOREM 13. Let $\quad Q \subseteq \mathbb{R}^{2}, \quad \mathcal{V} \subseteq \mathcal{B}$.
Assume: \mathcal{V} is a fine-covering of Q. Assume: $\quad \lambda(Q)<\infty$.
Then: $\quad \exists$ finite $p w-d j \mathcal{E} \subseteq \mathcal{V} \quad$ s.t. $\quad \lambda(Q \bigcap(\bigcup \mathcal{E})) \geqslant 0.01 \cdot(\lambda(Q))$.
Idea of proof: In case $\lambda(Q)=0$, let $\mathcal{E}:=\varnothing, \quad$ so assume $\lambda(Q)>0$.
Let $\varepsilon:=0.1 \cdot(\lambda(Q))$. By outer-regularity of λ, choose $W \in \mathcal{T}$
s.t. $\quad W \supseteq Q \quad$ and $\quad \lambda(W) \leqslant(\lambda(Q))+\varepsilon$.

Then: $\quad W$ approximates Q in measure, to within ε.
By Theorem 12, choose a fine-covering $\mathcal{V}^{\prime} \subseteq \mathcal{V}$, inside W, of Q.
Since $Q \subseteq \bigcup \mathcal{V}^{\prime} \subseteq W$ and since W approximates Q in measure,
we conclude that: $\quad \bigcup \mathcal{V}^{\prime}$ also approximates Q in measure.
By Theorem 9, choose a finite pw-dj $\mathcal{E} \subseteq \mathcal{V}^{\prime} \quad$ s.t.

$$
\mathcal{E} \text { covers at least } 10 \% \quad \text { of } \bigcup \mathcal{V}^{\prime} .
$$

There are details to check, but,
assuming our choice of $\varepsilon=0.1 \cdot(\lambda(Q))$ is small enough, i.e., assuming $\bigcup \mathcal{V}^{\prime}$ approximates Q sufficiently closely in measure, then, because \mathcal{E} covers at least 10% of $\bigcup \mathcal{V}^{\prime}$, it will follow that \mathcal{E} covers at least 1% of Q. QED

Proof. In case $\lambda(Q)=0$, let $\mathcal{E}:=\varnothing$. We therefore assume $\lambda(Q) \neq 0$. Then $\lambda(Q)>0$. By hypothesis, $\lambda(Q)<\infty$. Let $b:=\lambda(Q)$.

Then $0<b<\infty$. Then: $1.1 \cdot b>b$.
Since $1.1 \cdot b>b=\lambda(Q), \quad$ by outer-regularity of λ,
choose $\quad W \in \mathcal{T} \quad$ s.t. $\quad W \supseteq Q$ and $\lambda(W) \leqslant 1.1 \cdot b$.
Let $\mathcal{V}^{\prime}:=\{V \in \mathcal{V} \mid V \subseteq W\}$. Then $\mathcal{V}^{\prime} \subseteq \mathcal{V}$. Also, $\bigcup \mathcal{V}^{\prime} \subseteq W$.
Let $V:=\bigcup \mathcal{V}^{\prime}$. Then: $V \subseteq W$.
So, by monotonicity of λ,
Let $c:=\lambda(V)$.
we get: $\quad \lambda(V) \leqslant \lambda(W)$.
Since $c \leqslant \lambda(W) \leqslant 1.1 \cdot b$,
Then: $\quad c \leqslant \lambda(W)$.

So, \quad since $b<\infty$,
we get: $c \leqslant 1.1 \cdot b$.
Since $\mathcal{A}=\mathcal{V}^{\prime} \subseteq \mathcal{V}$ and since $\mathcal{V} \subseteq \mathcal{B}, \quad$ we get: $\mathcal{A} \subseteq \mathcal{B}$.
So, \quad since $\lambda(\bigcup \mathcal{A})=\lambda\left(\bigcup \mathcal{V}^{\prime}\right)=\lambda(V)=c<\infty, \quad$ by Theorem 9 , choose a finite pw-dj $\mathcal{E} \subseteq \mathcal{A} \quad$ s.t. $\quad \lambda(\bigcup \mathcal{E}) \geqslant 0.1 \cdot(\lambda(\bigcup \mathcal{A}))$.
Then, since $\lambda(\bigcup \mathcal{A})=\lambda\left(\bigcup \mathcal{V}^{\prime}\right)=\lambda(V)=c, \quad \lambda(\bigcup \mathcal{E}) \geqslant 0.1 \cdot \quad c$.
Since $\mathcal{E} \subseteq \mathcal{A}=\mathcal{V}^{\prime}, \quad$ we get: $\quad \mathcal{E} \subseteq \mathcal{V}^{\prime}$.
So, since $\quad \mathcal{V}^{\prime} \subseteq \mathcal{V}, \quad$ we get: $\quad \mathcal{E} \subseteq \mathcal{V}$.

It remains only to show:
Since $b=\lambda(Q)$, we want:
Let $E:=\bigcup \mathcal{E}$.
Let $x:=\lambda(Q \bigcap E)$.
We have:
So, since $\mathcal{E} \subseteq \mathcal{V} \subseteq \mathcal{B}$ and \mathcal{E} is finite, we get: $\quad \lambda(\bigcup \mathcal{E})<\infty$.
So, since $\quad E=\bigcup \mathcal{E}, \quad$ we get: $\quad \lambda(E)<\infty$.
Let $y:=\lambda(E)$. Then: $y<\infty$.
Since $x=\lambda(Q \bigcap E) \leqslant \lambda(E)<\infty$, we get: $\quad x<\infty$.
Since $\mathcal{E} \subseteq \mathcal{V}^{\prime}, \quad$ we get $\bigcup \mathcal{E} \subseteq \bigcup \mathcal{V}^{\prime}$.
Since $\quad E=\bigcup \mathcal{E} \subseteq \bigcup \mathcal{V}^{\prime}=V, \quad$ we get: $\quad V \cap E=E$.
Then: $\lambda(V \bigcap E)=\lambda(E)$.

Since $\mathcal{E} \subseteq \mathcal{V} \subseteq \mathcal{B} \subseteq \mathcal{T}$ and since \mathcal{T} is a topology, we get: $\bigcup \mathcal{E} \in \mathcal{T}$.
Since $E=\bigcup \mathcal{E} \in \mathcal{T}$, it follows that: $\quad E$ is Lebesgue-measurable.
So, by the Carathéodory-condition,

$$
\lambda(V)=[\lambda(V \backslash E)]+[\lambda(V \bigcap E)] .
$$

So, \quad since $\quad \lambda(V \bigcap E)=\lambda(E)<\infty$, we get:

$$
\lambda(V \backslash E)=[\lambda(V)]-[\lambda(V \cap E)] .
$$

So, since $\quad c=\lambda(V)$ and $\lambda(V \bigcap E)=\lambda(E)=y$, we get:

$$
\lambda(V \backslash E)=\quad c \quad-\quad y .
$$

Since E is Lebesgue-measurable, by the Carathéodory-condition,

$$
\lambda(Q)=[\lambda(Q \backslash E)]+[\lambda(Q \bigcap E)] .
$$

So, \quad since $\quad \lambda(Q \bigcap E) \leqslant \lambda(E)<\infty, \quad$ we get:

$$
\lambda(Q \backslash E)=[\lambda(Q)]-[\lambda(Q \bigcap E)] .
$$

So, since $\quad b=\lambda(Q)$ and $\lambda(Q \bigcap E)=x, \quad$ we get:

$$
\lambda(Q \backslash E)=\quad b \quad-\quad x .
$$

By Theorem 12, $\quad \mathcal{V}^{\prime}$ is a fine-covering of Q, \quad so:

$$
\bigcup \mathcal{V}^{\prime} \supseteq Q .
$$

Since $V=\bigcup \mathcal{V}^{\prime} \supseteq Q, \quad$ we get: $\quad V \backslash E \supseteq \quad Q \backslash E$.
So, by monotonicity of λ, we get: $\quad \lambda(V \backslash E) \geqslant \lambda(Q \backslash E)$.
So, since $\lambda(V \backslash E)=c-y$ and $\lambda(Q \backslash E)=b-x, \quad c-y \geqslant b-x$.
Recall: $\quad b<\infty, \quad c<\infty, \quad x<\infty, \quad y<\infty, \quad c \leqslant 1.1 \cdot b$.
Since $y=\lambda(E)=\lambda(\bigcup \mathcal{E}) \geqslant 0.1 \cdot c$,
we get: $\quad c-y \leqslant 0.9 \cdot c$.
Since $c \leqslant 1.1 \cdot b$, we get:
Since

$$
b-x \leqslant c-y \leqslant 0.9 \cdot c \leqslant 0.99 \cdot b,
$$

$$
\text { we get: } \quad x \geqslant 0.01 \cdot b \text {. }
$$

For any two sets A and B, we define: $A \triangle B:=(A \backslash B) \cup(B \backslash A)$.
For any $A, B \subseteq \mathbb{R}^{2}, \quad$ by $A \equiv B$, we mean: $\quad \lambda(A \triangle B)=0$.
We will read " \equiv " as: "is a.e.-equal to ".
For all sets A, B, we have:

$$
(A \subseteq B \bigcup(A \triangle B)) \quad \& \quad(B \subseteq A \bigcup(A \triangle B))
$$

So, by monotonicity and subadditivity of λ, we conclude:

$$
\forall A, B \subseteq \mathbb{R}^{2}, \quad(A \equiv B) \Rightarrow(\lambda(A)=\lambda(B))
$$

For any sets A, B, Y, Z, we have:

$$
\begin{array}{ccc}
(A \bigcup Y) \triangle(B \bigcup Z) & \subseteq(A \triangle B) \bigcup(Y \triangle Z) & \text { and } \\
(A \bigcap Y) \triangle(B \bigcap Z) & \subseteq(A \triangle B) \bigcup(Y \triangle Z) & \text { and } \\
(A \backslash Y) \triangle(B \backslash Z) & \subseteq(A \triangle B) \bigcup(Y \triangle Z) . &
\end{array}
$$

So, $\quad \forall A, B, Y, Z \subseteq \mathbb{R}^{2}, \quad$ if $A \equiv B \quad$ and $\quad Y \equiv Z, \quad$ then:

$$
A \bigcup Y \equiv B \bigcup Z \quad \text { and } \quad A \bigcap Y \equiv B \bigcap Z \quad \text { and } \quad A \backslash Y \equiv B \backslash Z
$$

For all $S \subseteq \mathbb{R}^{2}, \quad$ let \bar{S} denote the closure in \mathbb{R}^{2} of S.
NOTE: $\quad \forall x \in \mathbb{R}^{2}, \forall r>0, \quad$ we have: $\quad \lambda\left(B_{x}^{r}\right)=\pi r^{2}=\lambda\left(\overline{B_{x}^{r}}\right)$.
It follows that: $\forall B \in \mathcal{B}, \quad B \equiv \bar{B}$.

The next result says that
if $Q \subseteq \mathbb{R}^{2}$ has finite Lebesgue-outer-measure, and
if $\mathcal{V} \subseteq \mathcal{B}$ is a fine-covering of Q, and
if, using a finite pw-dj $\mathcal{E} \subseteq \mathcal{V}$, we can cover some portion of Q, then, using a bigger finite pw-dj collection $\mathcal{F} \subseteq \mathcal{V}$,
we can cover substantially more, by which we mean:
the UNcovered portion decreases by at least 1%.
THEOREM 14. Let $\quad Q \subseteq \mathbb{R}^{2}, \quad \mathcal{V} \subseteq \mathcal{B}, \quad \mathcal{E} \subseteq \mathcal{V}$.
Assume: \mathcal{V} is a fine-covering of $Q . \quad$ Assume: $\lambda(Q)<\infty$.
Assume: $\quad \mathcal{E}$ is finite and $p w$-dj.
Then: $\quad \exists$ finite $p w-d j \mathcal{F} \subseteq \mathcal{V}$ s.t. $\mathcal{E} \subseteq \mathcal{F}$ and s.t.

$$
\lambda(Q \backslash(\bigcup \mathcal{F})) \leqslant 0.99 \cdot(\lambda(Q \backslash(\bigcup \mathcal{E})))
$$

Idea of Proof: Let $S:=\bigcup \mathcal{E}$. Then: \mathcal{E} is inside S.
Since \mathcal{E} is a finite set of disks, we get: $\bar{S} \equiv S$.
Then

$$
\mathbb{R}^{2} \backslash \bar{S} \equiv \mathbb{R}^{2} \backslash S . \quad \text { Let } W:=\mathbb{R}^{2} \backslash \bar{S}
$$

Then: $\quad W \equiv \mathbb{R}^{2} \backslash S$ and $\quad W$ is open in \mathbb{R}^{2}.
We have $\quad Q \bigcap W \equiv Q \bigcap\left(\mathbb{R}^{2} \backslash S\right)=Q \backslash S=Q \backslash(\bigcup \mathcal{E})$,
so $\quad Q \bigcap W \equiv$ (the portion of Q that is uncovered by $\mathcal{E})$.
Using Theorem 11, choose $\mathcal{V}^{\prime} \subseteq \mathcal{V}$ s.t.
\mathcal{V}^{\prime} is a fine-covering of $Q \bigcap W$ and \mathcal{V}^{\prime} is inside W.
Apply Theorem 13 to get a finite pw-dj subset $\mathcal{E}^{\prime} \subseteq \mathcal{V}^{\prime} \quad$ which covers at least 1% of $Q \bigcap W$, and, therefore,
covers at least 1% of (the portion of Q that is uncovered by \mathcal{E}).
Since $\mathcal{E}^{\prime} \subseteq \mathcal{V}^{\prime}$ and since \mathcal{V}^{\prime} is inside W and since $W=\mathbb{R}^{2} \backslash \bar{S}$, we conclude: \mathcal{E}^{\prime} is inside $\mathbb{R}^{2} \backslash \bar{S}$.
On the other hand, recall: \mathcal{E} is inside S. Let $\mathcal{F}:=\mathcal{E} \bigcup \mathcal{E}^{\prime}$. QED
Proof. Let $\overline{\mathcal{E}}:=\{\bar{E} \mid E \in \mathcal{E}\}$. We have: $\forall B \in \mathcal{B}, \quad B \equiv \bar{B}$.
So, \quad since $\mathcal{E} \subseteq \mathcal{V} \subseteq \mathcal{B}$, we get: $\quad \forall E \in \mathcal{E}, \quad E \equiv \bar{E}$.
So, since \mathcal{E} is finite, we get:
$\bigcup \mathcal{E} \equiv \bigcup \overline{\mathcal{E}}$.
Let $S:=\bigcup \mathcal{E}$. Since \mathcal{E} is finite, we get: $\bar{S}=\bigcup \overline{\mathcal{E}}$. Then $S \equiv \bar{S}$.
Let $W:=\mathbb{R}^{2} \backslash \bar{S} . \quad$ Since \bar{S} is closed in \mathbb{R}^{2}, \quad we get: $W \in \mathcal{T}$.

Let $\mathcal{V}^{\prime}:=\{V \in \mathcal{V} \mid V \subseteq W\}$. Then: $\mathcal{V}^{\prime} \subseteq \mathcal{V}$ and $\cup \mathcal{V}^{\prime} \subseteq W$.
Also, by Theorem 11,

$$
\mathcal{V}^{\prime} \text { is a fine-covering of } Q \bigcap W \text {. }
$$

Let $\quad Q^{\prime}:=Q \bigcap W$. Then $\quad \mathcal{V}^{\prime}$ is a fine-covering of $\quad Q^{\prime}$.
Since $Q^{\prime}=Q \bigcap W \subseteq Q$, by monotonicity of λ, we get: $\lambda\left(Q^{\prime}\right) \leqslant \lambda(Q)$.
Since $\quad \lambda\left(Q^{\prime}\right) \leqslant \lambda(Q)<\infty, \quad$ by Theorem 13,
choose a finite pw-dj $\mathcal{E}^{\prime} \subseteq \mathcal{V}^{\prime}$ s.t. $\lambda\left(Q^{\prime} \bigcap\left(\bigcup \mathcal{E}^{\prime}\right)\right) \geqslant 0.01 \cdot\left(\lambda\left(Q^{\prime}\right)\right)$.
Since $\mathcal{E}^{\prime} \subseteq \mathcal{V}^{\prime}$, we get: $\bigcup \mathcal{E}^{\prime} \subseteq \bigcup \mathcal{V}^{\prime}$. Recall: $\bigcup \mathcal{V}^{\prime} \subseteq W$.
Since $\bar{S} \supseteq S$, we get: $\quad \mathbb{R}^{2} \backslash \bar{S} \subseteq \mathbb{R}^{2} \backslash S . \quad$ Recall: $S=\bigcup \mathcal{E}$.
Since $\bigcup \mathcal{E}^{\prime} \subseteq \bigcup \mathcal{V}^{\prime} \subseteq W=\mathbb{R}^{2} \backslash \bar{S} \subseteq \mathbb{R}^{2} \backslash S \quad=\quad \mathbb{R}^{2} \backslash(\bigcup \mathcal{E})$, we get: $\quad(\bigcup \mathcal{E}) \bigcap\left(\bigcup \mathcal{E}^{\prime}\right)=\varnothing$.
Then: $\quad \forall E \in \mathcal{E}, \forall E^{\prime} \in \mathcal{E}^{\prime}, \quad E \bigcap E^{\prime}=\varnothing$.
So, since \mathcal{E} and \mathcal{E}^{\prime} are both pw-dj, we get: $\mathcal{E} \bigcup \mathcal{E}^{\prime}$ is pw-dj.
Since \mathcal{E} and \mathcal{E}^{\prime} are both finite, we conclude: $\mathcal{E} \bigcup \mathcal{E}^{\prime}$ is finite.
By hypothesis, $\mathcal{E} \subseteq \mathcal{V}$, so, since $\mathcal{E}^{\prime} \subseteq \mathcal{V}^{\prime} \subseteq \mathcal{V}$, we get: $\mathcal{E} \cup \mathcal{E}^{\prime} \subseteq \mathcal{V}$.
Let $\mathcal{F}:=\mathcal{E} \bigcup \mathcal{E}^{\prime}$. Then \mathcal{F} is finite and pw-dj. Also, $\mathcal{F} \subseteq \mathcal{V}$.
Since $\mathcal{E} \subseteq \mathcal{E} \bigcup \mathcal{E}^{\prime}=\mathcal{F}$,
it remains only to show: $\lambda(Q \backslash(\bigcup \mathcal{F})) \leqslant 0.99 \cdot(\lambda(Q \backslash(\bigcup \mathcal{E})))$.
Recall: $S=\bigcup \mathcal{E} . \quad$ Let $S^{\prime}:=\bigcup \mathcal{E}^{\prime}$.
Then, since $\bigcup \mathcal{F}=\bigcup\left(\mathcal{E} \bigcup \mathcal{E}^{\prime}\right)=(\bigcup \mathcal{E}) \bigcup\left(\bigcup \mathcal{E}^{\prime}\right)=S \bigcup S^{\prime}$, we want to show: $\lambda\left(Q \backslash\left(S \bigcup S^{\prime}\right)\right) \leqslant 0.99 \cdot(\lambda(Q \backslash S))$.
By hypothesis, $\quad \mathcal{V} \subseteq \mathcal{B} . \quad$ So, since $\mathcal{E}^{\prime} \subseteq \mathcal{V}^{\prime} \subseteq \mathcal{V}$, we get: $\quad \mathcal{E}^{\prime} \subseteq \mathcal{B}$.
Since $\mathcal{E}^{\prime} \subseteq \mathcal{B} \subseteq \mathcal{T}$ and since \mathcal{T} is a topology, we get: $\bigcup \mathcal{E}^{\prime} \in \mathcal{T}$.
So, since $S^{\prime}=\bigcup \mathcal{E}^{\prime}$, we get: $\quad S^{\prime} \in \mathcal{T}$.
Then S^{\prime} is Lebesgue-measurable, so, by the Carathéodory-condition,
we get: $\quad \lambda\left(Q^{\prime}\right)=\left[\lambda\left(Q^{\prime} \backslash S^{\prime}\right)\right]+\left[\lambda\left(Q^{\prime} \cap S^{\prime}\right)\right]$.
Let $\quad c:=\lambda\left(Q^{\prime}\right), a:=\lambda\left(Q^{\prime} \backslash S^{\prime}\right), b:=\lambda\left(Q^{\prime} \bigcap S^{\prime}\right)$.
Then: $\quad c=a \quad+\quad b$.
By choice of \mathcal{E}^{\prime}, we have: $\quad \lambda\left(Q^{\prime} \bigcap\left(\bigcup \mathcal{E}^{\prime}\right)\right) \geqslant 0.01 \cdot\left(\lambda\left(Q^{\prime}\right)\right)$.
Then: $\quad \lambda\left(Q^{\prime} \bigcap S^{\prime}\right) \geqslant 0.01 \cdot\left(\lambda\left(Q^{\prime}\right)\right)$.
Then: $b \geqslant 0.01 \cdot c$.
Recall: $\quad S \equiv \bar{S}$.
Then: $Q \backslash S \equiv Q \backslash \bar{S} . \quad$ Recall: $\quad W=\mathbb{R}^{2} \backslash \bar{S} \quad$ and $\quad Q^{\prime}=Q \bigcap W$.
Since $Q \backslash S \equiv Q \backslash \bar{S}=Q \bigcap\left(\mathbb{R}^{2} \backslash \bar{S}\right)=Q \bigcap W=Q^{\prime}$, we get:
both $\quad(Q \backslash S) \backslash S^{\prime} \equiv Q^{\prime} \backslash S^{\prime}$ and $\lambda(Q \backslash S)=\lambda\left(Q^{\prime}\right)$.
Since $\quad Q \backslash\left(S \bigcup S^{\prime}\right)=(Q \backslash S) \backslash S^{\prime} \equiv Q^{\prime} \backslash S^{\prime}, \quad$ we get:
$\lambda\left(Q \backslash\left(S \bigcup S^{\prime}\right)\right)=\lambda\left(Q^{\prime} \backslash S^{\prime}\right)$.
Since $\lambda\left(Q \backslash\left(S \bigcup S^{\prime}\right)\right)=\lambda\left(Q^{\prime} \backslash S^{\prime}\right)=a$ and since $\lambda(Q \backslash S)=\lambda\left(Q^{\prime}\right)=c$,
we want to show:

$$
a \leqslant 0.99 \cdot c
$$

Recall: $\quad c=a+b \quad$ and $\quad b \geqslant 0.01 \cdot c$.
Since $\quad c=a+b \geqslant a+0.01 \cdot c$,
we get: $0.99 \cdot c \quad \geqslant a$. Then: $a \leqslant 0.99 \cdot c$.
Let $A, B \subseteq \mathbb{R}^{2}$.
By B is an a.e.-superset of A, we will mean: $\quad \lambda(A \backslash B)=0$.
Let $\quad A, B \subseteq \mathbb{R}^{2}, \quad \varepsilon>0$.
By B is an ε-efficient-superset of A, we will mean:

$$
A \subseteq B \quad \text { and } \quad \lambda(B) \leqslant e^{\varepsilon} \cdot(\lambda(A))
$$

By B is an ε-efficient-a.e.-superset of A, we will mean:
$\lambda(A \backslash B)=0 \quad$ and $\quad \lambda(B) \leqslant e^{\varepsilon} \cdot(\lambda(A))$.

Let $\quad \mathcal{B}$ be a set of subsets of $\mathbb{R}^{2}, \quad A \subseteq \mathbb{R}^{2}$.
By \mathcal{B} is an a.e.-covering of A, we will mean:
$\bigcup \mathcal{B}$ is an a.e.-superset of A.
Let \mathcal{B} be a set of subsets of $\mathbb{R}^{2}, \quad A \subseteq \mathbb{R}^{2}, \quad \varepsilon>0$.
By \mathcal{B} is an ε-efficient-covering of A, we will mean:
$\bigcup \mathcal{B}$ is an ε-efficient-superset of A.
By \mathcal{B} is an ε-efficient-a.e.-covering of A, we will mean:
$\bigcup \mathcal{B}$ is an ε-efficient-a.e.-superset of A.
DEFINITION 15. Let $S \subseteq \mathbb{R}^{2} . \quad B y S$ is Vitali, we mean:

$$
\begin{array}{rrr}
\forall \mathcal{V} \subseteq \mathcal{B}, & \text { if } & \mathcal{V} \text { is a fine-covering of } S, \\
& \text { then } \quad \exists \text { countable pw-dj } \mathcal{D} \subseteq \mathcal{V} \quad \text { s.t. } \quad \lambda(S \backslash(\cup \mathcal{D}))=0 .
\end{array}
$$

So, a Vitali set is one for which any fine-covering admits a countable pw-dj a.e.-subcovering.
In Theorem 17, below, we will show: any subset of \mathbb{R}^{2} is Vitali.
By an a.e.-partition of a set $S \subseteq \mathbb{R}^{2}$, we will mean:
a pw-dj set of subsets of S that is an a.e.-covering of S.
According to the next theorem, for any $S \subseteq \mathbb{R}^{2}$,
for any countable a.e.-partition of S into relatively-open subsets, if each subset is Vitali, then S is Vitali.

THEOREM 16. Let $\quad S \subseteq \mathbb{R}^{2}, \quad W_{1}, W_{2}, \ldots \in \mathcal{T}$.
Assume: $\left(\left(W_{1}, W_{2}, \ldots\right)\right.$ is $\left.p w-d j\right) \&\left(\lambda\left(S \backslash\left(W_{1} \bigcup W_{2} \bigcup \cdots\right)\right)=0\right)$.
Assume: $\forall n \in \mathbb{N}, S \bigcap W_{n}$ is Vitali. Then: S is Vitali.
WARNING: In the following proof, $\quad \forall n \in \mathbb{N}, \quad \bigcup \mathcal{D}_{n}=\bigcup_{D \in \mathcal{D}_{n}} D$.
By contrast, $\bigcup_{n=1}^{\infty} \mathcal{D}_{n}=\mathcal{D}_{1} \bigcup \mathcal{D}_{2} \bigcup \cdots$.
Care must be taken not to confuse $\bigcup \mathcal{D}_{n}$ with $\bigcup_{n=1}^{\infty} \mathcal{D}_{n}$.
Proof. Given $\mathcal{V} \subseteq \mathcal{B}, \quad$ assume \mathcal{V} is a fine-covering of S, want: \exists countable pw-dj $\mathcal{D} \subseteq \mathcal{V}$ s.t. $\quad \lambda(S \backslash(\bigcup \mathcal{D}))=0$.
For all $n \in \mathbb{N}$, let $\mathcal{V}_{n}:=\left\{V \in \mathcal{V} \mid V \subseteq W_{n}\right\}$. Then: $\forall n \in \mathbb{N}, \mathcal{V}_{n} \subseteq \mathcal{V}$.
Also, by Theorem 11, $\forall n \in \mathbb{N}, \quad \mathcal{V}_{n}$ is a fine-covering of $S \bigcap W_{n}$.
For all $n \in \mathbb{N}$, let $\quad Q_{n}:=S \bigcap W_{n}$.
Then: $\quad \forall n \in \mathbb{N}, \quad \mathcal{V}_{n}$ is a fine-covering of Q_{n}.
By hypothesis, we have: $\forall n \in \mathbb{N}, Q_{n}$ is Vitali.
Then, $\quad \forall n \in \mathbb{N}, \quad$ choose a countable pw-dj $\mathcal{D}_{n} \subseteq \mathcal{V}_{n}$
s.t. $\quad \lambda\left(Q_{n} \backslash\left(\bigcup \mathcal{D}_{n}\right)\right)=0$.

Let $\mathcal{D}:=\mathcal{D}_{1} \bigcup \mathcal{D}_{2} \bigcup \cdots$.
Since, $\forall n \in \mathbb{N}, \mathcal{D}_{n}$ is countable, we get: \mathcal{D} is countable.
Since, $\quad \forall n \in \mathbb{N}, \quad \mathcal{D}_{n} \subseteq \mathcal{V}_{n} \subseteq \mathcal{V}, \quad$ we get: $\quad \mathcal{D} \subseteq \mathcal{V}$.
It remains to show: (1) \mathcal{D} is pw-dj and $\quad(2) \lambda(S \backslash(\bigcup \mathcal{D}))=0$.
Proof of (1): Given $A, B \in \mathcal{D}$, assume $A \neq B$, want: $A \bigcap B=\varnothing$.
Since $A \in \mathcal{D}=\mathcal{D}_{1} \bigcup \mathcal{D}_{2} \bigcup \cdots, \quad$ choose $a \in \mathbb{N} \quad$ s.t. $\quad A \in \mathcal{D}_{a}$.
Since $B \in \mathcal{D}=\mathcal{D}_{1} \bigcup \mathcal{D}_{2} \bigcup \cdots, \quad$ choose $b \in \mathbb{N} \quad$ s.t. $B \in \mathcal{D}_{b}$.
In case $a=b$, we have $A, B \in \mathcal{D}_{a}$, and so, since \mathcal{D}_{a} is pw-dj and since $A \neq B$, we get: $\quad A \bigcap B=\varnothing$.
We therefore assume that $a \neq b$.
By hypothesis, $\left(W_{1}, W_{2}, \ldots\right)$ is pw-dj. Then: $W_{a} \bigcap W_{b}=\varnothing$.
Since $A \in \mathcal{D}_{a} \subseteq \mathcal{V}_{a}, \quad$ by definition of \mathcal{V}_{a}, \quad we get: $A \subseteq W_{a}$.
Since $B \in \mathcal{D}_{b} \subseteq \mathcal{V}_{b}, \quad$ by definition of \mathcal{V}_{b}, \quad we get: $\quad B \subseteq W_{b}$.
Then $A \bigcap B \subseteq W_{a} \bigcap W_{b}=\varnothing, \quad$ so $\quad A \bigcap B=\varnothing$.
End of proof of (1).

Proof of (2): Let $D:=\bigcup \mathcal{D}$. Want: $\lambda(S \backslash D)=0$.
Let $\quad Q:=Q_{1} \bigcup Q_{2} \bigcup \cdots$.

For all sets X, Y, Z, \quad we have: $\quad X \backslash Z \quad \subseteq \quad(X \backslash Y) \quad \cup \quad(Y \backslash Z)$.
Therefore, $\quad S \backslash D \quad \subseteq \quad(S \backslash Q) \cup \quad(Q \backslash D)$.
It therefore suffices to show: $\quad \lambda(S \backslash Q)=0=\lambda(Q \backslash D)$.
By hypothesis, we have: $\lambda\left(S \backslash\left(W_{1} \bigcup W_{2} \bigcup \cdots\right)\right)=0$.
Let $W:=W_{1} \bigcup W_{2} \bigcup \cdots . \quad$ Then: $\lambda(S \backslash \quad W \quad)=0$.
For all $n \in \mathbb{N}$, by definition of Q_{n}, we have: $S \bigcap W_{n}=Q_{n}$.
Since $S \bigcap W=\left(S \bigcap W_{1}\right) \bigcup\left(S \bigcap W_{2}\right) \bigcup \cdots=Q_{1} \bigcup Q_{2} \bigcup \cdots=Q$, we get: $\quad S \backslash(S \bigcap W)=S \backslash Q$.
For any sets X, Y, by definition of set-subtraction, we have:

$$
X \backslash Y=X \backslash(X \bigcap Y)
$$

Since $S \backslash W=S \backslash(S \bigcap W)=S \backslash Q$, we get: $\quad \lambda(S \backslash W)=\lambda(S \backslash Q)$.
Since $\lambda(S \backslash Q)=\lambda(S \backslash W)=0$,
it remains only to show: $\quad \lambda(Q \backslash D)=0$.
Since $Q=Q_{1} \bigcup Q_{2} \bigcup \cdots$, we get: $\quad Q \backslash D=\left(Q_{1} \backslash D\right) \bigcup\left(Q_{2} \backslash D\right) \bigcup \cdots$.
It therefore suffices to show: $\forall n \in \mathbb{N}, \quad \lambda\left(Q_{n} \backslash D\right)=0$.
Given $n \in \mathbb{N}, \quad$ let $P:=Q_{n}, \quad$ Want: $\lambda(P \backslash D)=0$.
By choice of \mathcal{D}_{n}, we have: $\quad \lambda\left(Q_{n} \backslash\left(\bigcup \mathcal{D}_{n}\right)\right)=0$.
Let $\quad \mathcal{C}:=\mathcal{D}_{n}$. Then: $\lambda(P \backslash(\bigcup \mathcal{C}))=0$.
Since $\mathcal{D}=\mathcal{D}_{1} \bigcup \mathcal{D}_{2} \bigcup \cdots \supseteq \mathcal{D}_{n}=\mathcal{C}$, we get: $\quad \bigcup \mathcal{D} \supseteq \bigcup \mathcal{C}$.
Since $D=\bigcup \mathcal{D} \supseteq \bigcup \mathcal{C}, \quad$ we get: $\quad P \backslash D \subseteq P \backslash(\bigcup \mathcal{C})$.
So, since $\lambda(P \backslash(\bigcup \mathcal{C}))=0$, we get: $\quad \lambda(P \backslash D)=0$.
End of proof of (2).
THEOREM 17. Let $S \subseteq \mathbb{R}^{2}$. Then: S is Vitali.
Idea of Proof: Intersecting S with each set of an a.e.-partition of \mathbb{R}^{2} by open bounded subsets, we get an a.e.-partition of S into relatively-open bounded subsets.
By Theorem 16, it suffices to show each realtively-open subset is Vitali.
Given one of these subsets, Q, \quad and a fine-covering of Q, we seek a countable pw-dj a.e.-subcovering of Q.
Since Q is bounded, we get: $\quad \lambda(Q)<\infty$.
Starting with the empty set (which covers none of Q), we use Theorem 14 repeatedly to find an increasing sequence of finite pw-dj coverings of more and more of Q.
Taking the union of these countably-many finite partial coverings, we arrive at a countable pw-dj a.e.-covering of Q. QED
Proof. Let $z:=(0,0)$. For all $j \in \mathbb{N}, \quad$ let $B_{j}:=B_{z}^{j}$ and $D_{j}:=\overline{B_{j}}$.
Let $D_{0}:=\varnothing . \quad$ For all $j \in \mathbb{N}, \quad$ let $W_{j}:=B_{j} \backslash D_{j-1}$.

Then: $W_{1}, W_{2} \cdots \in \mathcal{T}$. Also, $\quad\left(W_{1}, W_{2}, \ldots\right)$ is pw-dj.
We have:
$\forall j \in \mathbb{N}, \quad \lambda\left(B_{j}\right)=\pi j^{2}=\lambda\left(D_{j}\right)$.
It follows that: $\quad \forall j \in \mathbb{N}, \quad \lambda\left(D_{j} \backslash B_{j}\right)=0$.
So, since $\quad \mathbb{R}^{2} \backslash\left(W_{1} \bigcup W_{2} \bigcup \cdots\right) \subseteq\left(D_{1} \backslash B_{1}\right) \bigcup\left(D_{2} \backslash B_{2}\right) \bigcup \cdots$,
we get: $\quad \lambda\left(\mathbb{R}^{2} \backslash\left(W_{1} \bigcup W_{2} \bigcup \cdots\right)\right)=0$.
So, since $\quad \mathbb{R}^{2} \backslash\left(W_{1} \bigcup W_{2} \bigcup \cdots\right) \quad \supseteq \quad S \backslash\left(W_{1} \bigcup W_{2} \bigcup \cdots\right)$
we get: $\quad \lambda\left(S \backslash\left(W_{1} \bigcup W_{2} \bigcup \cdots\right)\right)=0$.
By Theorem 16, it suffices to show: $\forall n \in \mathbb{N}, S \bigcap W_{n}$ is Vitali.
Given $n \in \mathbb{N}, \quad$ let $Q:=S \bigcap W_{n}, \quad$ want: $\quad Q \quad$ is Vitali.
Given $\mathcal{V} \subseteq \mathcal{B}, \quad$ assume \mathcal{V} is a fine-covering of Q,
want: $\quad \exists$ countable pw-dj $\mathcal{D} \subseteq \mathcal{V}$ s.t. $\quad \lambda(Q \backslash(\bigcup \mathcal{D}))=0$.
Since $\quad Q=S \bigcap W_{n} \subseteq W_{n}=B_{n} \backslash D_{n-1} \subseteq B_{n}$ and since $\quad \lambda\left(B_{n}\right)=\pi n^{2}<\infty$,
by monotonicity of λ, \quad we conclude: $\quad \lambda(Q)<\infty$.
Let $\mathcal{E}_{0}:=\varnothing . \quad$ Then $\quad \mathcal{E}_{0} \subseteq \mathcal{V} \quad$ and $\quad \mathcal{E}_{0}$ is finite and pw-dj.
By applying Theorem 14 repeatedly, choose $\mathcal{E}_{1}, \mathcal{E}_{2}, \mathcal{E}_{3}, \ldots \subseteq \mathcal{V}$
s.t. $\mathcal{E}_{0} \subseteq \mathcal{E}_{1} \subseteq \mathcal{E}_{2} \subseteq \cdots \quad$ and
s.t. $\forall j \in \mathbb{N}, \mathcal{E}_{j}$ is finite and pw-dj and
s.t. $\quad \forall j \in \mathbb{N}, \quad \lambda\left(Q \backslash\left(\bigcup \mathcal{E}_{j}\right)\right) \leqslant 0.99 \cdot\left(\lambda\left(Q \backslash\left(\bigcup \mathcal{E}_{j-1}\right)\right)\right)$.

Let $\mathcal{D}:=\mathcal{E}_{1} \bigcup \mathcal{E}_{2} \bigcup \cdots$. Then $\mathcal{D} \subseteq \mathcal{V}$ and \mathcal{D} is countable.
It remains to show: (1) \mathcal{D} is pw-dj and (2) $\lambda(Q \backslash(\bigcup \mathcal{D}))=0$.

Proof of (1): Given $E, F \in \mathcal{D}$, assume $E \neq F$, want: $E \bigcap F=\varnothing$.
Since $E \in \mathcal{D}=\mathcal{E}_{1} \bigcup \mathcal{E}_{2} \bigcup \cdots, \quad$ choose $p \in \mathbb{N} \quad$ s.t. $E \in \mathcal{E}_{p}$.
Since $F \in \mathcal{D}=\mathcal{E}_{1} \bigcup \mathcal{E}_{2} \bigcup \cdots, \quad$ choose $q \in \mathbb{N} \quad$ s.t. $\quad F \in \mathcal{E}_{q}$.
Let $r:=\max \{p, q\}$. Recall: $\mathcal{E}_{1} \subseteq \mathcal{E}_{2} \subseteq \cdots$. Then $E, F \in \mathcal{E}_{r}$.
So, since \mathcal{E}_{r} is pw-dj and since $E \neq F, \quad$ we get: $\quad E \bigcap F=\varnothing$.
End of proof of of (1).

Proof of (2): Recall: $\quad \lambda(Q)<\infty$. Let $m:=\lambda(Q)$.
Then: $\quad 0 \leqslant m<\infty$. Then: as $k \rightarrow \infty,(0.99)^{k} \cdot m \rightarrow 0$.
It therefore suffices to show: $\quad \forall k \in \mathbb{N}, \quad \lambda(Q \backslash(\bigcup \mathcal{D})) \leqslant(0.99)^{k} \cdot m$.
Given $k \in \mathbb{N}, \quad$ let $s:=(0.99)^{k}, \quad$ want: $\lambda(Q \backslash(\bigcup \mathcal{D})) \leqslant s \quad . m$.
Since $\mathcal{E}_{0}=\varnothing$, we get $\bigcup \mathcal{E}_{0}=\varnothing$, so $Q \backslash\left(\bigcup \mathcal{E}_{0}\right)=Q$.
Since $\mathcal{D}=\mathcal{E}_{1} \bigcup \mathcal{E}_{2} \bigcup \cdots \supseteq \mathcal{E}_{k}$, we get:
$\bigcup \mathcal{D} \supseteq \quad \bigcup \mathcal{E}_{k}$.
Then: $\quad Q \backslash(\bigcup \mathcal{D}) \subseteq \quad Q \backslash\left(\bigcup \mathcal{E}_{k}\right)$.
So, by monotonicity of λ, we get:
$\lambda(Q \backslash(\bigcup \mathcal{D})) \leqslant \lambda\left(Q \backslash\left(\bigcup \mathcal{E}_{k}\right)\right)$
Then:

$$
\begin{aligned}
\lambda(Q \backslash(\bigcup \mathcal{D})) \leqslant \lambda\left(Q \backslash\left(\bigcup \mathcal{E}_{k}\right)\right) & \leqslant(0.99) \cdot\left(\lambda\left(Q \backslash\left(\bigcup \mathcal{E}_{k-1}\right)\right)\right) \\
& \leqslant(0.99)^{2} \cdot\left(\lambda\left(Q \backslash\left(\bigcup \mathcal{E}_{k-2}\right)\right)\right) \\
& \leqslant \cdots \\
& \leqslant(0.99)^{k} \cdot\left(\lambda\left(Q \backslash\left(\bigcup \mathcal{E}_{0}\right)\right)\right) \\
& =\quad s \cdot(\lambda(Q))=s \cdot m .
\end{aligned}
$$

End of proof of (2).
We make the convention that, $\quad \forall c>0, c \cdot \infty=\infty$.
Then: $\forall Q \subseteq \mathbb{R}^{2}, \forall \varepsilon \in \mathbb{R}, \quad(\lambda(Q)=\infty) \Rightarrow\left(\lambda\left(\mathbb{R}^{2}\right) \leqslant e^{\varepsilon} \cdot(\lambda(Q))\right)$.
So, using outer-regularity of λ, we can prove:
Let $Q \subseteq \mathbb{R}^{2}, \quad \varepsilon>0 . \quad$ Assume: $\lambda(Q)>0$.
Then: $\quad \exists W \in \mathcal{T} \quad$ s.t. $\quad W$ is an ε-efficient-superset of Q.
(NOTE: In case $\lambda(Q)=\infty, \quad$ let $W:=\mathbb{R}^{2}$.)

According to the next theorem, for any $Q \subseteq \mathbb{R}^{2}$,
for any fine-covering of Q, \quad for any $\varepsilon>0$,
there is a countable pw-dj ε-efficient-a.e.-subcovering of Q.
The set Q need not be Lebesgue-measurable.
THEOREM 18. Let $\quad Q \subseteq \mathbb{R}^{2}, \quad \mathcal{V} \subseteq \mathcal{B}, \quad \varepsilon>0$.
Assume: \mathcal{V} is a fine-covering of Q.
Then: $\quad \exists$ countable $p w-d j \mathcal{C} \subseteq \mathcal{V} \quad$ s.t.

$$
(\lambda(Q \backslash(\bigcup \mathcal{C}))=0) \quad \& \quad\left(\lambda(\bigcup \mathcal{C}) \leqslant e^{\varepsilon} \cdot(\lambda(Q))\right)
$$

Proof. In case $\lambda(Q)=0$, let $\mathcal{C}:=\varnothing$. We therefore assume $\lambda(Q)>0$.
By outer-regularity of λ, \quad choose $W \in \mathcal{T}$ s.t.
both $\quad W \supseteq Q \quad$ and $\quad \lambda(W) \leqslant e^{\varepsilon} \cdot(\lambda(Q))$.
Let $\mathcal{V}^{\prime}:=\{V \in \mathcal{V} \mid V \subseteq W\}$. Then: $\mathcal{V}^{\prime} \subseteq \mathcal{V}$ and $\cup \mathcal{V}^{\prime} \subseteq W$.
By Theorem 12, $\quad \mathcal{V}^{\prime}$ is a fine-covering of Q.
So, since, by Theorem 17, $\quad Q$ is Vitali, choose a countable pw-dj $\mathcal{C} \subseteq \mathcal{V}^{\prime}$ s.t. $\quad \lambda(Q \backslash(\bigcup \mathcal{C}))=0$.
Since $\mathcal{C} \subseteq \mathcal{V}^{\prime} \subseteq \mathcal{V}, \quad$ it remains only to show: $\quad \lambda(\bigcup \mathcal{C}) \leqslant e^{\varepsilon} \cdot(\lambda(Q))$.
Since $\mathcal{C} \subseteq \mathcal{V}^{\prime}$, we get: $\bigcup \mathcal{C} \subseteq \bigcup \mathcal{V}^{\prime}$.
Since $\bigcup \mathcal{C} \subseteq \bigcup \mathcal{V}^{\prime} \subseteq W$, by monotonicity of λ, we get: $\lambda(\bigcup \mathcal{C}) \leqslant \lambda(W)$.
Then: $\quad \lambda(\bigcup \mathcal{C}) \leqslant \lambda(W) \leqslant e^{\varepsilon} \cdot(\lambda(Q))$.
DEFINITION 19. Let $\quad Q \subseteq \mathbb{R}^{2}, \quad \varepsilon>0$.
Then: $\quad \mathcal{I}_{Q}^{\varepsilon}:=\left\{B \in \mathcal{B} \mid \lambda(B)>e^{\varepsilon} \cdot(\lambda(Q \bigcap B))\right\}$.

Then $\mathcal{I}_{Q}^{\varepsilon}$ is the set of all
disks B that are NOT ε-efficient in covering $Q \bigcap B$.
The letter " \mathcal{I} " stands for "inefficient".
By Theorem 18, every fine-covering has some ε-efficiency.
The next theorem is based on the contrapositive:
Since $\mathcal{I}_{Q}^{\varepsilon}$ has no ε-efficiency, it cannot be a fine-covering.
THEOREM 20. Let $Q \subseteq \mathbb{R}^{2}, \quad \varepsilon>0$. Assume: $\lambda(Q)>0$. Then: $\quad \mathcal{I}_{Q}^{\varepsilon}$ is not a fine-covering of Q.

Idea of proof:

Assume, for a contradiction, that: $\mathcal{I}_{Q}^{\varepsilon}$ is a fine-covering of Q.
By Theorem 18, choose
a countable pw-dj ε-efficient-a.e.-subcovering, \mathcal{C}, \quad of Q.
Since \mathcal{C} is an a.e.-covering of Q, \quad we get: $\quad Q \bigcap(\bigcup \mathcal{C}) \equiv Q$.
Since $\mathcal{C} \subseteq \mathcal{I}_{Q}^{\varepsilon}$, we get: \quad each $C \in \mathcal{C}$ is ε-inefficient at covering $Q \bigcap C$. Summing, we find that: \mathcal{C} is ε-inefficient at covering $\quad Q \bigcap(\cup \mathcal{C})$.
So, since $Q \bigcap(\bigcup \mathcal{C}) \equiv Q, \quad \mathcal{C}$ is ε-inefficient at a.e.-covering $\quad Q$.
This contradicts the choice of \mathcal{C}.

QED

Proof. Assume $\mathcal{I}_{Q}^{\varepsilon}$ is a fine-covering of Q. Want: Contradiction. By Theorem 18, choose a countable pw-dj $\mathcal{C} \subseteq \mathcal{I}_{Q}^{\varepsilon} \quad$ s.t.

$$
(\lambda(Q \backslash(\cup \mathcal{C}))=0) \quad \& \quad\left(\lambda(\bigcup \mathcal{C}) \leqslant e^{\varepsilon} \cdot(\lambda(Q))\right)
$$

Since $\quad \lambda(Q \backslash(\bigcup \mathcal{C}))=0<\lambda(Q), \quad$ we get: $\quad Q \backslash(\cup \mathcal{C}) \neq Q$.
Then $\bigcup \mathcal{C} \neq \varnothing$. Then $\mathcal{C} \neq \varnothing$.
Since $\mathcal{C} \subseteq \mathcal{I}_{Q}^{\varepsilon} \subseteq \mathcal{B} \subseteq \mathcal{T}$ and since \mathcal{T} is a topology, we get: $\bigcup \mathcal{C} \in \mathcal{T}$.
Let $A:=\bigcup \mathcal{C}$. Then $A \in \mathcal{T}$. Then A is Lebesgue-measurable.
So, by the Carathéodory-condition, we get:

$$
\lambda(Q)=[\lambda(Q \bigcap A)]+[\lambda(Q \backslash A)] .
$$

So, since

$$
\lambda(Q \backslash A)=\lambda(Q \backslash(\bigcup \mathcal{C}))=0
$$

we get: $\quad \lambda(Q)=\lambda(Q \bigcap A)$.
Since $\quad \mathcal{C} \subseteq \mathcal{I}_{Q}^{\varepsilon} \subseteq \mathcal{B} \subseteq \mathcal{T}, \quad$ we conclude:

$$
\forall C \in \mathcal{C}, \quad \mathcal{C} \text { is Lebesgue-measurable. }
$$

So, since \mathcal{C} is countable and pw-dj,
by countable-additivity of $\lambda, \quad \lambda(\bigcup \mathcal{C})=\sum_{C \in \mathcal{C}}(\lambda(C))$.
Since

$$
Q \bigcap A=Q \bigcap(\bigcup \mathcal{C})=Q \bigcap\left(\bigcup_{C \in \mathcal{C}} C\right)=\bigcup_{C \in \mathcal{C}}(Q \bigcap C),
$$

by countable-subadditivity of $\lambda, \quad \lambda(Q \bigcap A) \leqslant \quad \sum_{C \in \mathcal{C}}(\lambda(Q \bigcap C))$.
So, since $\lambda(Q)=\lambda(Q \bigcap A)$, we get: $\quad \lambda(Q) \leqslant \sum_{C \in \mathcal{C}}(\lambda(Q \bigcap C))$.
By choice of $\mathcal{C}, \quad \lambda(\bigcup \mathcal{C}) \leqslant e^{\varepsilon} \cdot(\lambda(Q))$.
Since $\quad \sum_{C \in \mathcal{C}}(\lambda(C))=\lambda(\bigcup \mathcal{C}) \leqslant e^{\varepsilon} \cdot(\lambda(Q)) \leqslant e^{\varepsilon} \cdot \sum_{C \in \mathcal{C}}(\lambda(Q \bigcap C))$,
we get: $\sum_{C \in \mathcal{C}}(\lambda(C)) \leqslant e^{\varepsilon} \cdot \sum_{C \in \mathcal{C}}(\lambda(Q \bigcap C))$.
On the other hand, since $\mathcal{C} \subseteq \mathcal{I}_{Q}^{\varepsilon}$, by definition of $\mathcal{I}_{Q}^{\varepsilon}$, we get:
$\forall C \in \mathcal{C}, \quad \lambda(C) \quad>\quad e^{\varepsilon} . \quad(\lambda(Q \bigcap C))$.
So, since $\mathcal{C} \neq \varnothing$, summing these inequalities gives:

$$
\sum_{C \in \mathcal{C}}(\lambda(C))>e^{\varepsilon} \cdot \sum_{C \in \mathcal{C}}(\lambda(Q \bigcap C)) . \quad \text { Contradiction. }
$$

DEFINITION 21. For every $X \subseteq \mathbb{R}^{2}$, we define:

$$
\mathrm{DP}_{X}:=\left\{x \in X \left\lvert\, \lim _{r \rightarrow 0^{+}} \frac{\lambda\left(X \bigcap B_{x}^{r}\right)}{\lambda\left(B_{x}^{r}\right)}=1\right.\right\} .
$$

Elements of DP_{X} are called " X-density-points".
According to the next theorem,
every subset of \mathbb{R}^{2} is comprised a.e. of density-points.
The same result can be proved, similarly, in any Euclidean space.
Interestingly, the subset need not be Lebesgue-measurable.
THEOREM 22. Let $X \subseteq \mathbb{R}^{2}$. Then: $\quad \lambda\left(X \backslash \mathrm{DP}_{X}\right)=0$.

Sketch of proof:

For all $j \in \mathbb{N}$, let $\quad S_{j}:=\left\{x \in X \left\lvert\, \liminf _{r \rightarrow 0^{+}} \frac{\lambda\left(X \bigcap B_{x}^{r}\right)}{\lambda\left(B_{x}^{r}\right)} \geqslant \frac{j}{j+1}\right.\right\}$.
Then $\mathrm{DP}_{X}=S_{1} \bigcap S_{2} \bigcap \cdots$, so $X \backslash \mathrm{DP}_{X}=\left(X \backslash S_{1}\right) \bigcup\left(X \backslash S_{2}\right) \bigcup \cdots$.
It therefore suffices to show, given $j \in \mathbb{N}$, that $\lambda\left(X \backslash S_{j}\right)=0$.
Let $Q:=X \backslash S_{j} \quad$ and \quad assume, for a contradiction, that $\lambda(Q)>0$.
Let $\varepsilon:=\ln ((j+1) / j)$. Then $e^{-\varepsilon}=j /(j+1)$ and $\varepsilon>0$.
Since $Q \subseteq X, \quad$ by monotonicity of λ, \quad we get:

$$
\forall x \in \mathbb{R}^{2}, \forall r>0, \quad \lambda\left(Q \bigcap B_{x}^{r}\right) \leqslant \lambda\left(X \bigcap B_{x}^{r}\right) .
$$

For all $x \in Q$, since $x \notin S_{j}$, we get: $\liminf _{r \rightarrow 0^{+}} \frac{\lambda\left(X \bigcap B_{x}^{r}\right)}{\lambda\left(B_{x}^{r}\right)}<\frac{j}{j+1}$.

For all $x \in Q$, we have

$$
\liminf _{r \rightarrow 0^{+}} \frac{\lambda\left(Q \bigcap B_{x}^{r}\right)}{\lambda\left(B_{x}^{r}\right)} \leqslant \liminf _{r \rightarrow 0^{+}} \frac{\lambda\left(X \bigcap B_{x}^{r}\right)}{\lambda\left(B_{x}^{r}\right)}<\frac{j}{j+1}=e^{-\varepsilon},
$$

so, for some sequence of positive reals $r_{1}, r_{2}, \ldots \rightarrow 0$, we have

$$
\begin{array}{ll}
\forall i \in \mathbb{N}, & \frac{\lambda\left(Q \bigcap B_{x}^{r_{i}}\right)}{\lambda\left(B_{x}^{r_{i}}\right)}<e^{-\varepsilon} \\
\forall i \in \mathbb{N}, & \lambda\left(B_{x}^{r_{i}}\right)>e^{\varepsilon} \cdot\left(\lambda\left(Q \bigcap B_{x}^{r_{i}}\right)\right),
\end{array}
$$

and so

$$
\text { and so } \quad \forall i \in \mathbb{N}, \quad B_{x}^{r_{i}} \in \mathcal{I}_{Q}^{\varepsilon}
$$

Then $\mathcal{I}_{Q}^{\varepsilon}$ covers each point of Q by balls of arbitrarily small radii. Then $\mathcal{I}_{Q}^{\varepsilon}$ is a fine-covering of Q, contradicting Theorem 20. QED

Proof. We wish to show: for λ-a.e. $x \in X, \quad x \in \mathrm{DP}_{X}$.
Define $\quad F: \mathbb{R}^{2} \times(0 ; \infty) \rightarrow[0 ; 1]$ by:

$$
\forall x \in \mathbb{R}^{2}, \quad \forall r>0, \quad F(x, r)=\frac{\lambda\left(X \bigcap B_{x}^{r}\right)}{\lambda\left(B_{x}^{r}\right)} .
$$

We wish to show: for λ-a.e. $x \in X, \lim _{r \rightarrow 0^{+}}(F(x, r))=1$.
Define $\phi, \psi: X \rightarrow[0 ; 1]$ by: $\forall x \in X$,

$$
\phi(x)=\liminf _{r \rightarrow 0^{+}}(F(x, r)) \quad \text { and } \quad \psi(x)=\limsup _{r \rightarrow 0^{+}}(F(x, r)) .
$$

We wish to show: for λ-a.e. $x \in X, \quad \phi(x)=1=\psi(x)$.
We have: $\quad \forall x \in X, \quad \phi(x) \leqslant \psi(x) \leqslant 1$.
Therefore, it suffices to show: for λ-a.e. $x \in X, \quad \phi(x) \geqslant 1$.
Let $P:=\{x \in X \mid \phi(x)<1\}$. Want: $\lambda(P)=0$.
For all $j \in \mathbb{N}, \quad$ let $P_{j}:=\{x \in X \mid \phi(x)<j /(j+1)\}$.
Since $P=P_{1} \bigcup P_{2} \bigcup \cdots$, it suffices to show: $\forall j \in \mathbb{N}, \lambda\left(P_{j}\right)=0$.
Given $j \in \mathbb{N}$,
Assume $\lambda(Q)>0$, let $Q:=P_{j}, \quad$ want: $\lambda(Q)=0$. want: contradiction.
Let $\varepsilon:=\ln ((j+1) / j)$. Then: $e^{-\varepsilon}=j /(j+1)$.
So, since $Q=P_{j}=\{x \in X \mid \phi(x)<j /(j+1)\}$,

$$
\text { we get: } \quad Q=\left\{x \in X \mid \phi(x)<e^{-\varepsilon}\right\} . \quad \text { Note that } Q \subseteq X
$$

Since $(j+1) / j>1$ and since $\varepsilon=\ln ((j+1) / j)$, we get: $\quad \varepsilon>0$.
So, by Theorem 20, $\mathcal{I}_{Q}^{\varepsilon}$ is not a fine-covering of Q. Let $\mathcal{W}:=\mathcal{I}_{Q}^{\varepsilon}$.
Then \mathcal{W} is not a fine-covering of Q, so choose $x \in Q$ and $\delta>0$ s.t.

$$
\forall W \in \mathcal{W}, \quad(x \in W) \Rightarrow(\operatorname{rad} W \geqslant \delta)
$$

Since $x \in Q$, we get: $\quad \phi(x)<e^{-\varepsilon}$.
Since $\quad \liminf _{r \rightarrow 0^{+}}(F(x, r))=\phi(x)<e^{-\varepsilon}$,
choose $r \in(0 ; \delta) \quad$ s.t. $\quad F(x, r)<e^{-\varepsilon} . \quad$ Let $W:=B_{x}^{r}$.
Since $\quad r \in(0 ; \delta)$, we have $r>0, \quad$ so: $\pi r^{2}>0$.
So, \quad since $\lambda(W)=\lambda\left(B_{x}^{r}\right)=\pi r^{2}, \quad$ we get: $\quad \lambda(W)>0$.
Since $Q \subseteq X, \quad$ we get: $\quad Q \bigcap W \subseteq X \bigcap W$.
So, by monotonicity of λ, we get: $\quad \lambda(Q \bigcap W) \leqslant \lambda(X \bigcap W)$.
Since $\frac{\lambda(Q \bigcap W)}{\lambda(W)} \leqslant \frac{\lambda(X \bigcap W)}{\lambda(W)}=\frac{\lambda\left(X \bigcap B_{x}^{r}\right)}{\lambda\left(B_{x}^{r}\right)}=F(x, r)<e^{-\varepsilon}$,
we get
so
so $\quad \lambda(W)>e^{\varepsilon} \cdot(\lambda(Q \bigcap W))$,
so, since $W=B_{x}^{r} \in \mathcal{B}$, by definition of $\mathcal{I}_{Q}^{\varepsilon}$, we conclude: $W \in \mathcal{I}_{Q}^{\varepsilon}$.
Since $W \in \mathcal{I}_{Q}^{\varepsilon}=\mathcal{W}$ and since $x \in B_{x}^{r}=W, \quad$ by choice of x and δ, we get: $\quad \operatorname{rad} W \geqslant \delta$.
On the other hand, since $\operatorname{rad} W=\operatorname{rad} B_{x}^{r}=r \in(0 ; \delta)$, we get: $\operatorname{rad} W<\delta . \quad$ Contradiction.

For any function f, let \mathbb{D}_{f} denote the domain of f.
For any function f, for any set S, we define:
Note: $\quad \forall$ function f, \forall set S, we have: $f^{*} S \subseteq \mathbb{D}_{f}$.
DEFINITION 23. Let $X \subseteq \mathbb{R}^{2}$, let $f: X \rightarrow \mathbb{R}$ and let $x \in X$.
Then, for all $\varepsilon>0$, for all $r>0$, we define:

$$
A_{x}^{r}(f, \varepsilon):=\left\{u \in X \bigcap B_{x}^{r} \text { s.t. }|(f(u))-(f(x))|<\varepsilon\right\} .
$$

We say f is CiOP at x if: $\quad \forall \varepsilon>0, \lim _{r \rightarrow 0^{+}} \frac{\lambda\left(A_{x}^{r}(f, \varepsilon)\right)}{\lambda\left(B_{x}^{r}\right)}=1$.
Here, "CiOP" stands for: "continuous-in-outer-probability".
Every function, measurable or not, is CiOP a.e.:
THEOREM 24. Let $\quad X \subseteq \mathbb{R}^{2}, \quad f: X \rightarrow \mathbb{R}$.
Then: for λ-a.e. $x \in X, f$ is CiOP at x.
Here, we assume that the domain of f is a subset of \mathbb{R}^{2}
and that the image of f is a subset of \mathbb{R},
but the result could be proved for any two Euclidean spaces.
Interestingly, neither X nor f need be Lebesgue-measurable.
Proof. Let Y_{1}, Y_{2}, \ldots be a countable base for the topology on \mathbb{R}.
For all $j \in \mathbb{N}$, let $\quad X_{j}:=f^{*} Y_{j}$.

By Theorem 22, we have:
For all $j \in \mathbb{N}$, let

$$
\begin{array}{ll}
\forall j \in \mathbb{N}, & \lambda\left(X_{j} \backslash \mathrm{DP}_{X_{j}}\right)=0 \\
& D_{j}:=\mathrm{DP}_{X_{j}} \\
& \lambda\left(X_{j} \backslash D_{j}\right)=0
\end{array}
$$

Then: $\forall j \in \mathbb{N}$,
For all $j \in \mathbb{N}$, let
Then: $\forall j \in \mathbb{N}$,
Let $Z:=Z_{1} \bigcup Z_{2} \bigcup \cdots$.
Then: $\lambda(Z)=0$.
It therefore suffices to show: $\quad \forall x \in X \backslash Z, f$ is CiOP at x.
Given $x \in X \backslash Z, \quad$ given $\varepsilon>0, \quad$ want: $\quad \lim _{r \rightarrow 0^{+}} \frac{\lambda\left(A_{x}^{r}(f, \varepsilon)\right)}{\lambda\left(B_{x}^{r}\right)}=1$.
Let $y:=f(x)$. We have: $y \in \quad(y-\varepsilon ; y+\varepsilon)$.
So, since Y_{1}, Y_{2}, \ldots is a base for the topology on \mathbb{R},

$$
\text { choose } \quad j \in \mathbb{N} \quad \text { s.t. } \quad y \in Y_{j} \subseteq(y-\varepsilon ; y+\varepsilon) \text {. }
$$

Since $f(x)=y \in Y_{j}$, we get: $\quad x \in f^{*} Y_{j}$.
Since $x \in X \backslash Z$, we get: $\quad x \in X \quad$ and $\quad x \notin \quad Z$.
Since $x \notin Z=Z_{1} \bigcup Z_{2} \bigcup \cdots \supseteq Z_{j}$, we get: $\quad x \notin \quad Z_{j}$.
So, since $\quad x \in f^{*} Y_{j}=X_{j}, \quad$ we get: $\quad x \in X_{j} \backslash Z_{j}$.
Since $D_{j}=\mathrm{DP}_{X_{j}} \subseteq X_{j}$ and $Z_{j}=X_{j} \backslash D_{j}$, we get: $X_{j} \backslash Z_{j}=D_{j}$.
Since $x \in X_{j} \backslash Z_{j}=D_{j}=\mathrm{DP}_{X_{j}}$, we get: $\quad \lim _{r \rightarrow 0^{+}} \frac{\lambda\left(X_{j} \bigcap B_{x}^{r}\right)}{\lambda\left(B_{x}^{r}\right)}=1$.
So, by the Squeeze Theorem, it suffices to show:

$$
\forall r>0, \quad \frac{\lambda\left(X_{j} \bigcap B_{x}^{r}\right)}{\lambda\left(B_{x}^{r}\right)} \leqslant \frac{\lambda\left(A_{x}^{r}(f, \varepsilon)\right)}{\lambda\left(B_{x}^{r}\right)} \leqslant 1
$$

Given $r>0$,
want: $\lambda\left(X_{j} \bigcap B_{x}^{r}\right) \leqslant \lambda\left(A_{x}^{r}(f, \varepsilon)\right) \leqslant \lambda\left(B_{x}^{r}\right)$.
By monotonicity of λ,
it suffices to show:
By definition of $A_{x}^{r}(f, \varepsilon)$,
Then:
It remains to show:
Given $u \in X_{j} \bigcap B_{x}^{r}$,
Since $\quad u \in X_{j} \cap B_{x}^{r}$, we get: $u \in X_{j} \quad$ and $\quad u \in B_{x}^{r}$.
Since $u \in X_{j}=f^{*} Y_{j} \subseteq \mathbb{D}_{f}=X$ and $u \in B_{x}^{r}$, we get: $u \in X \bigcap B_{x}^{r}$.
So, by definition of $A_{x}^{r}(f, \varepsilon)$, we want: $|(f(u))-(f(x))|<\varepsilon$.
Since $u \in X_{j}=f^{*} Y_{j}$, we get: $f(u) \in Y_{j}$.
By the choice of j, we have: $\quad Y_{j} \subseteq(y-\varepsilon ; y+\varepsilon)$.
Since $f(u) \in Y_{j} \subseteq(y-\varepsilon ; y+\varepsilon)$, we get: $|(f(u))-y|<\varepsilon$.
By definition of $y, \quad y=f(x)$. Then: $\quad|(f(u))-(f(x))|<\varepsilon$.

