Points of Density and Continuity in Probability

The main results in this note are:

Theorem 18,

Theorem 22, Theorem 24.

DEFINITION 1. Let S be a set of sets.

Then:
$$\bigcup S := \begin{cases} \emptyset, & \text{if } S = \emptyset \\ \bigcup_{S \in S} S, & \text{if } S \neq \emptyset. \end{cases}$$

We make a similar convention that an empty sum is equal to 0.

DEFINITION 2. We define $\#\emptyset := 0$. For any nonempty finite set S,

 $\frac{|\#S|}{|\#S|} \text{ denotes the number of elements in } S.$

For any infinite set S, we define $\#S := \infty$.

DEFINITION 3. Let $[\mathbb{R}^*] := \{-\infty\} \bigcup \mathbb{R} \bigcup \{\infty\}$. For all $a, b \in \mathbb{R}^*$, let $\boxed{(a;b)} := \{x \in \mathbb{R}^* \mid a < x < b\}, \qquad \boxed{[a;b]} := \{x \in \mathbb{R}^* \mid a \leqslant x < b\},$ $\boxed{(a;b]} := \{x \in \mathbb{R}^* \mid a < x \leqslant b\}, \qquad \boxed{[a;b]} := \{x \in \mathbb{R}^* \mid a \leqslant x \leqslant b\}.$

DEFINITION 4. For all $x \in \mathbb{R}^2$, for all r > 0, let $\boxed{B_x^r} := \{ y \in \mathbb{R}^2 \text{ s.t. } |y - x| < r \}.$

That is: B_x^r is the open disk about x of radius r.

Let $\mathcal{B} := \{ B_x^r \mid x \in \mathbb{R}^2, r > 0 \}.$ Let \mathcal{T} denote the standard topology on \mathbb{R}^2 , so \mathcal{T} is the set of open subsets of \mathbb{R}^2 . Then: $\forall U \in \mathcal{T}, U$ is Lebesgue-measurable. Also, $\mathcal{B} \subseteq \mathcal{T} \setminus \{ \emptyset \}.$ DEFINITION 5. Let $x \in \mathbb{R}^2, r > 0, C := B_x^r.$ Then: $[\operatorname{rad} C] := r$ and $[\operatorname{cent} C] := x$ and

Then:
$$\boxed{\operatorname{rad} C} := r$$
 and $\boxed{\operatorname{cent} C} := x$ and $\forall s > 0, \quad \boxed{s \cdot C} := B_x^{s \cdot r}.$

According to the next theorem, if two disks meet,

then the triple of the larger covers the smaller.

THEOREM 6. Let $F, G \in \mathcal{B}$. Assume: rad $F \leq \operatorname{rad} G$ and $F \bigcap_{1} G \neq \emptyset$. Then: $3 \cdot G \supseteq F$.

Given $a \in F$, want: $a \in 3 \cdot G$. Proof. Since $F \cap G \neq \emptyset$, choose $p \in F \cap G$. Then: $p \in F$ and $p \in G$. $x := \operatorname{cent} F, \quad y := \operatorname{cent} G, \quad r := \operatorname{rad} F, \quad s := \operatorname{rad} G.$ Let Then, by hypothesis, we have: $r \leq s$. and $3 \cdot G = B_y^{3s}$. and $G = B_u^s$ Also, $F = B_x^r$ Want: $a \in B_u^{3s}$. **Want:** |a - y| < 3s. Since $a \in F = B_x^r$, we get: |a - x| < r.Since $p \in F = B_x^r$, we get: |p - x| < r.Since $p \in G = B_y^s$, we get: |p - y| < s. $r + r + s \leq 3s.$ Since $r \leq s$, we get: Then $|a - y| \leq |a - x| + |x - p| + |p - y| < r + r + s \leq 3s$. Let $|\mathbb{N}| := \{1, 2, 3, \ldots\}$ be the set of positive integers. We use "pw-dj" to abbreviate "pairwise-disjoint". For any set \mathcal{S} of sets, by $|\mathcal{S}$ is pw-dj|, $\forall S, T \in \mathcal{S}, \quad (S \neq T) \Rightarrow (S \cap T = \emptyset).$ we mean: For any sequence (S_1, S_2, \ldots) of sets, by (S_1, S_2, \ldots) is **pw-dj** $\forall i, j \in \mathbb{N}, \quad (i \neq j) \Rightarrow (S_i \cap S_j = \emptyset).$ we mean: For any $C \subseteq B$, for any s > 0, we define: $s \cdot \mathcal{C} \mid := \{ s \cdot C \mid C \in \mathcal{C} \}.$ **THEOREM 7.** Let $\mathcal{F} \subseteq \mathcal{B}$. Assume \mathcal{F} is finite. Then: $\exists pw - dj \ \mathcal{E} \subseteq \mathcal{F} \quad s.t. \quad [\](3 \cdot \mathcal{E}) \supseteq [\]\mathcal{F}.$ Proof. Let $n := \#\mathcal{F}$. In case n = 0, let $\mathcal{E} := \emptyset$. We therefore assume $n \ge 1$. By induction on n, we also assume: $\forall Q \subseteq B$, $(\#Q < n) \Rightarrow (\exists pw-dj \mathcal{P} \subseteq \mathcal{Q} \text{ s.t. } | J(3 \cdot \mathcal{P}) \supseteq | JQ).$ Let $R := \{ \operatorname{rad} F \mid F \in \mathcal{F} \}.$ Then R is a finite subset of \mathbb{R} . Let $r := \max R$. Then $r \in R$, so choose $G \in \mathcal{F}$ s.t. rad G = r. Since $G \in \mathcal{F} \subseteq \mathcal{B} \subseteq \mathcal{T} \setminus \{\emptyset\}$, we get: $G \neq \emptyset$. Let $\mathcal{Q} := \{F \in \mathcal{F} \mid F \cap G = \emptyset\}.$ Then $\mathcal{Q} \subseteq \mathcal{F}$ and $G \notin \mathcal{Q}$. Then $\mathcal{Q} \subseteq \mathcal{F} \setminus \{G\}$, so: $\#\mathcal{Q} \leqslant \#(\mathcal{F} \backslash \{G\}).$ Since $G \in \mathcal{F}$ and since \mathcal{F} is finite, we get: $\#(\mathcal{F} \setminus \{G\}) < \#\mathcal{F}$. $\#\mathcal{Q} \leq \#(\mathcal{F} \setminus \{G\}) < \#\mathcal{F} = n$, by the induction assumption, Since a pw-dj $\mathcal{P} \subseteq \mathcal{Q}$ s.t. $\bigcup (3 \cdot \mathcal{P}) \supseteq \bigcup \mathcal{Q}$. choose Since $\mathcal{P} \subseteq \mathcal{Q}$, by definition of \mathcal{Q} , we get: $\forall P \in \mathcal{P}, \quad P \bigcap G = \emptyset.$ So, since \mathcal{P} is pw-dj, we get: $\mathcal{P} \mid |\{G\}$ is pw-dj.

 $\mathbf{2}$

Since $\mathcal{P} \subseteq \mathcal{Q} \subseteq \mathcal{F}$ and since $G \in \mathcal{F}$, we get: $\mathcal{P} \bigcup \{G\} \subseteq \mathcal{F}$. Let $\mathcal{E} := \mathcal{P} \bigcup \{G\}$. Then: \mathcal{E} is pw-dj and $\mathcal{E} \subseteq \mathcal{F}$. It remains only to show: $\bigcup (3 \cdot \mathcal{E}) \supseteq \bigcup \mathcal{F}$. Want: $\forall F \in \mathcal{F}$, $F \subseteq \bigcup (3 \cdot \mathcal{E})$. Given $F \in \mathcal{F}$, want: $F \subseteq \bigcup (3 \cdot \mathcal{E})$.

 $\begin{array}{ll} Case \ 1: \ F \in \mathcal{Q}. & Proof \ in \ Case \ 1: \\ \text{Since } \mathcal{P} \subseteq \mathcal{P} \bigcup \{G\} = \mathcal{E}, \ \text{we get } 3 \cdot \mathcal{P} \subseteq 3 \cdot \mathcal{E}, \ \text{so} & \bigcup (3 \cdot \mathcal{P}) \subseteq \bigcup (3 \cdot \mathcal{E}). \\ \text{By the choice of } \mathcal{P}, \ \text{we have:} & \bigcup (3 \cdot \mathcal{P}) \supseteq \bigcup \mathcal{Q}. \\ \text{Since } F \in \mathcal{Q}, \ \text{we get:} & F \subseteq \bigcup \mathcal{Q}. \\ \text{Then:} & F \subseteq \bigcup \mathcal{Q} \subseteq \bigcup (3 \cdot \mathcal{P}) \subseteq \bigcup (3 \cdot \mathcal{E}). \\ \text{End of proof in } Case \ 1. \end{array}$

Case 2: $F \notin Q$. Proof in Case 2: Recall: $F \in \mathcal{F}$. So, by definition of R, we have: rad $F \in R$. Then rad $F \leq \max R$. Since $F \in \mathcal{F}$ and $F \notin \mathcal{Q}$, by definition of \mathcal{Q} , we get: $F \cap G \neq \emptyset$. So, since $\operatorname{rad} F \leq \max R = r = \operatorname{rad} G$, $3 \cdot G \supseteq F.$ by Theorem 6, we get: Since $G \in \mathcal{P}[]{G} = \mathcal{E}$, we get $3 \cdot G \in 3 \cdot \mathcal{E}$, so $3 \cdot G \subseteq [](3 \cdot \mathcal{E}).$ $F \subseteq 3 \cdot G \subseteq [\](3 \cdot \mathcal{E}).$ Then: End of proof in Case 2.

Let $|\lambda|$ denote Lebesgue-outer-measure on \mathbb{R}^2 .

THEOREM 8.

Let $(A_1, A_2, ...)$ be a sequence of Lebesgue-measurable subsets of \mathbb{R}^2 . Then: as $k \to \infty$, $\lambda(A_1 \bigcup \cdots \bigcup A_k) \to \lambda(A_1 \bigcup A_2 \bigcup \cdots)$.

Proof. For all $k \in \mathbb{N},$ let $D_k := A_k \setminus (A_1 \bigcup \cdots \bigcup A_{k-1}).$ $\forall k \in \mathbb{N}, \quad D_k \text{ is Lebesgue-measurable}$ Then, $\forall k \in \mathbb{N},$ $D_1 \bigcup \cdots \bigcup D_k = A_1 \bigcup \cdots \bigcup A_k$ and, $D_1[]D_2[]\cdots = A_1[]A_2[]\cdots$ and $(D_1, D_2, ...)$ is pw-dj. and (D_1, D_2, \ldots) is pw-dj, by countable-additivity of λ , we get Since $\lambda(D_1 \bigcup D_2 \bigcup \cdots) = (\lambda(D_1)) + (\lambda(D_2)) + \cdots;$ also, by finite-additivity of λ , we get $\forall k \in \mathbb{N},$ $\lambda(D_1 \bigcup \cdots \bigcup D_k) = (\lambda(D_1)) + \cdots + (\lambda(D_k)).$ By definition of infinite-summation, we have as $k \to \infty$, $(\lambda(D_1)) + \cdots + (\lambda(D_k)) \to (\lambda(D_1)) + (\lambda(D_2)) + \cdots$.

Then: as
$$k \to \infty$$
, $\lambda(D_1 \bigcup \cdots \bigcup D_k) \to \lambda(D_1 \bigcup D_2 \bigcup \cdots)$.
Then: as $k \to \infty$, $\lambda(A_1 \bigcup \cdots \bigcup A_k) \to \lambda(A_1 \bigcup A_2 \bigcup \cdots)$.

The next result says: for any collection of open disks,

if its union has finite Lebesgue-measure, then

 \exists finite pw-dj subcollection that covers at least 10% of that union.

THEOREM 9. Let $\mathcal{A} \subseteq \mathcal{B}$. Assume: $\lambda(| \mathcal{A}) < \infty$. $\exists finite \ pw-dj \ \mathcal{E} \subseteq \mathcal{A}$ s.t. $\lambda(||\mathcal{E}) \ge 0.1 \cdot (\lambda(||\mathcal{A})).$ Then: *Proof.* In case $\lambda(\bigcup \mathcal{A}) = 0$, let $\mathcal{E} := \emptyset$. We therefore assume $\lambda(\bigcup \mathcal{A}) \neq 0$. Then $\lambda(\lfloor J \mathcal{A}) > 0.$ By hypothesis, $\lambda(\bigcup \mathcal{A}) < \infty$. Let $c := \lambda(\lfloor J A)$. Then $0 < c < \infty$. Then: $0.9 \cdot c < c$. $\bigcup \mathcal{A}$ is Lindelöf, choose $A_1, A_2, \ldots \in \mathcal{A}$ Since $A_1[]A_2[]\cdots = []\mathcal{A}.$ s.t. Since $A_1, A_2, \ldots \in \mathcal{A} \subseteq \mathcal{B} \subseteq \mathcal{T}$, we get: (A_1, A_2, \ldots) is a sequence of Lebesgue-measurable subsets of \mathbb{R}^2 . So, by Theorem 8, we have: $\lambda(A_1 \bigcup \cdots \bigcup A_k) \to \lambda(A_1 \bigcup A_2 \bigcup \cdots).$ as $k \to \infty$, $0.9 \cdot c < c = \lambda(\bigcup \mathcal{A}) = \lambda(A_1 \bigcup A_2 \bigcup \cdots),$ So, since **choose** $k \in \mathbb{N}$ s.t. $\lambda(A_1 \bigcup \cdots \bigcup A_k) \ge 0.9 \cdot c.$ Let $\mathcal{F} := \{A_1, \ldots, A_k\}$. Then $\lambda(\bigcup \mathcal{F}) \ge 0.9 \cdot c$ and $\mathcal{F} \subseteq \mathcal{A}$. Also, \mathcal{F} is finite, so, since $\mathcal{F} \subseteq \mathcal{A} \subseteq \mathcal{B}$, by Theorem 7, **choose** a pw-dj $\mathcal{E} \subseteq \mathcal{F}$ s.t. $\bigcup (3 \cdot \mathcal{E}) \supseteq \bigcup \mathcal{F}$. Since $\mathcal{E} \subseteq \mathcal{F}$ and since \mathcal{F} is finite, we get: \mathcal{E} is finite. Since $\mathcal{E} \subseteq \mathcal{F} \subseteq \mathcal{A}$, it remains only to show: $\lambda([\ \mathcal{E}) \ge 0.1 \cdot (\lambda([\ \mathcal{A}))).$ we want: $\lambda(| \mathcal{E}) \ge 0.1 \cdot c.$ Since $c = \lambda([]\mathcal{A}),$ We have: $\forall B \in \mathcal{B}, \ \lambda(3 \cdot B) = 9 \cdot (\lambda(B)).$ Since $\bigcup \mathcal{F} \subseteq \bigcup (3 \cdot \mathcal{E})$, by monotonicity and subadditivity of λ , $\lambda(\bigcup \mathcal{F}) \leqslant \sum_{E \in \mathcal{C}} (\lambda(3 \cdot E)).$ Since $\lambda(\bigcup \mathcal{F}) \leq \sum_{E \in \mathcal{E}} (\lambda(3 \cdot E)) = \sum_{E \in \mathcal{E}} (9 \cdot (\lambda(E))) = 9 \cdot \sum_{E \in \mathcal{E}} (\lambda(E)),$ we get: $(1/9) \cdot (\lambda(\bigcup \mathcal{F})) \leq \sum_{E=C} (\lambda(E)).$

Since $\mathcal{E} \subseteq \mathcal{B} \subseteq \mathcal{T}$, we get: $\forall E \in \mathcal{E}$, E is Lebesgue-measurable. So, since \mathcal{E} is finite and pw-dj, by finite-additivity of λ , we get:

 $\lambda(\bigcup \mathcal{E}) = \sum_{E \in \mathcal{E}} (\lambda(E)).$ Since $\lambda(\bigcup \mathcal{F}) \ge 0.9 \cdot c$, we get: $(1/9) \cdot (\lambda(\lfloor J\mathcal{F})) \ge 0.1 \cdot c.$ Then $\lambda(\bigcup \mathcal{E}) = \sum_{E \in \mathcal{E}} (\lambda(E)) \ge (1/9) \cdot (\lambda(\bigcup \mathcal{F})) \ge 0.1 \cdot c.$ Let A and B be sets. By *B* is a superset of A, we will mean: $B \supseteq A.$ Let \mathcal{B} be a set of sets and let A be a set. By \mathcal{B} is a **covering of** A, we will mean: $|\mathcal{B}|$ is a superset of A. **DEFINITION 10.** Let $Q \subseteq \mathbb{R}^2$, $\mathcal{V} \subseteq \mathcal{B}$. By \mathcal{V} is a **fine-covering** of Q, we mean: $\forall x \in Q, \quad \forall \delta > 0, \quad \exists V \in \mathcal{V} \quad s.t. \quad (x \in V) \& (\operatorname{rad} V < \delta).$ NOTE: A fine-covering is a covering, *i.e.*: $\forall Q \subseteq \mathbb{R}^2, \ \forall \mathcal{V} \subseteq \mathcal{B},$ if \mathcal{V} is a fine-covering of Q, then $\bigcup \mathcal{V} \supseteq Q$. Let Q be a set and let \mathcal{P} be a set of sets. We'll say \mathcal{P} is **inside** Q if: $|\mathcal{P}| \subseteq Q$. According to the next theorem, for any fine-covering $\mathcal{V} \subseteq \mathcal{B}$ of a set $Q \subseteq \mathbb{R}^2$, for any open $W \subseteq \mathbb{R}^2$, there is a subset of \mathcal{V} that is inside W and a fine-covering of $Q \cap W$. both **THEOREM 11.** Let $Q, W \subseteq \mathbb{R}^2, \quad \mathcal{V} \subseteq \mathcal{B}.$ Assume: $W \in \mathcal{T}$ and \mathcal{V} is a fine-covering of Q. Let $\mathcal{V}' := \{ V \in \mathcal{V} \mid V \subseteq W \}$. Then: \mathcal{V}' is a fine-covering of $Q \cap W$. Proof. Given $x \in Q \cap W$, $\delta > 0$, $\exists V \in \mathcal{V}' \quad \text{s.t.} \quad (x \in V) \& (\operatorname{rad} V < \delta).$ want: Since $x \in Q \cap W \subseteq W$ and $W \in \mathcal{T}$, **choose** $\beta > 0$ s.t. $B_x^\beta \subseteq W$. Let $\alpha := \min\{\beta/2, \delta\}$. Then $\alpha > 0$ and $\alpha \leq \beta/2$ and $\alpha \leq \delta$. Since $x \in Q \cap W \subseteq Q$ and $\alpha > 0$ and \mathcal{V} is a fine-covering of Q, choose $V \in \mathcal{V}$ s.t. $(x \in V) \& (\operatorname{rad} V < \alpha).$ Since rad $V < \alpha \leq \delta$, it remains only to show: $V \in \mathcal{V}'$.

By definition of \mathcal{V}' , since $V \in \mathcal{V}$, we wish to show: $V \subseteq W$. Given $v \in V$, want: $v \in W$. Since $B_x^{\beta} \subseteq W$, it suffices to show: $v \in B_x^{\beta}$. Want: $|v - x| < \beta$. Since $V \in \mathcal{V} \subseteq \mathcal{B}$, **choose** $c \in \mathbb{R}^2$ and r > 0 s.t. $V = B_c^r$. Since $v, x \in V = B_c^r$, we get: |v - c| < r and |x - c| < r. Since $r = \operatorname{rad} B_c^r = \operatorname{rad} V < \alpha \leq \beta/2$, we get: $2r < \beta$. $|v - x| \leq |v - c| + |c - x| < r + r = 2r < \beta.$ Then: According to the next theorem, for any fine-covering $\mathcal{V} \subseteq \mathcal{B}$ of a set $Q \subseteq \mathbb{R}^2$, for any open $W \subseteq \mathbb{R}^2$ that is a superset of Q, there is a subset of \mathcal{V} that is both inside Wand a fine-covering of Q. **THEOREM 12.** Let $W \subseteq \mathbb{R}^2$, $Q \subseteq W$, $\mathcal{V} \subseteq \mathcal{B}$. $W \in \mathcal{T}$ and \mathcal{V} is a fine-covering of Q. Assume: Let $\mathcal{V}' := \{ V \in \mathcal{V} \mid V \subseteq W \}$. Then: \mathcal{V}' is a fine-covering of Q. $Q \cap W = Q.$ *Proof.* Since $Q \subseteq W$, we get: \mathcal{V}' is a fine-covering of Q. So, by Theorem 11, we get: According to the Carathéodory-condition, $\forall Q \subseteq \mathbb{R}^2$, Q is Lebesgue-measurable iff $\forall S \subseteq \mathbb{R}^2,$ $\lambda(S) = \left[\lambda(S \cap Q)\right] + \left[\lambda(S \setminus Q)\right].$ Q is Lebesgue-measurable iff Q "splits all sets well". That is: According to the next theorem, for any $Q \subseteq \mathbb{R}^2$ of finite Lebesgue-outer-measure, for any fine-covering \mathcal{V} of Q, there is a finite pw-dj subset of \mathcal{V} covering at least 1% of Q. **THEOREM 13.** Let $Q \subseteq \mathbb{R}^2$, $\mathcal{V} \subseteq \mathcal{B}$. Assume: \mathcal{V} is a fine-covering of Q. Assume: $\lambda(Q) < \infty$. $\exists finite \ pw-dj \ \mathcal{E} \subseteq \mathcal{V} \quad s.t. \quad \lambda(Q \bigcap (\lfloor J \mathcal{E})) \ge 0.01 \cdot (\lambda(Q)).$ Then: Idea of proof: In case $\lambda(Q) = 0$, let $\mathcal{E} := \emptyset$, so assume $\lambda(Q) > 0$. Let $\varepsilon := 0.1 \cdot (\lambda(Q))$. By outer-regularity of λ , choose $W \in \mathcal{T}$ s.t. $W \supseteq Q$ and $\lambda(W) \leq (\lambda(Q)) + \varepsilon$. Then: W approximates Q in measure, to within ε . By Theorem 12, **choose** a fine-covering $\mathcal{V}' \subseteq \mathcal{V}$, inside W, of Q.

Since $Q \subseteq \bigcup \mathcal{V}' \subseteq W$ and since W approximates Q in measure,

 $|\mathcal{V}'|$ also approximates Q in measure. we conclude that: a finite pw-dj $\mathcal{E} \subseteq \mathcal{V}'$ By Theorem 9, choose s.t. of $\bigcup \mathcal{V}'$. \mathcal{E} covers at least 10%There are details to check, but. assuming our choice of $\varepsilon = 0.1 \cdot (\lambda(Q))$ is small enough, *i.e.*, assuming $\bigcup \mathcal{V}'$ approximates Q sufficiently closely in measure, because \mathcal{E} covers at least 10%then, of $\bigcup \mathcal{V}'$, it will follow that \mathcal{E} covers at least 1%of Q. QED *Proof.* In case $\lambda(Q) = 0$, let $\mathcal{E} := \emptyset$. We therefore assume $\lambda(Q) \neq 0$. Then $\lambda(Q) > 0$. By hypothesis, $\lambda(Q) < \infty$. Let $b := \lambda(Q)$. $< b < \infty$. Then 0 Then: $1.1 \cdot b > b$. Since $1.1 \cdot b > b = \lambda(Q)$, by outer-regularity of λ , choose $W \in \mathcal{T}$ s.t. $W \supseteq Q$ and $\lambda(W) \leq 1.1 \cdot b$. Let $\mathcal{V}' := \{ V \in \mathcal{V} \mid V \subseteq W \}$. Then $\mathcal{V}' \subseteq \mathcal{V}$. Also, $\bigcup \mathcal{V}' \subseteq$ W.Let $V := \bigcup \mathcal{V}'$. Then: $V \subseteq$ W. $\lambda(V) \leqslant \lambda(W).$ So, by monotonicity of λ , we get: Let $c := \lambda(V)$. $c \leq \lambda(W).$ Then: Since $c \leq \lambda(W) \leq 1.1 \cdot b$, we get: $c \leq 1.1 \cdot b$. since $b < \infty$, Let $\mathcal{A} := \mathcal{V}'$. So, we get: $c < \infty$. Since $\mathcal{A} = \mathcal{V}' \subseteq \mathcal{V}$ and since $\mathcal{V} \subseteq \mathcal{B}$, $\mathcal{A} \subseteq \mathcal{B}$. we get: since $\lambda([\mathcal{J}\mathcal{A}) = \lambda([\mathcal{J}\mathcal{V}') = \lambda(V) = c < \infty$, by Theorem 9, So. **choose** a finite pw-dj $\mathcal{E} \subseteq \mathcal{A}$ $\lambda(\lfloor J\mathcal{E}) \ge 0.1 \cdot (\lambda(\lfloor J\mathcal{A})).$ s.t. Then, since $\lambda([\mathcal{A}) = \lambda([\mathcal{V}') = \lambda(V) = c,$ $\lambda([J\mathcal{E}) \ge 0.1 \cdot c.$ Since $\mathcal{E} \subseteq \mathcal{A} = \mathcal{V}'$, we get: $\mathcal{E} \subseteq \mathcal{V}'$. So, since $\mathcal{V}' \subseteq \mathcal{V}$, we get: $\mathcal{E} \subseteq \mathcal{V}$. It remains only to show: $\lambda(Q \cap (\bigcup \mathcal{E})) \ge 0.01 \cdot (\lambda(Q)).$ Since $b = \lambda(Q)$, we want: $\lambda(Q \cap (\bigcup \mathcal{E})) \ge 0.01 \cdot$ *b*. Let $E := \bigcup \mathcal{E}$. Want: $\lambda(Q \cap E) \ge 0.01$. *b*. Let $x := \lambda(Q \cap E)$. Want: x ≥ 0.01 · *b*. $\forall B \in \mathcal{B},$ $\lambda(B) < \infty.$ We have: $\lambda([J\mathcal{E}) < \infty.$ So, since $\mathcal{E} \subseteq \mathcal{V} \subseteq \mathcal{B}$ and \mathcal{E} is finite, we get: $E = \bigcup \mathcal{E},$ $\lambda(E) < \infty.$ So, since we get: Let $y := \lambda(E)$. Then: y $< \infty$. Since $x = \lambda(Q \cap E) \leq \lambda(E) < \infty$, we get: x $< \infty$. Since $\mathcal{E} \subseteq \mathcal{V}'$, we get $\bigcup \mathcal{E} \subseteq \bigcup \mathcal{V}'$. Since $E = \bigcup \mathcal{E} \subseteq \bigcup \mathcal{V}' = V, \text{ we get:}$ $V \cap E = E.$ Then: $\lambda(V \cap E) = \lambda(E)$. Since $\mathcal{E} \subseteq \mathcal{V} \subseteq \mathcal{B} \subseteq \mathcal{T}$ and since \mathcal{T} is a topology, we get: $\bigcup \mathcal{E} \in \mathcal{T}$. Since $E = \bigcup \mathcal{E} \in \mathcal{T}$, it follows that: E is Lebesgue-measurable. So, by the Carathéodory-condition,

 $\lambda(V) = \left[\lambda(V \setminus E)\right] + \left[\lambda(V \cap E)\right].$ So, since $\lambda(V \cap E) = \lambda(E) < \infty$, we get: $\lambda(V \setminus E) = [\lambda(V)] - [\lambda(V \cap E)].$ So, since $c = \lambda(V)$ and $\lambda(V \cap E) = \lambda(E) = y$, we get: $\lambda(V \setminus E) =$ c_ y. Since E is Lebesgue-measurable, by the Carathéodory-condition, $\lambda(Q) = \left[\lambda(Q \setminus E)\right] + \left[\lambda(Q \cap E)\right].$ $\lambda(Q \cap E) \leq \lambda(E) < \infty$, we get: So, since $\lambda(Q \setminus E) = [\lambda(Q)] - [\lambda(Q \cap E)].$ $b = \lambda(Q)$ and $\lambda(Q \bigcap E) = x$, So, since we get: $\lambda(Q \backslash E) = b -$ x. By Theorem 12, \mathcal{V}' is a fine-covering of Q, so: $| \mathcal{V}' \supseteq Q.$ Since $V = \bigcup \mathcal{V}' \supseteq Q$, we get: $V \setminus E \supseteq Q \setminus E.$ $\lambda(V \backslash E) \ge \lambda(Q \backslash E).$ So, by monotonicity of λ , we get: $c-y \ge b-x.$ So, since $\lambda(V \setminus E) = c - y$ and $\lambda(Q \setminus E) = b - x$, Recall: $b < \infty$, $c < \infty$, $x < \infty$, $c \leq 1.1 \cdot b.$ $y < \infty$. Since $y = \lambda(E) = \lambda(\lfloor J \mathcal{E}) \ge 0.1 \cdot c$, we get: $c - y \leqslant 0.9 \cdot c.$ $0.9 \cdot c \leqslant 0.99 \cdot b.$ Since $c \leq 1.1 \cdot b$, we get: $b - x \leq c - y \leq 0.9 \cdot c \leq 0.99 \cdot b,$ Since we get: $x \ge 0.01 \cdot b.$ For any two sets A and B, we define: $|A \triangle B| := (A \setminus B) | | (B \setminus A)$. For any $A, B \subseteq \mathbb{R}^2$, by $|A \equiv B|$, we mean: $\lambda(A \triangle B) = 0$. " is a.e.-equal to ". We will read " \equiv " as: For all sets A, B, we have: $(A \subseteq B \mid J(A \triangle B)) \& (B \subseteq A \mid J(A \triangle B)).$ by monotonicity and subadditivity of λ , we conclude: So, $\forall A, B \subseteq \mathbb{R}^2,$ $(A \equiv B) \Rightarrow (\lambda(A) = \lambda(B)).$ For any sets A, B, Y, Z, we have: $(A \bigcup Y) \bigtriangleup (B \bigcup Z) \subseteq (A \bigtriangleup B) \bigcup (Y \bigtriangleup Z)$ and $(A \cap Y) \bigtriangleup (B \cap Z) \subseteq (A \bigtriangleup B) \bigcup (Y \bigtriangleup Z)$ and $(A \setminus Y) \bigtriangleup (B \setminus Z) \subseteq (A \bigtriangleup B) \bigcup (Y \bigtriangleup Z).$

 $A \bigcup Y \equiv B \bigcup Z$ and $A \bigcap Y \equiv B \bigcap Z$ and $A \setminus Y \equiv B \setminus Z$.

For all $S \subseteq \mathbb{R}^2$, let $[\overline{S}]$ denote the closure in \mathbb{R}^2 of S. NOTE: $\forall x \in \mathbb{R}^2, \forall r > 0$, we have: $\lambda(B_x^r) = \pi r^2 = \lambda(\overline{B_x^r})$. It follows that: $\forall B \in \mathcal{B}, B \equiv \overline{B}$.

The next result says that

if $Q \subseteq \mathbb{R}^2$ has finite Lebesgue-outer-measure, and

if $\mathcal{V} \subseteq \mathcal{B}$ is a fine-covering of Q, and

if, using a finite pw-dj $\mathcal{E} \subseteq \mathcal{V}$, we can cover some portion of Q,

then, using a bigger finite pw-dj collection $\mathcal{F} \subseteq \mathcal{V}$,

we can cover substantially more, by which we mean:

the UNcovered portion decreases by at least 1%.

THEOREM 14. Let $Q \subseteq \mathbb{R}^2$, $\mathcal{V} \subseteq \mathcal{B},$ $\mathcal{E} \subseteq \mathcal{V}$. Assume: \mathcal{V} is a fine-covering of Q. Assume: $\lambda(Q) < \infty$. \mathcal{E} is finite and pw-dj. Assume: $\exists finite \ pw-dj \ \mathcal{F} \subseteq \mathcal{V} \quad s.t. \quad \mathcal{E} \subseteq \mathcal{F} \quad and \quad s.t.$ Then: $\lambda(Q \setminus ([J\mathcal{F})) \leq 0.99 \cdot (\lambda(Q \setminus (\bigcup \mathcal{E}))).$ Idea of Proof: Let $S := \bigcup \mathcal{E}$. Then: \mathcal{E} is inside S. Since \mathcal{E} is a finite set of disks, we get: $\overline{S} \equiv S$. $\mathbb{R}^2 \backslash \overline{S} \equiv \mathbb{R}^2 \backslash S.$ Then Let $W := \mathbb{R}^2 \setminus \overline{S}$. Then: $W \equiv \mathbb{R}^2 \setminus S$ and W is open in \mathbb{R}^2 . $Q \cap W \equiv Q \cap (\mathbb{R}^2 \backslash S) = Q \backslash S = Q \backslash (\bigcup \mathcal{E}),$ We have so $Q \cap W \equiv ($ the portion of Q that is uncovered by $\mathcal{E}).$ Using Theorem 11, choose $\mathcal{V}' \subseteq \mathcal{V}$ s.t. \mathcal{V}' is a fine-covering of $Q \cap W$ and \mathcal{V}' is inside W. Apply Theorem 13 to get a finite pw-dj subset $\mathcal{E}' \subseteq \mathcal{V}'$ which covers at least 1% of $Q \cap W$, and, therefore, covers at least 1% of (the portion of Q that is uncovered by \mathcal{E}). Since $\mathcal{E}' \subseteq \mathcal{V}'$ and since \mathcal{V}' is inside W and since $W = \mathbb{R}^2 \setminus \overline{S}$, we conclude: \mathcal{E}' is inside $\mathbb{R}^2 \setminus \overline{S}$. On the other hand, recall: \mathcal{E} is inside S. Let $\mathcal{F} := \mathcal{E} \mid |\mathcal{E}'|$. QED *Proof.* Let $\overline{\mathcal{E}} := \{ \overline{E} \mid E \in \mathcal{E} \}.$ We have: $\forall B \in \mathcal{B}, \ B \equiv \overline{B}.$ $\forall E \in \mathcal{E}, \quad E \equiv \overline{E}.$ since $\mathcal{E} \subseteq \mathcal{V} \subseteq \mathcal{B}$, we get: So, $\bigcup \mathcal{E} \equiv \bigcup \overline{\mathcal{E}}.$ So. since \mathcal{E} is finite, we get: Let $S := \bigcup \mathcal{E}$. Since \mathcal{E} is finite, we get: $\overline{S} = \bigcup \overline{\mathcal{E}}$. Then $S \equiv \overline{S}$. Let $W := \mathbb{R}^2 \setminus \overline{S}$. Since \overline{S} is closed in \mathbb{R}^2 , we get: $W \in \mathcal{T}$.

Let $\mathcal{V}' := \{ V \in \mathcal{V} \mid V \subseteq W \}$. Then: $\mathcal{V}' \subseteq \mathcal{V}$ and $\bigcup \mathcal{V}' \subseteq W$. \mathcal{V}' is a fine-covering of $Q \cap W$. Also, by Theorem 11, Let $Q' := Q \cap W$. Then \mathcal{V}' is a fine-covering of Q'. Since $Q' = Q \bigcap W \subseteq Q$, by monotonicity of λ , we get: $\lambda(Q') \leq \lambda(Q)$. Since $\lambda(Q') \leq \lambda(Q) < \infty$, by Theorem 13, **choose** a finite pw-dj $\mathcal{E}' \subseteq \mathcal{V}'$ s.t. $\lambda(Q' \cap (\bigcup \mathcal{E}')) \geq 0.01 \cdot (\lambda(Q')).$ Since $\mathcal{E}' \subseteq \mathcal{V}'$, we get: $\bigcup \mathcal{E}' \subseteq \bigcup \mathcal{V}'$. Recall: $\bigcup \mathcal{V}' \subseteq W$. Since $\overline{S} \supseteq S$, we get: $\mathbb{R}^2 \setminus \overline{S} \subseteq \mathbb{R}^2 \setminus S$. Recall: $\overline{S} = \bigcup \mathcal{E}$. Since $\bigcup \mathcal{E}' \subseteq \bigcup \mathcal{V}' \subseteq W = \mathbb{R}^2 \setminus \overline{S} \subseteq \mathbb{R}^2 \setminus S =$ $\mathbb{R}^2 \setminus (| \mathcal{E}),$ $(\bigcup \mathcal{E}) \cap (\bigcup \mathcal{E}') = \emptyset.$ we get: $\forall E \in \mathcal{E}, \quad \forall E' \in \mathcal{E}',$ $E \cap E' = \emptyset.$ Then: So, since \mathcal{E} and \mathcal{E}' are both pw-dj, we get: $\mathcal{E}[\mathcal{E}' \text{ is pw-dj}]$. Since \mathcal{E} and \mathcal{E}' are both finite, we conclude: $\mathcal{E} \bigcup \mathcal{E}'$ is finite. By hypothesis, $\mathcal{E} \subseteq \mathcal{V}$, so, since $\mathcal{E}' \subseteq \mathcal{V}' \subseteq \mathcal{V}$, we get: $\mathcal{E} \mid \mathcal{E}' \subseteq \mathcal{V}$. $\mathcal{F} := \mathcal{E} \bigcup \mathcal{E}'$. Then \mathcal{F} is finite and pw-dj. Also, $\mathcal{F} \subseteq \mathcal{V}$. Let Since $\mathcal{E} \subseteq \mathcal{E} \mid \mathcal{E}' = \mathcal{F}$, it remains only to show: $\lambda(Q \setminus (\mid J\mathcal{F})) \leq 0.99 \cdot (\lambda(Q \setminus (\mid J\mathcal{E}))).$ Recall: $S = \bigcup \mathcal{E}$. Let $S' := \bigcup \mathcal{E}'$. Then, since $\bigcup \mathcal{F} = \bigcup (\mathcal{E} \bigcup \mathcal{E}') = (\bigcup \mathcal{E}) \bigcup (\bigcup \mathcal{E}') = S \bigcup S',$ we want to show: $\lambda(Q \setminus (S \mid S')) \leq 0.99 \cdot (\lambda(Q \setminus S))$. By hypothesis, $\mathcal{V} \subseteq \mathcal{B}$. So, since $\mathcal{E}' \subseteq \mathcal{V}' \subseteq \mathcal{V}$, we get: $\mathcal{E}' \subseteq \mathcal{B}$. $\bigcup \mathcal{E}' \in \mathcal{T}.$ Since $\mathcal{E}' \subseteq \mathcal{B} \subseteq \mathcal{T}$ and since \mathcal{T} is a topology, we get: since $S' = \bigcup \mathcal{E}'$, we get: So, $S' \in \mathcal{T}.$ Then S' is Lebesgue-measurable, so, by the Carathéodory-condition, $\lambda(Q') = [\lambda(Q' \setminus S')] + [\lambda(Q' \cap S')].$ we get: $c := \lambda(Q'), \ a := \lambda(Q' \setminus S'), \ b := \lambda(Q' \cap S').$ Let Then: c= a+*b*. By choice of \mathcal{E}' , we have: $\lambda(Q' \cap (\bigcup \mathcal{E}')) \ge 0.01 \cdot (\lambda(Q')).$ $\lambda(Q' \bigcap S') \ge 0.01 \cdot (\lambda(Q')).$ Then: bThen: $\geq 0.01 \cdot c.$ Recall: $S \equiv \overline{S}$. Then: $Q \setminus S \equiv Q \setminus \overline{S}$. Recall: $W = \mathbb{R}^2 \setminus \overline{S}$ and $Q' = Q \bigcap W$. Since $Q \setminus S \equiv Q \setminus \overline{S} = Q \cap (\mathbb{R}^2 \setminus \overline{S}) = Q \cap W = Q'$, we get: both $(Q \setminus S) \setminus S' \equiv Q' \setminus S'$ and $\lambda(Q \setminus S) = \lambda(Q')$. Since $Q \setminus (S \mid S') = (Q \setminus S) \setminus S' \equiv Q' \setminus S'$, we get: $\lambda(Q \setminus (S \mid JS')) = \lambda(Q' \setminus S').$ Since $\lambda(Q \setminus (S \cup S')) = \lambda(Q' \setminus S') = a$ and since $\lambda(Q \setminus S) = \lambda(Q') = c$, we want to show: $a \leq 0.99 \cdot c.$

Recall: c = a + b and $b \ge 0.01 \cdot c$. $c = a + b \ge a + 0.01 \cdot c,$ Since we get: $0.99 \cdot c \geqslant a$. Then: $a \leq 0.99 \cdot c.$ Let $A, B \subseteq \mathbb{R}^2$. By *B* is an **a.e.-superset of** A, we will mean: $\lambda(A \setminus B) = 0.$ $A, B \subseteq \mathbb{R}^2, \quad \varepsilon > 0.$ Let By *B* is an ε -efficient-superset of *A*, we will mean: $A \subseteq B$ and $\lambda(B) \leq e^{\varepsilon} \cdot (\lambda(A)).$ By *B* is an ε -efficient-a.e.-superset of *A*, we will mean: $\lambda(A \setminus B) = 0$ and $\lambda(B) \leq e^{\varepsilon} \cdot (\lambda(A)).$ Let \mathcal{B} be a set of subsets of \mathbb{R}^2 , $A \subseteq \mathbb{R}^2.$ By \mathcal{B} is an **a.e.-covering of** A, we will mean: $\bigcup \mathcal{B}$ is an a.e.-superset of A. \mathcal{B} be a set of subsets of \mathbb{R}^2 , $\underline{A} \subseteq \mathbb{R}^2$, $\varepsilon > 0$. Let By \mathcal{B} is an ε -efficient-covering of A, we will mean: $\bigcup \mathcal{B}$ is an ε -efficient-superset of A. By \mathcal{B} is an ε -efficient-a.e.-covering of A, we will mean: $\bigcup \mathcal{B}$ is an ε -efficient-a.e.-superset of A. **DEFINITION 15.** Let $S \subseteq \mathbb{R}^2$. By S is Vitali, we mean: if \mathcal{V} is a fine-covering of S, $\forall \mathcal{V} \subseteq \mathcal{B},$ $\exists countable \ pw-dj \ \mathcal{D} \subseteq \mathcal{V} \quad s.t. \quad \lambda(S \setminus (\bigcup \mathcal{D})) = 0.$ then a Vitali set is one for which So, any fine-covering admits a countable pw-dj a.e.-subcovering. any subset of \mathbb{R}^2 is Vitali. In Theorem 17, below, we will show: By an **a.e.-partition** of a set $S \subseteq \mathbb{R}^2$, we will mean: a pw-dj set of subsets of S that is an a.e.-covering of S.

According to the next theorem, for any $S \subseteq \mathbb{R}^2$,

for any countable a.e.-partition of S into relatively-open subsets, if each subset is Vitali, then S is Vitali. **THEOREM 16. Let** $S \subseteq \mathbb{R}^2$, $W_1, W_2, \ldots \in \mathcal{T}$. Assume: $((W_1, W_2, \ldots) \text{ is } pw - dj) \& (\lambda(S \setminus (W_1 \bigcup W_2 \bigcup \cdots)) = 0)$. Assume: $\forall n \in \mathbb{N}, S \cap W_n \text{ is Vitali.}$ Then: S is Vitali.

WARNING: In the following proof, $\forall n \in \mathbb{N}, \quad \bigcup \mathcal{D}_n = \bigcup_{D \in \mathcal{D}_n} D.$

By contrast, $\bigcup_{n=1}^{\infty} \mathcal{D}_n = \mathcal{D}_1 \bigcup \mathcal{D}_2 \bigcup \cdots$.

Care must be taken not to confuse $\bigcup \mathcal{D}_n$ with $\bigcup_{n=1}^{\infty} \mathcal{D}_n$.

Proof. Given $\mathcal{V} \subseteq \mathcal{B}$, assume \mathcal{V} is a fine-covering of S,

want: \exists countable pw-dj $\mathcal{D} \subseteq \mathcal{V}$ s.t. $\lambda(S \setminus (\bigcup \mathcal{D})) = 0$. For all $n \in \mathbb{N}$, let $\mathcal{V}_n := \{ V \in \mathcal{V} \mid V \subseteq W_n \}$. Then: $\forall n \in \mathbb{N}, \ \mathcal{V}_n \subseteq \mathcal{V}$. Also, by Theorem 11, $\forall n \in \mathbb{N}, \mathcal{V}_n$ is a fine-covering of $S \cap W_n$. For all $n \in \mathbb{N}$, let $Q_n := S \bigcap W_n.$ $\forall n \in \mathbb{N}, \quad \mathcal{V}_n \text{ is a fine-covering of } Q_n.$ Then: By hypothesis, we have: $\forall n \in \mathbb{N}, Q_n$ is Vitali. Then, $\forall n \in \mathbb{N}$, **choose** a countable pw-dj $\mathcal{D}_n \subseteq \mathcal{V}_n$ $\lambda(Q_n \setminus ([\mathcal{D}_n)) = 0.$ s.t. Let $\mathcal{D} := \mathcal{D}_1 | \mathcal{D}_2 | \cdots$. $\forall n \in \mathbb{N}, \ \mathcal{D}_n \text{ is countable,}$ we get: Since, \mathcal{D} is countable. $\forall n \in \mathbb{N}, \quad \mathcal{D}_n \subseteq \mathcal{V}_n \subseteq \mathcal{V},$ we get: $\mathcal{D} \subseteq \mathcal{V}$. Since, It remains to show: (1) \mathcal{D} is pw-dj (2) $\lambda(S \setminus (\bigcup D)) = 0.$ and

Proof of (1): Given $A, B \in \mathcal{D}$, assume $A \neq B$, want: $A \cap B = \emptyset$. Since $A \in \mathcal{D} = \mathcal{D}_1 \bigcup \mathcal{D}_2 \bigcup \cdots$, choose $a \in \mathbb{N}$ s.t. $A \in \mathcal{D}_a$. Since $B \in \mathcal{D} = \mathcal{D}_1 \bigcup \mathcal{D}_2 \bigcup \cdots$, choose $b \in \mathbb{N}$ s.t. $B \in \mathcal{D}_b$. we have $A, B \in \mathcal{D}_a$, In case a = b, and so, since \mathcal{D}_a is pw-dj and since $A \neq B$, we get: $A \cap B = \emptyset.$ We therefore assume that $a \neq b$. By hypothesis, (W_1, W_2, \ldots) is pw-dj. Then: $W_a \cap W_b = \emptyset$. Since $A \in \mathcal{D}_a \subseteq \mathcal{V}_a$, by definition of \mathcal{V}_a , we get: $A \subseteq W_a$. Since $B \in \mathcal{D}_b \subseteq \mathcal{V}_b$, by definition of \mathcal{V}_b , we get: $B \subseteq W_h$. Then $A \cap B \subseteq W_a \cap W_b = \emptyset$, so $A \cap B = \emptyset$. End of proof of (1).

Proof of (2): Let $D := \bigcup \mathcal{D}$. Want: $\lambda(S \setminus D) = 0$. Let $Q := Q_1 \bigcup Q_2 \bigcup \cdots$. For all sets X, Y, Z, we have: $X \setminus Z$ \subseteq $(X \setminus Y)$ IJ $(Y \setminus Z).$ $S \backslash D$ $(S \setminus Q)$ Therefore, \subseteq U $(Q \setminus D).$ It therefore suffices to show: $\lambda(S \backslash Q) = 0 = \lambda(Q \backslash D).$ $\lambda(S \setminus (W_1 \bigcup W_2 \bigcup \cdots)) = 0.$ By hypothesis, we have: WLet $W := W_1 \bigcup W_2 \bigcup \cdots$. Then: $\lambda(S \setminus$) = 0.For all $n \in \mathbb{N}$, by definition of Q_n , we have: $S \cap W_n = Q_n$. Since $S \cap W = (S \cap W_1) \bigcup (S \cap W_2) \bigcup \dots = Q_1 \bigcup Q_2 \bigcup \dots = Q_1$ we get: $S \setminus (S \cap W) = S \setminus Q.$ For any sets X, Y, by definition of set-subtraction, we have: $X \setminus Y = X \setminus (X \cap Y).$ Since $S \setminus W = S \setminus (S \cap W) = S \setminus Q$, we get: $\lambda(S \setminus W) = \lambda(S \setminus Q)$. Since $\lambda(S \setminus Q) = \lambda(S \setminus W) = 0$, it remains only to show: $\lambda(Q \backslash D) = 0.$ Since $Q = Q_1 \bigcup Q_2 \bigcup \cdots$, we get: $Q \setminus D = (Q_1 \setminus D) \bigcup (Q_2 \setminus D) \bigcup \cdots$. It therefore suffices to show: $\forall n \in \mathbb{N}, \quad \lambda(Q_n \setminus D) = 0.$ Given $n \in \mathbb{N}$, let $P := Q_n$, Want: $\lambda(P \setminus D) = 0.$ By choice of \mathcal{D}_n , we have: $\lambda(Q_n \setminus (\lfloor \mathcal{D}_n)) = 0.$ Then: $\lambda(P \setminus (\bigcup C)) = 0.$ Let $\mathcal{C} := \mathcal{D}_n.$ Since $\mathcal{D} = \mathcal{D}_1 \bigcup \mathcal{D}_2 \bigcup \cdots \supseteq \mathcal{D}_n = \mathcal{C}$, we get: $\bigcup \mathcal{D} \supseteq \bigcup \mathcal{C}$. Since $D = \bigcup \mathcal{D} \supseteq \bigcup \mathcal{C}$, we get: $P \setminus D \subseteq P \setminus (| \mathcal{C}).$ So, since $\lambda(P \setminus (\lfloor JC)) = 0$, we get: $\lambda(P \backslash D) = 0.$ End of proof of (2).

THEOREM 17. Let $S \subseteq \mathbb{R}^2$. Then: S is Vitali.

Idea of Proof: Intersecting S with each set of an a.e.-partition of \mathbb{R}^2 by open bounded subsets, we get an a.e.-partition of S into relatively-open bounded subsets. By Theorem 16, it suffices to show each realtively-open subset is Vitali. Given one of these subsets, Q, and a fine-covering of Q,

we seek a countable pw-dj a.e.-subcovering of Q.

Since Q is bounded, we get: $\lambda(Q) < \infty$.

Starting with the empty set (which covers none of Q),

we use Theorem 14 repeatedly to find an increasing sequence of finite pw-dj coverings of more and more of Q.

Taking the union of these countably-many finite partial coverings, we arrive at a countable pw-dj a.e.-covering of Q. **QED**

Proof. Let z := (0,0). For all $j \in \mathbb{N}$, let $B_j := B_z^j$ and $D_j := \overline{B_j}$. Let $D_0 := \emptyset$. For all $j \in \mathbb{N}$, let $W_j := B_j \setminus D_{j-1}$. Then: $W_1, W_2 \cdots \in \mathcal{T}$. Also, (W_1, W_2, \ldots) is pw-dj. $\forall j \in \mathbb{N}, \ \lambda(B_i) = \pi j^2 = \lambda(D_i).$ We have: $\forall j \in \mathbb{N},$ $\lambda(D_i \backslash B_i) = 0.$ It follows that: $\mathbb{R}^2 \setminus (W_1 \bigcup W_2 \bigcup \cdots) \subseteq (D_1 \setminus B_1) \bigcup (D_2 \setminus B_2) \bigcup \cdots,$ So, since we get: $\lambda(\mathbb{R}^2 \setminus (W_1 \mid J W_2 \mid J \cdots)) = 0.$ So, since $\mathbb{R}^2 \setminus (W_1 \mid W_2 \mid \cdots) \supseteq S \setminus (W_1 \mid W_2 \mid \cdots)$ $\lambda(S \setminus (W_1 \mid W_2 \mid \cdots)) = 0.$ we get: By Theorem 16, it suffices to show: $\forall n \in \mathbb{N}, S \cap W_n$ is Vitali. Given $n \in \mathbb{N}$, let $Q := S \bigcap W_n$, *Q* is Vitali. want: assume \mathcal{V} is a fine-covering of Q, Given $\mathcal{V} \subseteq \mathcal{B}$, want: \exists countable pw-dj $\mathcal{D} \subseteq \mathcal{V}$ s.t. $\lambda(Q \setminus (\bigcup \mathcal{D})) = 0$. $Q = S \bigcap W_n \subseteq W_n = B_n \backslash D_{n-1} \subseteq B_n$ Since and since $\lambda(B_n) = \pi n^2 < \infty$, by monotonicity of λ , we conclude: $\lambda(Q) < \infty$. Let $\mathcal{E}_0 := \emptyset$. Then $\mathcal{E}_0 \subseteq \mathcal{V}$ and \mathcal{E}_0 is finite and pw-dj. By applying Theorem 14 repeatedly, choose $\mathcal{E}_1, \mathcal{E}_2, \mathcal{E}_3, \ldots \subseteq \mathcal{V}$ s.t. $\mathcal{E}_0 \subseteq \mathcal{E}_1 \subseteq \mathcal{E}_2 \subseteq \cdots$ and $\forall j \in \mathbb{N}, \ \mathcal{E}_j \text{ is finite and pw-dj}$ and s.t. $\forall j \in \mathbb{N}, \ \lambda(Q \setminus ([J\mathcal{E}_{i})) \leq 0.99 \cdot (\lambda(Q \setminus ([J\mathcal{E}_{i-1})))).$ s.t. Let $\mathcal{D} := \mathcal{E}_1 \bigcup \mathcal{E}_2 \bigcup \cdots$. Then $\mathcal{D} \subseteq \mathcal{V}$ and \mathcal{D} is countable. It remains to show: (1) \mathcal{D} is pw-dj and (2) $\lambda(Q \setminus ([\mathcal{D})) = 0.$

Proof of (1): Given $E, F \in \mathcal{D}$, assume $E \neq F$, want: $E \bigcap F = \emptyset$. Since $E \in \mathcal{D} = \mathcal{E}_1 \bigcup \mathcal{E}_2 \bigcup \cdots$, choose $p \in \mathbb{N}$ s.t. $E \in \mathcal{E}_p$. Since $F \in \mathcal{D} = \mathcal{E}_1 \bigcup \mathcal{E}_2 \bigcup \cdots$, choose $q \in \mathbb{N}$ s.t. $F \in \mathcal{E}_q$. Let $r := \max\{p, q\}$. Recall: $\mathcal{E}_1 \subseteq \mathcal{E}_2 \subseteq \cdots$. Then $E, F \in \mathcal{E}_r$. So, since \mathcal{E}_r is pw-dj and since $E \neq F$, we get: $E \bigcap F = \emptyset$. End of proof of of (1).

Then:

$$\lambda(Q \setminus (\bigcup \mathcal{D})) \leq \lambda(Q \setminus (\bigcup \mathcal{E}_{k})).$$

$$\lambda(Q \setminus (\bigcup \mathcal{D})) \leq \lambda(Q \setminus (\bigcup \mathcal{E}_{k})) \leq (0.99) \cdot (\lambda(Q \setminus (\bigcup \mathcal{E}_{k-1})))$$

$$\leq (0.99)^{2} \cdot (\lambda(Q \setminus (\bigcup \mathcal{E}_{k-2})))$$

$$\leq \cdots$$

$$\leq (0.99)^{k} \cdot (\lambda(Q \setminus (\bigcup \mathcal{E}_{0})))$$

$$= s \cdot (\lambda(Q)) = s \cdot m.$$
End of proof of (2).

We make the convention that, $\forall c > 0, \ c \cdot \infty = \infty.$ Then: $\forall Q \subseteq \mathbb{R}^2, \ \forall \varepsilon \in \mathbb{R}, \ (\lambda(Q) = \infty) \Rightarrow (\lambda(\mathbb{R}^2) \leq e^{\varepsilon} \cdot (\lambda(Q))).$ So, using outer-regularity of λ , we can prove: Let $Q \subseteq \mathbb{R}^2, \ \varepsilon > 0.$ Assume: $\lambda(Q) > 0.$ Then: $\exists W \in \mathcal{T}$ s.t. W is an ε -efficient-superset of Q.(NOTE: In case $\lambda(Q) = \infty$, let $W := \mathbb{R}^2.$)

According to the next theorem, for any $Q \subseteq \mathbb{R}^2$, for any fine-covering of Q, for any $\varepsilon > 0$,

there is a countable pw-dj ε -efficient-a.e.-subcovering of Q. The set Q need not be Lebesgue-measurable.

THEOREM 18. Let $Q \subseteq \mathbb{R}^2$, $\mathcal{V} \subseteq \mathcal{B}$, $\varepsilon > 0$. Assume: \mathcal{V} is a fine-covering of Q. Then: \exists countable pw-dj $\mathcal{C} \subseteq \mathcal{V}$ s.t. ($\lambda(Q \setminus (\bigcup \mathcal{C})) = 0$) & ($\lambda(\bigcup \mathcal{C}) \leq e^{\varepsilon} \cdot (\lambda(Q))$).

Proof. In case $\lambda(Q) = 0$, let $\mathcal{C} := \emptyset$. We therefore assume $\lambda(Q) > 0$. By outer-regularity of λ , choose $W \in \mathcal{T}$ s.t. both $W \supseteq Q$ and $\lambda(W) \leq e^{\varepsilon} \cdot (\lambda(Q)).$ Let $\mathcal{V}' := \{ V \in \mathcal{V} \mid V \subseteq W \}.$ Then: $\mathcal{V}' \subseteq \mathcal{V}$ and $\bigcup \mathcal{V}' \subseteq W$. By Theorem 12, \mathcal{V}' is a fine-covering of Q. So, since, by Theorem 17, Q is Vitali, **choose** a countable pw-dj $\mathcal{C} \subseteq \mathcal{V}'$ s.t. $\lambda(Q \setminus (\lfloor J \mathcal{C})) = 0$. Since $\mathcal{C} \subseteq \mathcal{V}' \subseteq \mathcal{V}$, it remains only to show: $\lambda(\bigcup \mathcal{C}) \leq e^{\varepsilon} \cdot (\lambda(Q))$. Since $\mathcal{C} \subseteq \mathcal{V}'$, we get: $\bigcup \mathcal{C} \subseteq \bigcup \mathcal{V}'$. Since $\bigcup \mathcal{C} \subseteq \bigcup \mathcal{V}' \subseteq W$, by monotonicity of λ , we get: $\lambda(\bigcup \mathcal{C}) \leq \lambda(W)$. Then: $\lambda(\bigcup \mathcal{C}) \leq \lambda(W) \leq e^{\varepsilon} \cdot (\lambda(Q)).$ -D

DEFINITION 19. Let
$$Q \subseteq \mathbb{R}^2, \quad \varepsilon > 0.$$

Then: $\mathcal{I}_Q^{\varepsilon} := \{B \in \mathcal{B} \mid \lambda(B) > e^{\varepsilon} \cdot (\lambda(Q \cap B))\}.$

Then $\mathcal{I}_{O}^{\varepsilon}$ is the set of all

disks B that are NOT ε -efficient in covering $Q \bigcap B$. The letter " \mathcal{I} " stands for "inefficient".

By Theorem 18, every fine-covering has some ε -efficiency.

The next theorem is based on the contrapositive:

Since $\mathcal{I}_Q^{\varepsilon}$ has no ε -efficiency, it cannot be a fine-covering.

THEOREM 20. Let
$$Q \subseteq \mathbb{R}^2$$
, $\varepsilon > 0$. Assume: $\lambda(Q) > 0$.
Then: $\mathcal{I}_Q^{\varepsilon}$ is not a fine-covering of Q .

Idea of proof:

Assume, for a contradiction, that: $\mathcal{I}_Q^{\varepsilon}$ is a fine-covering of Q. By Theorem 18, choose

a countable pw-dj ε -efficient-a.e.-subcovering, \mathcal{C} , of Q. Since \mathcal{C} is an a.e.-covering of Q, we get: $Q \cap (\bigcup \mathcal{C}) \equiv Q$. Since $\mathcal{C} \subseteq \mathcal{I}_Q^{\varepsilon}$, we get: each $C \in \mathcal{C}$ is ε -inefficient at covering $Q \cap C$. Summing, we find that: \mathcal{C} is ε -inefficient at covering $Q \cap (\bigcup \mathcal{C})$. So, since $Q \cap (\bigcup \mathcal{C}) \equiv Q$, \mathcal{C} is ε -inefficient at a.e.-covering Q. This contradicts the choice of \mathcal{C} . **QED**

Proof. Assume $\mathcal{I}_Q^{\varepsilon}$ is a fine-covering of Q. Want: Contradiction. By Theorem 18, **choose** a countable pw-dj $\mathcal{C} \subseteq \mathcal{I}_{O}^{\varepsilon}$ s.t. $(\lambda(Q \setminus (\bigcup C)) = 0) \& (\lambda(\bigcup C) \leq e^{\varepsilon} \cdot (\lambda(Q))).$ Since $\lambda(Q \setminus (\bigcup C)) = 0 < \lambda(Q)$, we get: $Q \setminus (\bigcup C) \neq Q$. $\bigcup \mathcal{C} \neq \emptyset.$ Then $\mathcal{C} \neq \emptyset$. Then Since $\mathcal{C} \subseteq \mathcal{I}_Q^{\varepsilon} \subseteq \mathcal{B} \subseteq \mathcal{T}$ and since \mathcal{T} is a topology, we get: $\bigcup \mathcal{C} \in \mathcal{T}.$ Let $A := \bigcup \mathcal{C}$. Then $A \in \mathcal{T}$. Then A is Lebesgue-measurable. So, by the Carathéodory-condition, we get: $\lambda(Q) = [\lambda(Q \cap A)] + [\lambda(Q \setminus A)].$ $\lambda(Q \setminus A) = \lambda(Q \setminus (\lfloor J \mathcal{C})) = 0,$ So, since $\lambda(Q) = \lambda(Q \bigcap A).$ we get: Since $\mathcal{C} \subseteq \mathcal{I}_Q^{\varepsilon} \subseteq \mathcal{B} \subseteq \mathcal{T}$, we conclude: $\forall C \in \mathcal{C}, \quad \mathcal{C} \text{ is Lebesgue-measurable.}$ So. since \mathcal{C} is countable and pw-dj, by countable-additivity of λ , $\lambda(\bigcup C) = \sum_{C \in C} (\lambda(C)).$ $Q \bigcap A = Q \bigcap (\bigcup \mathcal{C}) = Q \bigcap (\bigcup_{C \in \mathcal{C}} C) = \bigcup_{C \in \mathcal{C}} (Q \bigcap C),$ Since

by countable-subadditivity of λ , $\lambda(Q \bigcap A) \leq \sum_{C \in \mathcal{C}} (\lambda(Q \bigcap C)).$ So, since $\lambda(Q) = \lambda(Q \cap A)$, we get: $\lambda(Q) \leq \sum_{C \in \mathcal{C}} (\lambda(Q \cap C)).$ By choice of \mathcal{C} , $\lambda(\bigcup \mathcal{C}) \leq e^{\varepsilon} \cdot (\lambda(Q)).$ $\sum_{Q \in \mathcal{C}} (\lambda(C)) = \lambda(\bigcup \mathcal{C}) \leqslant e^{\varepsilon} \cdot (\lambda(Q)) \quad \leqslant e^{\varepsilon} \cdot \sum_{Q \in \mathcal{C}} (\lambda(Q \bigcap C)),$ Since we get: $\sum_{C \in \mathcal{C}} (\lambda(C)) \leqslant e^{\varepsilon} \cdot \sum_{C \in \mathcal{C}} (\lambda(Q \bigcap C)).$ On the other hand, since $\mathcal{C} \subseteq \mathcal{I}_Q^{\varepsilon}$, by definition of $\mathcal{I}_Q^{\varepsilon}$, we get: $\forall C \in \mathcal{C}, \quad \lambda(C) > e^{\varepsilon} \cdot \widetilde{} (\lambda(Q \cap C)).$ since $\mathcal{C} \neq \emptyset$, summing these inequalities gives: So, $\sum_{C \in \mathcal{C}} (\lambda(C)) \quad > \quad e^{\varepsilon} \cdot \sum_{C \in \mathcal{C}} (\lambda(Q \bigcap C)).$ Contradiction.

DEFINITION 21. For every $X \subseteq \mathbb{R}^2$, we define:

$$\boxed{\mathrm{DP}_X} := \left\{ x \in X \mid \lim_{r \to 0^+} \frac{\lambda(X \bigcap B_x^r)}{\lambda(B_x^r)} = 1 \right\}.$$

Elements of DP_X are called "X-density-points".

According to the next theorem,

every subset of \mathbb{R}^2 is comprised a.e. of density-points. The same result can be proved, similarly, in any Euclidean space. Interestingly, the subset need not be Lebesgue-measurable.

THEOREM 22. Let $X \subseteq \mathbb{R}^2$. Then: $\lambda(X \setminus DP_X) = 0$.

Sketch of proof:

For all
$$j \in \mathbb{N}$$
, let $S_j := \left\{ x \in X \mid \liminf_{r \to 0^+} \frac{\lambda(X \cap B_x^r)}{\lambda(B_x^r)} \ge \frac{j}{j+1} \right\}$.
Then $DP_X = S_1 \cap S_2 \cap \cdots$, so $X \setminus DP_X = (X \setminus S_1) \cup (X \setminus S_2) \cup \cdots$.
It therefore suffices to show, given $j \in \mathbb{N}$, that $\lambda(X \setminus S_j) = 0$.
Let $Q := X \setminus S_j$ and assume, for a contradiction, that $\lambda(Q) > 0$.
Let $\varepsilon := \ln((j+1)/j)$. Then $e^{-\varepsilon} = j/(j+1)$ and $\varepsilon > 0$.
Since $Q \subseteq X$, by monotonicity of λ , we get:
 $\forall x \in \mathbb{R}^2, \forall r > 0, \qquad \lambda(Q \cap B_x^r) \le \lambda(X \cap B_x^r)$.

For all $x \in Q$, since $x \notin S_j$, we get: $\liminf_{r \to 0^+} \frac{\lambda(X \mid B_x)}{\lambda(B_x^r)} < \frac{j}{j+1}$.

For all $x \in Q$, we have

$$\liminf_{r \to 0^+} \, \frac{\lambda(Q \bigcap B^r_x)}{\lambda(B^r_x)} \leqslant \liminf_{r \to 0^+} \, \frac{\lambda(X \bigcap B^r_x)}{\lambda(B^r_x)} < \frac{j}{j+1} = e^{-\varepsilon}$$

so, for some sequence of positive reals $r_1, r_2, \ldots \rightarrow 0$, we have

$$\begin{aligned} \forall i \in \mathbb{N}, \quad & \frac{\lambda(Q \bigcap B_x^{r_i})}{\lambda(B_x^{r_i})} < e^{-\varepsilon}, \\ \text{and so} \qquad & \forall i \in \mathbb{N}, \quad & \lambda(B_x^{r_i}) > e^{\varepsilon} \cdot (\lambda(Q \bigcap B_x^{r_i})), \\ \text{and so} \qquad & \forall i \in \mathbb{N}, \quad & B_x^{r_i} \in \mathcal{I}_Q^{\varepsilon}. \end{aligned}$$

Then $\mathcal{I}_Q^{\varepsilon}$ covers each point of Q by balls of arbitrarily small radii. Then $\mathcal{I}_Q^{\varepsilon}$ is a fine-covering of Q, contradicting Theorem 20. **QED**

Proof. We wish to show: for λ -a.e. $x \in X$, $x \in DP_X$. Define $F : \mathbb{R}^2 \times (0; \infty) \to [0; 1]$ by:

$$\forall x \in \mathbb{R}^2, \quad \forall r > 0, \qquad F(x, r) = \frac{\lambda(X \bigcap B_x^r)}{\lambda(B_x^r)}$$

We wish to show: for λ -a.e. $x \in X$, $\lim_{r \to 0^+} (F(x, r)) = 1$. **Define** $\phi, \psi : X \to [0; 1]$ by: $\forall x \in X$, $\phi(x) = \liminf_{x \to 1} (F(x, r))$ and $\psi(x) = \limsup_{x \to 1} (F(x, r)).$ We wish to show: for λ -a.e. $x \in X$, $\phi(x) = 1 = \psi(x)$. $\forall x \in X, \quad \phi(x) \leqslant \psi(x) \leqslant 1.$ We have: Therefore, it suffices to show: for λ -a.e. $x \in X$, $\phi(x) \ge 1$. Let $P := \{x \in X \mid \phi(x) < 1\}.$ Want: $\lambda(P) = 0$. For all $j \in \mathbb{N}$, let $P_j := \{ x \in X \mid \phi(x) < j/(j+1) \}.$ Since $P = P_1 \bigcup P_2 \bigcup \cdots$, it suffices to show: $\forall j \in \mathbb{N}, \lambda(P_i) = 0.$ want: $\lambda(Q) = 0$. Given $j \in \mathbb{N}$, let $Q := P_i$, want: contradiction. Assume $\lambda(Q) > 0$, Then: $e^{-\varepsilon} = j/(j+1)$. Let $\varepsilon := \ln((j+1)/j)$. $Q = P_j = \{ x \in X \mid \phi(x) < j/(j+1) \},\$ So, since $Q = \{ x \in X \mid \phi(x) < e^{-\varepsilon} \}.$ Note that $Q \subseteq X$. we get: Since (j+1)/j > 1 and since $\varepsilon = \ln((j+1)/j)$, we get: $\varepsilon > 0$. So, by Theorem 20, $\mathcal{I}_Q^{\varepsilon}$ is not a fine-covering of Q. Let $\mathcal{W} := \mathcal{I}_{O}^{\varepsilon}$. Then \mathcal{W} is not a fine-covering of Q, so **choose** $x \in Q$ and $\delta > 0$ s.t. $(x \in W) \Rightarrow (\operatorname{rad} W \ge \delta).$ $\forall W \in \mathcal{W},$ Since $x \in Q$, we get: $\phi(x) < e^{-\varepsilon}.$ $\liminf \left(F(x,r) \right) \,=\, \phi(x) \,<\, e^{-\varepsilon},$ Since

choose $r \in (0; \delta)$ s.t. $F(x, r) < e^{-\varepsilon}$. Let $W := B_x^r$. we have r > 0, so: $\pi r^2 > 0$. Since $r \in (0; \delta)$, we get: $\lambda(W) = Q \bigcap W \subseteq X \bigcap W.$ since $\lambda(W) = \lambda(B_x^r) = \pi r^2$, So, $\lambda(W) > 0.$ Since $Q \subseteq X$, we get: So, by monotonicity of λ , we get: $\lambda(Q \cap W) \leq \lambda(X \cap W)$. $\frac{\lambda(Q \bigcap W)}{\lambda(W)} \leqslant \frac{\lambda(X \bigcap W)}{\lambda(W)} = \frac{\lambda(X \bigcap B_x^r)}{\lambda(B_x^r)} = F(x,r) < e^{-\varepsilon},$ Since $\lambda(Q \bigcap W) \ < \ e^{-\varepsilon} \cdot (\lambda(W)),$ we get $e^{\varepsilon} \cdot (\lambda(Q \cap W)) < \lambda(W),$ \mathbf{SO} $\lambda(W) > e^{\varepsilon} \cdot (\lambda(Q \cap W)),$ so so, since $W = B_x^r \in \mathcal{B}$, by definition of $\mathcal{I}_Q^{\varepsilon}$, we conclude: $W \in \mathcal{I}_Q^{\varepsilon}$. Since $W \in \mathcal{I}_Q^{\varepsilon} = \mathcal{W}$ and since $x \in B_x^r = W$, by choice of x and δ , we get: $\operatorname{rad} W \ge \delta$. since $\operatorname{rad} W = \operatorname{rad} B_x^r = r \in (0; \delta),$ On the other hand, rad $W < \delta$. Contradiction. we get: For any function f, let \mathbb{D}_f denote the domain of f. For any function f, for any set S, we define: $\begin{array}{c} f^*S \\ \forall \text{function } f, \ \forall \text{set } S, \ \text{we have:} \ f^*S \subseteq \mathbb{D}_f. \end{array}$ Note: **DEFINITION 23.** Let $X \subseteq \mathbb{R}^2$, let $f: X \to \mathbb{R}$ and let $x \in X$. Then, for all $\varepsilon > 0$, for all r > 0, we define:
$$\begin{split} \boxed{A_x^r(f,\varepsilon)} &:= \{ u \in X \bigcap B_x^r \ s.t. \ |(f(u)) - (f(x))| < \varepsilon \} \}. \\ We \ say \boxed{f \ \text{is CiOP at } x} \ if: \qquad \forall \varepsilon > 0, \quad \lim_{r \to 0^+} \frac{\lambda(A_x^r(f,\varepsilon))}{\lambda(B_x^r)} = 1. \end{split}$$

Here, "CiOP" stands for: "continuous-in-outer-probability". Every function, measurable or not, is CiOP a.e.:

THEOREM 24. Let $X \subseteq \mathbb{R}^2$, $f: X \to \mathbb{R}$. *Then:* for λ -a.e. $x \in X$, f is CiOP at x.

Here, we assume that the domain of f is a subset of \mathbb{R}^2

and that the image of f is a subset of \mathbb{R} , but the result could be proved for any two Euclidean spaces. Interestingly, neither X nor f need be Lebesgue-measurable.

Proof. Let Y_1, Y_2, \ldots be a countable base for the topology on \mathbb{R} . For all $j \in \mathbb{N}$, let $X_j := f^*Y_j$.

 $\forall j \in \mathbb{N}, \quad \lambda(X_j \setminus \mathrm{DP}_{X_j}) = 0.$ By Theorem 22, we have: $D_j := \mathrm{DP}_{X_j}.$ For all $j \in \mathbb{N},$ let $\lambda(X_i \setminus D_i) = 0.$ Then: $\forall j \in \mathbb{N},$ $Z_j := X_j \backslash D_j.$ For all $j \in \mathbb{N},$ let Then: $\forall j \in \mathbb{N},$ $\lambda(Z_i) = 0.$ Let $Z := Z_1 \bigcup Z_2 \bigcup \cdots$. Then: $\lambda(Z) = 0.$ It therefore suffices to show: $\forall x \in X \setminus Z, f \text{ is CiOP at } x.$ $\lim_{r \to 0^+} \frac{\lambda(A_x^r(f,\varepsilon))}{\lambda(B_x^r)} = 1.$ want: Given $x \in X \setminus Z$, given $\varepsilon > 0$, Let y := f(x). We have: $y \in$ $(y-\varepsilon;y+\varepsilon).$ So, since Y_1, Y_2, \ldots is a base for the topology on \mathbb{R} , **choose** $j \in \mathbb{N}$ s.t. $y \in Y_j \subseteq (y - \varepsilon; y + \varepsilon)$. Since $f(x) = y \in Y_i$, we get: $x \in f^*Y_j$. Since $x \in X \setminus Z$, we get: $x \in X$ and $x \notin$ Z. Since $x \notin Z = Z_1 \bigcup Z_2 \bigcup \cdots \supseteq Z_j$, we get: $x \notin$ Z_i . we get: $x \in X_i \setminus Z_i$. So, since $x \in f^*Y_i = X_i$, Since $D_j = DP_{X_j} \subseteq X_j$ and $Z_j = X_j \setminus D_j$, we get: $X_j \setminus Z_j = D_j$. Since $x \in X_j \setminus Z_j = D_j = DP_{X_j}$, we get: $\lim_{r \to 0^+} \frac{\lambda(X_j \bigcap B_x^r)}{\lambda(B_x^r)} = 1.$ So, by the Squeeze Theorem, it suffices to show: $\frac{\lambda(X_j \bigcap B_x^r)}{\lambda(B_x^r)} \leqslant \frac{\lambda(A_x^r(f,\varepsilon))}{\lambda(B_x^r)} \leqslant 1.$ $\forall r > 0.$ want: $\lambda(X_i \cap B_x^r) \leq \lambda(A_x^r(f,\varepsilon)) \leq \lambda(B_x^r)$. Given r > 0, By monotonicity of λ , $X_i \cap B_x^r \subseteq A_x^r(f,\varepsilon) \subseteq B_x^r.$ it suffices to show: By definition of $A_x^r(f,\varepsilon)$, $A_r^r(f,\varepsilon) \subseteq X \bigcap B_r^r$. $A_x^r(f,\varepsilon) \subseteq B_x^r.$ Then: It remains to show: $X_j \bigcap B_x^r \subseteq A_x^r(f,\varepsilon).$ Given $u \in X_i \cap B_x^r$, want: $u \in A_r^r(f, \varepsilon)$. $u \in X_j \cap B_x^r$, we get: $u \in X_j$ and $u \in B_x^r$. Since $u \in X_j = f^*Y_j \subseteq \mathbb{D}_f = X \text{ and } u \in B_x^r, \text{ we get: } u \in X \bigcap B_x^r.$ Since So, by definition of $A_x^r(f,\varepsilon)$, we want: $|(f(u)) - (f(x))| < \varepsilon$. Since $u \in X_j = f^*Y_j$, we get: $f(u) \in Y_i$. $Y_j \subseteq (y - \varepsilon; y + \varepsilon).$ By the choice of j, we have: Since $f(u) \in Y_j \subseteq (y - \varepsilon; y + \varepsilon)$, we get: $|(f(u)) - y| < \varepsilon$. By definition of y, y = f(x). Then: $|(f(u)) - (f(x))| < \varepsilon$.