
Points of Density and Continuity in Probability

The main results in this note are:

Theorem 18, Theorem 22, Theorem 24.

DEFINITION 1. Let S be a set of sets.

Then:
ď

S :“

$

&

%

H, if S “ H
ď

SPS
S, if S ‰ H.

We make a similar convention that an empty sum is equal to 0.

DEFINITION 2. We define #H :“ 0.

For any nonempty finite set S,

#S denotes the number of elements in S.

For any infinite set S, we define #S :“ 8.

DEFINITION 3. Let R˚ :“ t´8u
Ť

R
Ť

t8u.

For all a, b P R˚, let

pa; bq :“ tx P R˚ | a ă x ă bu, ra; bq :“ tx P R˚ | a ď x ă bu,

pa; bs :“ tx P R˚ | a ă x ď bu, ra; bs :“ tx P R˚ | a ď x ď bu.

DEFINITION 4. For all x P R2, for all r ą 0, let

Br
x :“ t y P R2 s.t. |y ´ x| ă r u.

That is: Br
x is the open disk about x of radius r.

Let B :“ t Br
x | x P R2, r ą 0 u.

Let T denote the standard topology on R2,

so T is the set of open subsets of R2.

Then: @U P T , U is Lebesgue-measurable. Also, B Ď T ztHu.

DEFINITION 5. Let x P R2, r ą 0, C :“ Br
x.

Then: radC :“ r and centC :“ x and

@s ą 0, s ¨ C :“ Bs¨r
x .

According to the next theorem, if two disks meet,

then the triple of the larger covers the smaller.

THEOREM 6. Let F,G P B.

Assume: radF ď radG and F
Ş

G ‰ H. Then: 3 ¨G Ě F .
1
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Proof. Given a P F , want: a P 3 ¨G.

Since F
Ş

G ‰ H, choose p P F
Ş

G. Then: p P F and p P G.

Let x :“ centF , y :“ centG, r :“ radF , s :“ radG.

Then, by hypothesis, we have: r ď s.

Also, F “ Br
x and G “ Bs

y and 3 ¨G “ B3s
y .

Want: a P B3s
y . Want: |a´ y| ă 3s.

Since a P F “ Br
x, we get: |a´ x| ă r.

Since p P F “ Br
x, we get: |p´ x| ă r.

Since p P G “ Bs
y, we get: |p´ y| ă s.

Since r ď s, we get: r ` r ` s ď 3s.

Then |a´ y| ď |a´ x| ` |x´ p| ` |p´ y| ă r ` r ` s ď 3s. �

Let N :“ t1, 2, 3, . . .u be the set of positive integers.

We use “pw-dj” to abbreviate “pairwise-disjoint”.

For any set S of sets, by S is pw-dj ,

we mean: @S, T P S, pS ‰ T q ñ pS
Ş

T “ Hq.

For any sequence pS1, S2, . . .q of sets, by pS1, S2, . . .q is pw-dj ,

we mean: @i, j P N, p i ‰ j q ñ pSi
Ş

Sj “ Hq.

For any C Ď B, for any s ą 0, we define:

s ¨ C :“ ts ¨ C |C P Cu.

THEOREM 7. Let F Ď B. Assume F is finite.

Then: Dpw-dj E Ď F s.t.
Ť

p3 ¨ Eq Ě
Ť

F .

Proof. Let n :“ #F .

In case n “ 0, let E :“ H. We therefore assume n ě 1.

By induction on n, we also assume: @Q Ď B,

p #Q ă n q ñ p Dpw-dj P Ď Q s.t.
Ť

p3 ¨ Pq Ě
Ť

Q q.

Let R :“ tradF |F P Fu. Then R is a finite subset of R.

Let r :“ maxR. Then r P R, so choose G P F s.t. radG “ r.

Since G P F Ď B Ď T ztHu, we get: G ‰ H.

Let Q :“ tF P F |F
Ş

G “ Hu. Then Q Ď F and G R Q.

Then Q Ď FztGu, so: #Q ď #pFztGuq.
Since G P F and since F is finite, we get: #pFztGuq ă #F .

Since #Q ď #pFztGuq ă #F “ n, by the induction assumption,

choose a pw-dj P Ď Q s.t.
Ť

p3 ¨ Pq Ě
Ť

Q.

Since P Ď Q, by definition of Q,

we get: @P P P , P
Ş

G “ H.

So, since P is pw-dj, we get: P
Ť

tGu is pw-dj.
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Since P Ď Q Ď F and since G P F , we get: P
Ť

tGu Ď F .

Let E :“ P
Ť

tGu. Then: E is pw-dj and E Ď F .

It remains only to show:
Ť

p3 ¨ Eq Ě
Ť

F .

Want: @F P F , F Ď
Ť

p3 ¨ Eq.
Given F P F , want: F Ď

Ť

p3 ¨ Eq.

Case 1: F P Q. Proof in Case 1:

Since P Ď P
Ť

tGu “ E , we get 3 ¨P Ď 3 ¨ E , so
Ť

p3 ¨Pq Ď
Ť

p3 ¨ Eq.
By the choice of P , we have:

Ť

p3 ¨ Pq Ě
Ť

Q.

Since F P Q, we get: F Ď
Ť

Q.

Then: F Ď
Ť

Q Ď
Ť

p3 ¨ Pq Ď
Ť

p3 ¨ Eq.
End of proof in Case 1.

Case 2: F R Q. Proof in Case 2: Recall: F P F .

So, by definition of R, we have: radF P R. Then radF ď maxR.

Since F P F and F R Q, by definition of Q, we get: F
Ş

G ‰ H.

So, since radF ď maxR “ r “ radG,

by Theorem 6, we get: 3 ¨G Ě F .

Since G P P
Ť

tGu “ E , we get 3 ¨G P 3 ¨ E , so 3 ¨G Ď
Ť

p3 ¨ Eq.
Then: F Ď 3 ¨G Ď

Ť

p3 ¨ Eq.
End of proof in Case 2. �

Let λ denote Lebesgue-outer-measure on R2.

THEOREM 8.

Let pA1, A2, . . .q be a sequence of Lebesgue-measurable subsets of R2.

Then: as k Ñ 8, λpA1

Ť

¨ ¨ ¨
Ť

Akq Ñ λpA1

Ť

A2

Ť

¨ ¨ ¨ q.

Proof. For all k P N, let Dk :“ AkzpA1

Ť

¨ ¨ ¨
Ť

Ak´1q.

Then, @k P N, Dk is Lebesgue-measurable

and, @k P N, D1

Ť

¨ ¨ ¨
Ť

Dk “ A1

Ť

¨ ¨ ¨
Ť

Ak
and D1

Ť

D2

Ť

¨ ¨ ¨ “ A1

Ť

A2

Ť

¨ ¨ ¨

and pD1, D2, . . .q is pw-dj.

Since pD1, D2, . . .q is pw-dj, by countable-additivity of λ, we get

λpD1

Ť

D2

Ť

¨ ¨ ¨ q “ pλpD1qq ` pλpD2qq ` ¨ ¨ ¨ ;

also, by finite-additivity of λ, we get

@k P N, λpD1

Ť

¨ ¨ ¨
Ť

Dkq “ pλpD1qq ` ¨ ¨ ¨ ` pλpDkqq.

By definition of infinite-summation, we have

as k Ñ 8, pλpD1qq ` ¨ ¨ ¨ ` pλpDkqq Ñ pλpD1qq ` pλpD2qq ` ¨ ¨ ¨ .
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Then: as k Ñ 8, λpD1

Ť

¨ ¨ ¨
Ť

Dkq Ñ λpD1

Ť

D2

Ť

¨ ¨ ¨ q.

Then: as k Ñ 8, λpA1

Ť

¨ ¨ ¨
Ť

Akq Ñ λpA1

Ť

A2

Ť

¨ ¨ ¨ q. �

The next result says: for any collection of open disks,

if its union has finite Lebesgue-measure, then

Dfinite pw-dj subcollection that covers at least 10% of that union.

THEOREM 9. Let A Ď B. Assume: λp
Ť

Aq ă 8.

Then: Dfinite pw-dj E Ď A s.t. λp
Ť

Eq ě 0.1 ¨ pλp
Ť

Aqq.

Proof. In case λp
Ť

Aq “ 0, let E :“ H.

We therefore assume λp
Ť

Aq ‰ 0. Then λp
Ť

Aq ą 0.

By hypothesis, λp
Ť

Aq ă 8. Let c :“ λp
Ť

Aq.
Then 0 ă c ă 8. Then: 0.9 ¨ c ă c.

Since
Ť

A is Lindelöf, choose A1, A2, . . . P A
s.t. A1

Ť

A2

Ť

¨ ¨ ¨ “
Ť

A.

Since A1, A2, . . . P A Ď B Ď T , we get:

pA1, A2, . . .q is a sequence of Lebesgue-measurable subsets of R2.

So, by Theorem 8, we have:

as k Ñ 8, λpA1

Ť

¨ ¨ ¨
Ť

Akq Ñ λpA1

Ť

A2

Ť

¨ ¨ ¨ q.

So, since 0.9 ¨ c ă c “ λp
Ť

Aq “ λpA1

Ť

A2

Ť

¨ ¨ ¨ q,

choose k P N s.t. λpA1

Ť

¨ ¨ ¨
Ť

Akq ě 0.9 ¨ c.

Let F :“ tA1, . . . , Aku. Then λp
Ť

Fq ě 0.9 ¨ c and F Ď A.

Also, F is finite, so, since F Ď A Ď B, by Theorem 7,

choose a pw-dj E Ď F s.t.
Ť

p3 ¨ Eq Ě
Ť

F .

Since E Ď F and since F is finite, we get: E is finite.

Since E Ď F Ď A, it remains only to show: λp
Ť

Eq ě 0.1¨pλp
Ť

Aqq.
Since c “ λp

Ť

Aq, we want: λp
Ť

Eq ě 0.1 ¨ c.

We have: @B P B, λp3 ¨Bq “ 9 ¨ pλpBqq.

Since
Ť

F Ď
Ť

p3 ¨Eq, by monotonicity and subadditivity of λ,

λp
Ť

Fq ď
ÿ

EPE
pλp3 ¨ Eqq.

Since λp
Ť

Fq ď
ÿ

EPE
pλp3 ¨ Eqq “

ÿ

EPE
p9 ¨ pλpEqqq “ 9 ¨

ÿ

EPE
pλpEqq,

we get: p1{9q ¨ pλp
Ť

Fqq ď
ÿ

EPE
pλpEqq.

Since E Ď B Ď T , we get: @E P E , E is Lebesgue-measurable.

So, since E is finite and pw-dj, by finite-additivity of λ, we get:
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λp
Ť

Eq “
ÿ

EPE
pλpEqq.

Since λp
Ť

Fq ě 0.9 ¨ c, we get: p1{9q ¨ pλp
Ť

Fqq ě 0.1 ¨ c.

Then λp
Ť

Eq “
ÿ

EPE
pλpEqq ě p1{9q ¨ pλp

Ť

Fqq ě 0.1 ¨ c. �

Let A and B be sets.

By B is a superset of A , we will mean: B Ě A.

Let B be a set of sets and let A be a set.

By B is a covering of A , we will mean:
Ť

B is a superset of A.

DEFINITION 10. Let Q Ď R2, V Ď B.

By V is a fine-covering of Q , we mean:

@x P Q, @δ ą 0, DV P V s.t. px P V q& p radV ă δ q.

NOTE: A fine-covering is a covering, i.e.: @Q Ď R2, @V Ď B,

if V is a fine-covering of Q, then
Ť

V Ě Q.

Let Q be a set and let P be a set of sets. We’ll say

P is inside Q if:
Ť

P Ď Q.

According to the next theorem,

for any fine-covering V Ď B of a set Q Ď R2,

for any open W Ď R2,

there is a subset of V that is

both inside W and a fine-covering of Q
Ş

W .

THEOREM 11. Let Q,W Ď R2, V Ď B.

Assume: W P T and V is a fine-covering of Q.

Let V 1 :“ tV P V |V Ď W u. Then: V 1 is a fine-covering of Q
Ş

W .

Proof. Given x P Q
Ş

W , δ ą 0,

want: DV P V 1 s.t. px P V q& p radV ă δ q.

Since x P Q
Ş

W Ď W and W P T , choose β ą 0 s.t. Bβ
x Ď W .

Let α :“ mintβ{2, δu. Then α ą 0 and α ď β{2 and α ď δ.

Since x P Q
Ş

W Ď Q and α ą 0 and V is a fine-covering of Q,

choose V P V s.t. px P V q& p radV ă α q.

Since radV ă α ď δ, it remains only to show: V P V 1.
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By definition of V 1, since V P V , we wish to show: V Ď W .

Given v P V , want: v P W .

Since Bβ
x Ď W , it suffices to show: v P Bβ

x . Want: |v ´ x| ă β.

Since V P V Ď B, choose c P R2 and r ą 0 s.t. V “ Br
c .

Since v, x P V “ Br
c , we get: |v ´ c| ă r and |x´ c| ă r.

Since r “ radBr
c “ radV ă α ď β{2, we get: 2r ă β.

Then: |v ´ x| ď |v ´ c| ` |c´ x| ă r ` r “ 2r ă β. �

According to the next theorem,

for any fine-covering V Ď B of a set Q Ď R2,

for any open W Ď R2 that is a superset of Q,

there is a subset of V that is

both inside W and a fine-covering of Q.

THEOREM 12. Let W Ď R2, Q Ď W , V Ď B.

Assume: W P T and V is a fine-covering of Q.

Let V 1 :“ tV P V |V Ď W u. Then: V 1 is a fine-covering of Q.

Proof. Since Q Ď W , we get: Q
Ş

W “ Q.

So, by Theorem 11, we get: V 1 is a fine-covering of Q. �

According to the Carathéodory-condition ,

@Q Ď R2, Q is Lebesgue-measurable iff

@S Ď R2, λpSq “ rλpS
Ş

Qq s ` rλpSzQq s.

That is: Q is Lebesgue-measurable iff Q “splits all sets well”.

According to the next theorem,

for any Q Ď R2 of finite Lebesgue-outer-measure,

for any fine-covering V of Q,

there is a finite pw-dj subset of V covering at least 1% of Q.

THEOREM 13. Let Q Ď R2, V Ď B.

Assume: V is a fine-covering of Q. Assume: λpQq ă 8.

Then: Dfinite pw-dj E Ď V s.t. λpQ
Ş

p
Ť

Eqq ě 0.01 ¨ pλpQqq.

Idea of proof: In case λpQq “ 0, let E :“ H, so assume λpQq ą 0.

Let ε :“ 0.1 ¨ pλpQqq. By outer-regularity of λ, choose W P T
s.t. W Ě Q and λpW q ď pλpQqq ` ε.

Then: W approximates Q in measure, to within ε.

By Theorem 12, choose a fine-covering V 1 Ď V , inside W , of Q.

Since Q Ď
Ť

V 1 Ď W and since W approximates Q in measure,



7

we conclude that:
Ť

V 1 also approximates Q in measure.

By Theorem 9, choose a finite pw-dj E Ď V 1 s.t.

E covers at least 10% of
Ť

V 1.
There are details to check, but,

assuming our choice of ε “ 0.1 ¨ pλpQqq is small enough, i.e.,

assuming
Ť

V 1 approximates Q sufficiently closely in measure,

then, because E covers at least 10% of
Ť

V 1,
it will follow that E covers at least 1% of Q. QED

Proof. In case λpQq “ 0, let E :“ H. We therefore assume λpQq ‰ 0.

Then λpQq ą 0. By hypothesis, λpQq ă 8. Let b :“ λpQq.

Then 0 ă b ă 8. Then: 1.1 ¨ b ą b.

Since 1.1 ¨ b ą b “ λpQq, by outer-regularity of λ,

choose W P T s.t. W Ě Q and λpW q ď 1.1 ¨ b.

Let V 1 :“ tV P V |V Ď W u. Then V 1 Ď V . Also,
Ť

V 1 Ď W .

Let V :“
Ť

V 1. Then: V Ď W .

So, by monotonicity of λ, we get: λpV q ď λpW q.

Let c :“ λpV q. Then: c ď λpW q.

Since c ď λpW q ď 1.1 ¨ b, we get: c ď 1.1 ¨ b.

So, since b ă 8, we get: c ă 8. Let A :“ V 1.
Since A “ V 1 Ď V and since V Ď B, we get: A Ď B.

So, since λp
Ť

Aq “ λp
Ť

V 1q “ λpV q “ c ă 8, by Theorem 9,

choose a finite pw-dj E Ď A s.t. λp
Ť

Eq ě 0.1¨pλp
Ť

Aqq.
Then, since λp

Ť

Aq “ λp
Ť

V 1q “ λpV q “ c, λp
Ť

Eq ě 0.1 ¨ c.

Since E Ď A “ V 1, we get: E Ď V 1.
So, since V 1 Ď V , we get: E Ď V .

It remains only to show: λpQ
Ş

p
Ť

Eqq ě 0.01 ¨ pλpQqq.

Since b “ λpQq, we want: λpQ
Ş

p
Ť

Eqq ě 0.01 ¨ b.

Let E :“
Ť

E . Want: λpQ
Ş

E q ě 0.01 ¨ b.

Let x :“ λpQ
Ş

Eq. Want: x ě 0.01 ¨ b.

We have: @B P B, λp B q ă 8.

So, since E Ď V Ď B and E is finite, we get: λp
Ť

Eq ă 8.

So, since E “
Ť

E , we get: λp E q ă 8.

Let y :“ λpEq. Then: y ă 8.

Since x “ λpQ
Ş

Eq ď λpEq ă 8, we get: x ă 8.

Since E Ď V 1, we get
Ť

E Ď
Ť

V 1.
Since E “

Ť

E Ď
Ť

V 1 “ V , we get: V
Ş

E “ E.

Then: λpV
Ş

Eq “ λpEq.
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Since E Ď V Ď B Ď T and since T is a topology, we get:
Ť

E P T .

Since E “
Ť

E P T , it follows that: E is Lebesgue-measurable.

So, by the Carathéodory-condition,

λpV q “ rλpV zEq s ` rλpV
Ş

Eq s.

So, since λpV
Ş

Eq “ λpEq ă 8, we get:

λpV zEq “ rλpV q s ´ rλpV
Ş

Eq s.

So, since c “ λpV q and λpV
Ş

Eq “ λpEq “ y, we get:

λpV zEq “ c ´ y.

Since E is Lebesgue-measurable, by the Carathéodory-condition,

λpQq “ rλpQzEq s ` rλpQ
Ş

Eq s.

So, since λpQ
Ş

Eq ď λpEq ă 8, we get:

λpQzEq “ rλpQq s ´ rλpQ
Ş

Eq s.

So, since b “ λpQq and λpQ
Ş

Eq “ x, we get:

λpQzEq “ b ´ x.

By Theorem 12, V 1 is a fine-covering of Q, so:
Ť

V 1 Ě Q.

Since V “
Ť

V 1 Ě Q, we get: V zE Ě QzE.

So, by monotonicity of λ, we get: λpV zEq ě λpQzEq.

So, since λpV zEq “ c´ y and λpQzEq “ b´ x, c´ y ě b´ x.

Recall: b ă 8, c ă 8, x ă 8, y ă 8, c ď 1.1 ¨ b.

Since y “ λpEq “ λp
Ť

Eq ě 0.1 ¨ c,

we get: c´ y ď 0.9 ¨ c.

Since c ď 1.1 ¨ b, we get: 0.9 ¨ c ď 0.99 ¨ b.

Since b´ x ď c´ y ď 0.9 ¨ c ď 0.99 ¨ b,

we get: x ě 0.01 ¨ b. �

For any two sets A and B, we define: A4B :“ pAzBq
Ť

pBzAq.

For any A,B Ď R2, by A ” B , we mean: λpA4Bq “ 0.

We will read “”” as: “ is a.e.-equal to ”.

For all sets A,B, we have:

p A Ď B
Ť

pA4Bq q & p B Ď A
Ť

pA4Bq q.
So, by monotonicity and subadditivity of λ, we conclude:

@A,B Ď R2, pA ” B q ñ pλpAq “ λpBq q.

For any sets A,B, Y, Z, we have:

pA
Ť

Y q 4 pB
Ť

Zq Ď pA4Bq
Ť

pY4Zq and

pA
Ş

Y q 4 pB
Ş

Zq Ď pA4Bq
Ť

pY4Zq and

pAzY q 4 pBzZq Ď pA4Bq
Ť

pY4Zq.
So, @A,B, Y, Z Ď R2, if A ” B and Y ” Z, then:
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A
Ť

Y ” B
Ť

Z and A
Ş

Y ” B
Ş

Z and AzY ” BzZ.

For all S Ď R2, let S denote the closure in R2 of S.

NOTE: @x P R2, @r ą 0, we have: λpBr
xq “ πr2 “ λpBr

x q.

It follows that: @B P B, B ” B.

The next result says that

if Q Ď R2 has finite Lebesgue-outer-measure, and

if V Ď B is a fine-covering of Q, and

if, using a finite pw-dj E Ď V , we can cover some portion of Q,

then, using a bigger finite pw-dj collection F Ď V ,

we can cover substantially more, by which we mean:

the UNcovered portion decreases by at least 1%.

THEOREM 14. Let Q Ď R2, V Ď B, E Ď V.

Assume: V is a fine-covering of Q. Assume: λpQq ă 8.

Assume: E is finite and pw-dj.

Then: Dfinite pw-dj F Ď V s.t. E Ď F and s.t.

λpQzp
Ť

Fqq ď 0.99 ¨ pλpQzp
Ť

Eqqq.

Idea of Proof: Let S :“
Ť

E . Then: E is inside S.

Since E is a finite set of disks, we get: S ” S.

Then R2zS ” R2zS. Let W :“ R2zS.

Then: W ” R2zS and W is open in R2.

We have Q
Ş

W ” Q
Ş

pR2zSq “ QzS “ Qzp
Ť

Eq,
so Q

Ş

W ” p the portion of Q that is uncovered by E q.
Using Theorem 11, choose V 1 Ď V s.t.

V 1 is a fine-covering of Q
Ş

W and V 1 is inside W .

Apply Theorem 13 to get a finite pw-dj subset E 1 Ď V 1 which

covers at least 1% of Q
Ş

W , and, therefore,

covers at least 1% of p the portion of Q that is uncovered by E q.
Since E 1 Ď V 1 and since V 1 is inside W and since W “ R2zS,

we conclude: E 1 is inside R2zS.

On the other hand, recall: E is inside S. Let F :“ E
Ť

E 1. QED

Proof. Let E :“ tE |E P E u. We have: @B P B, B ” B.

So, since E Ď V Ď B, we get: @E P E , E ” E.

So, since E is finite, we get:
Ť

E ”
Ť

E .

Let S :“
Ť

E . Since E is finite, we get: S “
Ť

E . Then S ” S.

Let W :“ R2zS. Since S is closed in R2, we get: W P T .
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Let V 1 :“ tV P V |V Ď W u. Then: V 1 Ď V and
Ť

V 1 Ď W .

Also, by Theorem 11, V 1 is a fine-covering of Q
Ş

W .

Let Q1 :“ Q
Ş

W . Then V 1 is a fine-covering of Q1.

Since Q1 “ Q
Ş

W Ď Q, by monotonicity of λ, we get: λpQ1q ď λpQq.

Since λpQ1q ď λpQq ă 8, by Theorem 13,

choose a finite pw-dj E 1 Ď V 1 s.t. λpQ1
Ş

p
Ť

E 1qq ě 0.01 ¨pλpQ1qq.

Since E 1 Ď V 1, we get:
Ť

E 1 Ď
Ť

V 1. Recall:
Ť

V 1 Ď W .

Since S Ě S, we get: R2zS Ď R2zS. Recall: S “
Ť

E .

Since
Ť

E 1 Ď
Ť

V 1 Ď W “ R2zS Ď R2zS “ R2zp
Ť

Eq,
we get: p

Ť

Eq
Ş

p
Ť

E 1q “ H.

Then: @E P E , @E 1 P E 1, E
Ş

E 1 “ H.

So, since E and E 1 are both pw-dj, we get: E
Ť

E 1 is pw-dj.

Since E and E 1 are both finite, we conclude: E
Ť

E 1 is finite.

By hypothesis, E Ď V , so, since E 1 Ď V 1 Ď V , we get: E
Ť

E 1 Ď V .

Let F :“ E
Ť

E 1. Then F is finite and pw-dj. Also, F Ď V .

Since E Ď E
Ť

E 1 “ F ,

it remains only to show: λpQzp
Ť

F qq ď 0.99 ¨ pλpQzp
Ť

Eqqq.
Recall: S “

Ť

E . Let S 1 :“
Ť

E 1.
Then, since

Ť

F “
Ť

pE
Ť

E 1q “ p
Ť

Eq
Ť

p
Ť

E 1q “ S
Ť

S 1,

we want to show: λpQzpS
Ť

S 1qq ď 0.99 ¨ pλpQz S qq.

By hypothesis, V Ď B. So, since E 1 Ď V 1 Ď V , we get: E 1 Ď B.

Since E 1 Ď B Ď T and since T is a topology, we get:
Ť

E 1 P T .

So, since S 1 “
Ť

E 1, we get: S 1 P T .

Then S 1 is Lebesgue-measurable, so, by the Carathéodory-condition,

we get: λpQ1q “ rλpQ1zS 1q s ` rλpQ1
Ş

S 1q s.

Let c :“ λpQ1q, a :“ λpQ1zS 1q, b :“ λpQ1
Ş

S 1q.

Then: c “ a ` b.

By choice of E 1, we have: λpQ1
Ş

p
Ť

E 1qq ě 0.01 ¨ pλpQ1qq.

Then: λpQ1
Ş

S 1 q ě 0.01 ¨ pλpQ1qq.

Then: b ě 0.01 ¨ c.

Recall: S ” S.

Then: QzS ” QzS. Recall: W “ R2zS and Q1 “ Q
Ş

W .

Since QzS ” QzS “ Q
Ş

pR2zSq “ Q
Ş

W “ Q1, we get:

both pQzSqzS 1 ” Q1zS 1 and λpQzSq “ λpQ1q.

Since QzpS
Ť

S 1q “ pQzSqzS 1 ” Q1zS 1, we get:

λpQzpS
Ť

S 1qq “ λpQ1zS 1q.

Since λpQzpS
Ť

S 1qq “ λpQ1zS 1q “ a and since λpQzSq “ λpQ1q “ c,

we want to show: a ď 0.99 ¨ c.
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Recall: c “ a` b and b ě 0.01 ¨ c.

Since c “ a` b ě a` 0.01 ¨ c,

we get: 0.99 ¨ c ě a. Then: a ď 0.99 ¨ c. �

Let A,B Ď R2.

By B is an a.e.-superset of A , we will mean: λpAzBq “ 0.

Let A,B Ď R2, ε ą 0.

By B is an ε-efficient-superset of A , we will mean:

A Ď B and λpBq ď eε ¨ pλpAqq.

By B is an ε-efficient-a.e.-superset of A , we will mean:

λpAzBq “ 0 and λpBq ď eε ¨ pλpAqq.

Let B be a set of subsets of R2, A Ď R2.

By B is an a.e.-covering of A , we will mean:
Ť

B is an a.e.-superset of A.

Let B be a set of subsets of R2, A Ď R2, ε ą 0.

By B is an ε-efficient-covering of A , we will mean:
Ť

B is an ε-efficient-superset of A.

By B is an ε-efficient-a.e.-covering of A , we will mean:
Ť

B is an ε-efficient-a.e.-superset of A.

DEFINITION 15. Let S Ď R2. By S is Vitali , we mean:

@V Ď B, if V is a fine-covering of S,

then Dcountable pw-dj D Ď V s.t. λpSzp
Ť

Dqq “ 0.

So, a Vitali set is one for which

any fine-covering admits a countable pw-dj a.e.-subcovering.

In Theorem 17, below, we will show: any subset of R2 is Vitali.

By an a.e.-partition of a set S Ď R2, we will mean:

a pw-dj set of subsets of S that is an a.e.-covering of S.

According to the next theorem, for any S Ď R2,

for any countable a.e.-partition of S into relatively-open subsets,

if each subset is Vitali, then S is Vitali.
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THEOREM 16. Let S Ď R2, W1,W2, . . . P T .

Assume: p pW1,W2, . . .q is pw-dj q & p λpSzpW1

Ť

W2

Ť

¨ ¨ ¨ qq “ 0 q.

Assume: @n P N, S
Ş

Wn is Vitali. Then: S is Vitali.

WARNING: In the following proof, @n P N,
ď

Dn “
ď

DPDn

D.

By contrast,
8
ď

n“1

Dn “ D1

ď

D2

ď

¨ ¨ ¨ .

Care must be taken not to confuse
ď

Dn with
8
ď

n“1

Dn.

Proof. Given V Ď B, assume V is a fine-covering of S,

want: Dcountable pw-dj D Ď V s.t. λpSzp
Ť

Dqq “ 0.

For all n P N, let Vn :“ tV P V |V Ď Wnu. Then: @n P N, Vn Ď V .

Also, by Theorem 11, @n P N, Vn is a fine-covering of S
Ş

Wn.

For all n P N, let Qn :“ S
Ş

Wn.

Then: @n P N, Vn is a fine-covering of Qn.

By hypothesis, we have: @n P N, Qn is Vitali.

Then, @n P N, choose a countable pw-dj Dn Ď Vn
s.t. λpQnzp

Ť

Dnqq “ 0.

Let D :“ D1

Ť

D2

Ť

¨ ¨ ¨ .

Since, @n P N, Dn is countable, we get: D is countable.

Since, @n P N, Dn Ď Vn Ď V , we get: D Ď V .

It remains to show: (1) D is pw-dj and (2) λpSzp
Ť

Dqq “ 0.

Proof of (1): Given A,B P D, assume A ‰ B, want: A
Ş

B “ H.

Since A P D “ D1

Ť

D2

Ť

¨ ¨ ¨ , choose a P N s.t. A P Da.

Since B P D “ D1

Ť

D2

Ť

¨ ¨ ¨ , choose b P N s.t. B P Db.

In case a “ b, we have A,B P Da, and so,

since Da is pw-dj and since A ‰ B, we get: A
Ş

B “ H.

We therefore assume that a ‰ b.

By hypothesis, pW1,W2, . . .q is pw-dj. Then: Wa

Ş

Wb “ H.

Since A P Da Ď Va, by definition of Va, we get: A Ď Wa.

Since B P Db Ď Vb, by definition of Vb, we get: B Ď Wb.

Then A
Ş

B Ď Wa

Ş

Wb “ H, so A
Ş

B “ H.

End of proof of (1).

Proof of (2): Let D :“
Ť

D. Want: λpSzDq “ 0.

Let Q :“ Q1

Ť

Q2

Ť

¨ ¨ ¨ .
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For all sets X, Y, Z, we have: XzZ Ď pXzY q
Ť

pY zZq.

Therefore, SzD Ď pSzQq
Ť

pQzDq.

It therefore suffices to show: λpSzQq “ 0 “ λpQzDq.

By hypothesis, we have: λpSzpW1

Ť

W2

Ť

¨ ¨ ¨ qq “ 0.

Let W :“ W1

Ť

W2

Ť

¨ ¨ ¨ . Then: λpSz W q “ 0.

For all n P N, by definition of Qn, we have: S
Ş

Wn “ Qn.

Since S
Ş

W “ pS
Ş

W1q
Ť

pS
Ş

W2q
Ť

¨ ¨ ¨ “ Q1

Ť

Q2

Ť

¨ ¨ ¨ “ Q,

we get: SzpS
Ş

W q “ SzQ.

For any sets X, Y , by definition of set-subtraction, we have:

XzY “ XzpX
Ş

Y q.

Since SzW “ S zpS
Ş

W q “ SzQ, we get: λpSzW q “ λpSzQq.

Since λpSzQq “ λpSzW q “ 0,

it remains only to show: λpQzDq “ 0.

Since Q “ Q1

Ť

Q2

Ť

¨ ¨ ¨ , we get: QzD “ pQ1zDq
Ť

pQ2zDq
Ť

¨ ¨ ¨ .

It therefore suffices to show: @n P N, λpQnzDq “ 0.

Given n P N, let P :“ Qn, Want: λpP zDq “ 0.

By choice of Dn, we have: λpQnzp
Ť

Dnqq “ 0.

Let C :“ Dn. Then: λpP zp
Ť

C qq “ 0.

Since D “ D1

Ť

D2

Ť

¨ ¨ ¨ Ě Dn “ C, we get:
Ť

D Ě
Ť

C.

Since D “
Ť

D Ě
Ť

C, we get: P zD Ď P zp
Ť

Cq.
So, since λpP zp

Ť

Cqq “ 0, we get: λpP zDq “ 0.

End of proof of (2). �

THEOREM 17. Let S Ď R2. Then: S is Vitali.

Idea of Proof: Intersecting S with each set of

an a.e.-partition of R2 by open bounded subsets,

we get an a.e.-partition of S into relatively-open bounded subsets.

By Theorem 16, it suffices to show each realtively-open subset is Vitali.

Given one of these subsets, Q, and a fine-covering of Q,

we seek a countable pw-dj a.e.-subcovering of Q.

Since Q is bounded, we get: λpQq ă 8.

Starting with the empty set (which covers none of Q),

we use Theorem 14 repeatedly to find an increasing sequence of

finite pw-dj coverings of more and more of Q.

Taking the union of these countably-many finite partial coverings,

we arrive at a countable pw-dj a.e.-covering of Q. QED

Proof. Let z :“ p0, 0q. For all j P N, let Bj :“ Bj
z and Dj :“ Bj.

Let D0 :“ H. For all j P N, let Wj :“ BjzDj´1.
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Then: W1,W2 ¨ ¨ ¨ P T . Also, pW1,W2, . . .q is pw-dj.

We have: @j P N, λpBjq “ πj2 “ λpDjq.

It follows that: @j P N, λpDjzBjq “ 0.

So, since R2zpW1

Ť

W2

Ť

¨ ¨ ¨ q Ď pD1zB1q
Ť

pD2zB2q
Ť

¨ ¨ ¨ ,

we get: λp R2zpW1

Ť

W2

Ť

¨ ¨ ¨ q q “ 0.

So, since R2zpW1

Ť

W2

Ť

¨ ¨ ¨ q Ě SzpW1

Ť

W2

Ť

¨ ¨ ¨ q

we get: λp SzpW1

Ť

W2

Ť

¨ ¨ ¨ q q “ 0.

By Theorem 16, it suffices to show: @n P N, S
Ş

Wn is Vitali.

Given n P N, let Q :“ S
Ş

Wn, want: Q is Vitali.

Given V Ď B, assume V is a fine-covering of Q,

want: Dcountable pw-dj D Ď V s.t. λpQzp
Ť

Dqq “ 0.

Since Q “ S
Ş

Wn Ď Wn “ BnzDn´1 Ď Bn

and since λpBnq “ πn2 ă 8,

by monotonicity of λ, we conclude: λpQ q ă 8.

Let E0 :“ H. Then E0 Ď V and E0 is finite and pw-dj.

By applying Theorem 14 repeatedly, choose E1, E2, E3, . . . Ď V
s.t. E0 Ď E1 Ď E2 Ď ¨ ¨ ¨ and

s.t. @j P N, Ej is finite and pw-dj and

s.t. @j P N, λpQzp
Ť

Ejqq ď 0.99 ¨ pλpQzp
Ť

Ej´1qqq.
Let D :“ E1

Ť

E2
Ť

¨ ¨ ¨ . Then D Ď V and D is countable.

It remains to show: (1) D is pw-dj and (2) λpQzp
Ť

Dqq “ 0.

Proof of (1): Given E,F P D, assume E ‰ F , want: E
Ş

F “ H.

Since E P D “ E1
Ť

E2
Ť

¨ ¨ ¨ , choose p P N s.t. E P Ep.
Since F P D “ E1

Ť

E2
Ť

¨ ¨ ¨ , choose q P N s.t. F P Eq.
Let r :“ maxtp, qu. Recall: E1 Ď E2 Ď ¨ ¨ ¨ . Then E,F P Er.
So, since Er is pw-dj and since E ‰ F , we get: E

Ş

F “ H.

End of proof of of (1).

Proof of (2): Recall: λpQq ă 8. Let m :“ λpQq.

Then: 0 ď m ă 8. Then: as k Ñ 8, p0.99qk ¨mÑ 0.

It therefore suffices to show: @k P N, λpQzp
Ť

Dqq ď p0.99qk ¨m.

Given k P N, let s :“ p0.99qk, want: λpQzp
Ť

Dqq ď s ¨m.

Since E0 “ H, we get
Ť

E0 “ H, so Qzp
Ť

E0q “ Q.

Since D “ E1
Ť

E2
Ť

¨ ¨ ¨ Ě Ek, we get:
Ť

D Ě
Ť

Ek.
Then: Qzp

Ť

Dq Ď Qzp
Ť

Ekq.
So, by monotonicity of λ, we get:
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λpQzp
Ť

Dqq ď λpQzp
Ť

Ekqq.
Then: λpQzp

Ť

Dqq ď λpQzp
Ť

Ekqq ď p0.99q ¨ pλpQzp
Ť

Ek´1qqq
ď p0.99q2 ¨ pλpQzp

Ť

Ek´2qqq
ď ¨ ¨ ¨

ď p0.99qk ¨ pλpQzp
Ť

E0qqq
“ s ¨ pλpQqq “ s ¨m.

End of proof of (2). �

We make the convention that, @c ą 0, c ¨ 8 “ 8.

Then: @Q Ď R2, @ε P R, pλpQq “ 8 q ñ pλpR2q ď eε ¨ pλpQqq q.

So, using outer-regularity of λ, we can prove:

Let Q Ď R2, ε ą 0. Assume: λpQq ą 0.

Then: DW P T s.t. W is an ε-efficient-superset of Q.

(NOTE: In case λpQq “ 8, let W :“ R2.)

According to the next theorem, for any Q Ď R2,

for any fine-covering of Q, for any ε ą 0,

there is a countable pw-dj ε-efficient-a.e.-subcovering of Q.

The set Q need not be Lebesgue-measurable.

THEOREM 18. Let Q Ď R2, V Ď B, ε ą 0.

Assume: V is a fine-covering of Q.

Then: Dcountable pw-dj C Ď V s.t.

p λpQzp
Ť

Cqq “ 0 q & p λp
Ť

Cq ď eε ¨ pλpQqq q.

Proof. In case λpQq “ 0, let C :“ H. We therefore assume λpQq ą 0.

By outer-regularity of λ, choose W P T s.t.

both W Ě Q and λpW q ď eε ¨ pλpQqq.

Let V 1 :“ tV P V |V Ď W u. Then: V 1 Ď V and
Ť

V 1 Ď W .

By Theorem 12, V 1 is a fine-covering of Q.

So, since, by Theorem 17, Q is Vitali,

choose a countable pw-dj C Ď V 1 s.t. λpQzp
Ť

Cqq “ 0.

Since C Ď V 1 Ď V , it remains only to show: λp
Ť

Cq ď eε ¨ pλpQqq.

Since C Ď V 1, we get:
Ť

C Ď
Ť

V 1.
Since

Ť

C Ď
Ť

V 1 Ď W , by monotonicity of λ, we get: λp
Ť

Cq ď λpW q.

Then: λp
Ť

Cq ď λpW q ď eε ¨ pλpQqq. �

DEFINITION 19. Let Q Ď R2, ε ą 0.

Then: IεQ :“ tB P B |λpBq ą eε ¨ pλpQ
Ş

Bqqu.
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Then IεQ is the set of all

disks B that are NOT ε-efficient in covering Q
Ş

B.

The letter “I” stands for “inefficient”.

By Theorem 18, every fine-covering has some ε-efficiency.

The next theorem is based on the contrapositive:

Since IεQ has no ε-efficiency, it cannot be a fine-covering.

THEOREM 20. Let Q Ď R2, ε ą 0. Assume: λpQq ą 0.

Then: IεQ is not a fine-covering of Q.

Idea of proof:

Assume, for a contradiction, that: IεQ is a fine-covering of Q.

By Theorem 18, choose

a countable pw-dj ε-efficient-a.e.-subcovering, C, of Q.

Since C is an a.e.-covering of Q, we get: Q
Ş

p
Ť

Cq ” Q.

Since C Ď IεQ, we get: each C P C is ε-inefficient at covering Q
Ş

C.

Summing, we find that: C is ε-inefficient at covering Q
Ş

p
Ť

Cq.
So, since Q

Ş

p
Ť

Cq ” Q, C is ε-inefficient at a.e.-covering Q.

This contradicts the choice of C. QED

Proof. Assume IεQ is a fine-covering of Q. Want: Contradiction.

By Theorem 18, choose a countable pw-dj C Ď IεQ s.t.

p λpQzp
Ť

Cqq “ 0 q & p λp
Ť

Cq ď eε ¨ pλpQqq q.

Since λpQzp
Ť

Cqq “ 0 ă λpQq, we get: Qzp
Ť

Cq ‰ Q.

Then
Ť

C ‰ H. Then C ‰ H.

Since C Ď IεQ Ď B Ď T and since T is a topology, we get:
Ť

C P T .

Let A :“
Ť

C. Then A P T . Then A is Lebesgue-measurable.

So, by the Carathéodory-condition, we get:

λpQq “ rλpQ
Ş

Aqs ` rλpQzAqs.

So, since λpQzAq “ λpQzp
Ť

Cqq “ 0,

we get: λpQq “ λpQ
Ş

Aq.

Since C Ď IεQ Ď B Ď T , we conclude:

@C P C, C is Lebesgue-measurable.

So, since C is countable and pw-dj,

by countable-additivity of λ, λp
ď

Cq “
ÿ

CPC
pλpCqq.

Since Q
č

A “ Q
č

p
ď

Cq “ Q
č

p
ď

CPC
Cq “

ď

CPC
pQ

č

Cq,
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by countable-subadditivity of λ, λpQ
č

Aq ď
ÿ

CPC
pλpQ

č

Cqq.

So, since λpQq “ λpQ
Ş

Aq, we get: λpQq ď
ÿ

CPC
pλpQ

č

Cqq.

By choice of C, λp
ď

Cq ď eε ¨ pλpQqq.

Since
ÿ

CPC
pλpCqq “ λp

ď

Cq ď eε ¨ pλpQqq ď eε ¨
ÿ

CPC
pλpQ

č

Cqq,

we get:
ÿ

CPC
pλpCqq ď eε ¨

ÿ

CPC
pλpQ

č

Cqq.

On the other hand, since C Ď IεQ, by definition of IεQ, we get:

@C P C, λpCq ą eε ¨ pλpQ
Ş

Cqq.

So, since C ‰ H, summing these inequalities gives:
ÿ

CPC
pλpCqq ą eε ¨

ÿ

CPC
pλpQ

č

Cqq. Contradiction. �

DEFINITION 21. For every X Ď R2, we define:

DPX :“

"

x P X

ˇ

ˇ

ˇ

ˇ

lim
rÑ0`

λpX
Ş

Br
xq

λpBr
xq

“ 1

*

.

Elements of DPX are called “X-density-points”.

According to the next theorem,

every subset of R2 is comprised a.e. of density-points.

The same result can be proved, similarly, in any Euclidean space.

Interestingly, the subset need not be Lebesgue-measurable.

THEOREM 22. Let X Ď R2. Then: λpXzDPXq “ 0.

Sketch of proof:

For all j P N, let Sj :“

"

x P X

ˇ

ˇ

ˇ

ˇ

lim inf
rÑ0`

λpX
Ş

Br
xq

λpBr
xq

ě
j

j ` 1

*

.

Then DPX “ S1

Ş

S2

Ş

¨ ¨ ¨ , so XzDPX “ pXzS1q
Ť

pXzS2q
Ť

¨ ¨ ¨ .

It therefore suffices to show, given j P N, that λpXzSjq “ 0.

Let Q :“ XzSj and assume, for a contradiction, that λpQq ą 0.

Let ε :“ lnppj ` 1q{jq. Then e´ε “ j{pj ` 1q and ε ą 0.

Since Q Ď X, by monotonicity of λ, we get:

@x P R2, @r ą 0, λpQ
Ş

Br
xq ď λpX

Ş

Br
xq.

For all x P Q, since x R Sj, we get: lim inf
rÑ0`

λpX
Ş

Br
xq

λpBr
xq

ă
j

j ` 1
.
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For all x P Q, we have

lim inf
rÑ0`

λpQ
Ş

Br
xq

λpBr
xq

ď lim inf
rÑ0`

λpX
Ş

Br
xq

λpBr
xq

ă
j

j ` 1
“ e´ε,

so, for some sequence of positive reals r1, r2, . . .Ñ 0, we have

@i P N,
λpQ

Ş

Bri
x q

λpBri
x q

ă e´ε,

and so @i P N, λpBri
x q ą eε ¨ pλpQ

Ş

Bri
x qq,

and so @i P N, Bri
x P IεQ.

Then IεQ covers each point of Q by balls of arbitrarily small radii.

Then IεQ is a fine-covering of Q, contradicting Theorem 20. QED

Proof. We wish to show: for λ-a.e. x P X, x P DPX .

Define F : R2 ˆ p0;8q Ñ r0; 1s by:

@x P R2, @r ą 0, F px, rq “
λpX

Ş

Br
xq

λpBr
xq

.

We wish to show: for λ-a.e. x P X, lim
rÑ0`

pF px, rqq “ 1.

Define φ, ψ : X Ñ r0; 1s by: @x P X,

φpxq “ lim inf
rÑ0`

pF px, rqq and ψpxq “ lim sup
rÑ0`

pF px, rqq.

We wish to show: for λ-a.e. x P X, φpxq “ 1 “ ψpxq.

We have: @x P X, φpxq ď ψpxq ď 1.

Therefore, it suffices to show: for λ-a.e. x P X, φpxq ě 1.

Let P :“ tx P X |φpxq ă 1u. Want: λpP q “ 0.

For all j P N, let Pj :“ t x P X | φpxq ă j{pj ` 1q u.

Since P “ P1

Ť

P2

Ť

¨ ¨ ¨ , it suffices to show: @j P N, λpPj q “ 0.

Given j P N, let Q :“ Pj, want: λpQ q “ 0.

Assume λpQq ą 0, want: contradiction.

Let ε :“ lnppj ` 1q{jq. Then: e´ε “ j{pj ` 1q.

So, since Q “ Pj “ tx P X |φpxq ă j{pj ` 1qu,

we get: Q “ tx P X |φpxq ă e´εu. Note that Q Ď X.

Since pj ` 1q{j ą 1 and since ε “ lnppj ` 1q{jq, we get: ε ą 0.

So, by Theorem 20, IεQ is not a fine-covering of Q. Let W :“ IεQ.

Then W is not a fine-covering of Q, so choose x P Q and δ ą 0 s.t.

@W PW , px P W q ñ p radW ě δ q.

Since x P Q, we get: φpxq ă e´ε.

Since lim inf
rÑ0`

pF px, rqq “ φpxq ă e´ε,
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choose r P p0; δq s.t. F px, rq ă e´ε. Let W :“ Br
x.

Since r P p0; δq, we have r ą 0, so: πr2 ą 0.

So, since λpW q “ λpBr
xq “ πr2, we get: λpW q ą 0.

Since Q Ď X, we get: Q
Ş

W Ď X
Ş

W .

So, by monotonicity of λ, we get: λpQ
Ş

W q ď λpX
Ş

W q.

Since
λpQ

Ş

W q

λpW q
ď
λpX

Ş

W q

λpW q
“
λpX

Ş

Br
xq

λpBr
xq

“ F px, rq ă e´ε,

we get λpQ
Ş

W q ă e´ε ¨ pλpW qq,

so eε ¨ pλpQ
Ş

W qq ă λpW q,

so λpW q ą eε ¨ pλpQ
Ş

W qq,

so, since W “ Br
x P B, by definition of IεQ, we conclude: W P IεQ.

Since W P IεQ “W and since x P Br
x “ W , by choice of x and δ,

we get: radW ě δ.

On the other hand, since radW “ radBr
x “ r P p0; δq,

we get: radW ă δ. Contradiction. �

For any function f , let Df denote the domain of f .

For any function f , for any set S, we define:

f˚S :“ tx P Df | fpxq P Su.

Note: @function f , @set S, we have: f˚S Ď Df .

DEFINITION 23. Let X Ď R2, let f : X Ñ R and let x P X.

Then, for all ε ą 0, for all r ą 0, we define:

Arxpf, εq :“ tu P X
Ş

Br
x s.t. |pfpuqq ´ pfpxqq| ă ε u.

We say f is CiOP at x if: @ε ą 0, lim
rÑ0`

λpArxpf, εqq

λpBr
xq

“ 1.

Here, “CiOP” stands for: “continuous-in-outer-probability”.

Every function, measurable or not, is CiOP a.e.:

THEOREM 24. Let X Ď R2, f : X Ñ R.

Then: for λ-a.e. x P X, f is CiOP at x.

Here, we assume that the domain of f is a subset of R2

and that the image of f is a subset of R,

but the result could be proved for any two Euclidean spaces.

Interestingly, neither X nor f need be Lebesgue-measurable.

Proof. Let Y1, Y2, . . . be a countable base for the topology on R.

For all j P N, let Xj :“ f˚Yj.
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By Theorem 22, we have: @j P N, λpXjzDPXj
q “ 0.

For all j P N, let Dj :“ DPXj
.

Then: @j P N, λpXjz Dj q “ 0.

For all j P N, let Zj :“ Xjz Dj.

Then: @j P N, λpZjq “ 0.

Let Z :“ Z1

Ť

Z2

Ť

¨ ¨ ¨ . Then: λpZ q “ 0.

It therefore suffices to show: @x P XzZ, f is CiOP at x.

Given x P XzZ, given ε ą 0, want: lim
rÑ0`

λpArxpf, εqq

λpBr
xq

“ 1.

Let y :“ fpxq. We have: y P py´ ε; y` εq.

So, since Y1, Y2, . . . is a base for the topology on R,

choose j P N s.t. y P Yj Ď py´ε; y`εq.

Since fpxq “ y P Yj, we get: x P f˚Yj.

Since x P XzZ, we get: x P X and x R Z.

Since x R Z “ Z1

Ť

Z2

Ť

¨ ¨ ¨ Ě Zj, we get: x R Zj.

So, since x P f˚Yj “ Xj, we get: x P XjzZj.

Since Dj “ DPXj
Ď Xj and Zj “ XjzDj, we get: XjzZj “ Dj.

Since x P XjzZj “ Dj “ DPXj
, we get: lim

rÑ0`

λpXj

Ş

Br
xq

λpBr
xq

“ 1.

So, by the Squeeze Theorem, it suffices to show:

@r ą 0,
λpXj

Ş

Br
xq

λpBr
xq

ď
λpArxpf, εqq

λpBr
xq

ď 1.

Given r ą 0, want: λpXj

Ş

Br
xq ď λpArxpf, εqq ď λpBr

xq.

By monotonicity of λ,

it suffices to show: Xj

Ş

Br
x Ď Arxpf, εq Ď Br

x.

By definition ofArxpf, εq, Arxpf, εq Ď X
Ş

Br
x.

Then: Arxpf, εq Ď Br
x.

It remains to show: Xj

Ş

Br
x Ď Arxpf, εq.

Given u P Xj

Ş

Br
x, want: u P Arxpf, εq.

Since u P Xj

Ş

Br
x, we get: u P Xj and u P Br

x.

Since u P Xj “ f˚Yj Ď Df “ X and u P Br
x, we get: u P X

Ş

Br
x.

So, by definition of Arxpf, εq, we want: |pfpuqq ´ pfpxqq| ă ε.

Since u P Xj “ f˚Yj, we get: fpuq P Yj.

By the choice of j, we have: Yj Ď py ´ ε; y ` εq.

Since fpuq P Yj Ď py ´ ε; y ` εq, we get: |pfpuqq ´ y | ă ε.

By definition of y, y “ fpxq. Then: |pfpuqq ´ pfpxqq| ă ε. �


