Points of Density and Continuity in Probability

The main results in this note are:
Theorem 18, Theorem 22, Theorem 24.

DEFINITION 1. Let § be a set of sets.

SeS

We make a similar convention that an empty sum is equal to 0.

DEFINITION 2. We define = 0.
For any nonempty finite set S,

denotes the number of elements in S.
For any infinite set S, we define = 0.

DEFINITION 3. Let = {—oo} R {0}
For all a,be R*, let

(a;0)|:={xeR*|la<xz<b}, |[la;b)|:={reR*|a<z<b},

(a;b]|:'={zeR*|la<x<b}, |[a;b]|:={xeR*|a<x<b}.

DEFINITION 4. For all x e R?, for allT >0, let
Bl = {yeR?s.t ly—x| <r}.

That is: B is the open disk about z of radius r.

Let [B] := {Bl|zeR? r>0}.
Let denote  the standard topology on R?,

so T is the set of open subsets of R
Then: VU € T, U is Lebesgue-measurable. Also, B< T\{&}.

DEFINITION 5. Let zeR?, r>0, C:=D.

Then: =r and =z and
Vs > 0, = BS7.

According to the next theorem, if two disks meet,
then  the triple of the larger covers the smaller.

THEOREM 6. Let F,G € B.
Assume: rad F <radG and F(\G # &. Then: 3-G 2 F.
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Proof. Given a e F, want: a € 3-G.
Since F'(\G # &, choose pe F(\G. Then: pe F and peG.
Let x:=centlF, y:=centG, r:=radF, s:=radG.

Then, by hypothesis, we have: r < s.
Also, F=DB, and G=B; and 3-G =B}
Want: o € B3°. Want: |a —y| < 3s.
Since a € F' = B!, we get:  |a—z| <.

Since pe F' = B!, we get: |p— x| <.

Since p e G = By, we get:  [p —y| <s.

Since 71 <'s, we get: r+r+s<3s.

Then |[a —y|<|la—z|+|z—p|+|p—y| <r+r+s<3s. O

Let :={1,2,3,...} be the set of positive integers.
We use “pw-dj” to abbreviate “pairwise-disjoint”.

For any set S of sets, by |S is pw-dj|,

we mean: VS, TeS, (S#T)=(SNT=0).
For any sequence (51, S, ...) of sets, by |(S1,59,...) is pw-dj|,
we mean: Vi,jeN, (i#j)= (S5 =09).

For any C <€ B, for any s >0, we define:
= {s-C|CeC}.

THEOREM 7. Let F < B.  Assume F is finite.
Then: Jpw-df E<F st. YB-E)2UF.

Proof. Let n := #F.
In case n =0, let £ := . We therefore assume n > 1.
By induction on n, we also assume: VQ < B,
(#Q<n )= (IpwdjPcQ st. JUB-P)2UQ ).
Let R := {rad F'| F € F}. Then R is a finite subset of R.
Let r := max R. Thenre R, sochooseGe F st. radG =r.
Since Ge FE B< T\{J}, weget: G #.
Let Q:={Fe F|FNG =g} Then Q< F and G ¢ Q.
Then Q< F\{G}, so: #Q <#(F\{G}).
Since G € F and since F is finite, we get: #(F\{G}) < #F.
Since #Q < #(F\{G}) < #F =n, by the induction assumption,

choose apw-dj P< Q st. JB-P)2JQ.
Since P < Q, by definition of Q,
we get: VPeP, PG = .

So, since P is pw-dj, we get: P J{G} is pw-dj.
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Since P Q< F andsince Ge F, we get: PU{G} < F.
Let £ := PJ{G}. Then: E ispw-dj and & cF.
It remains only to show: |J(3-&)2JF.

Want: VF e F, FcJ@B-¢&).

Given FeF, want: Fc|J3-€&).

Case 1: F € Q. Proof in Case 1:

Since P P J{G} =&, weget3-P<3-E,s0 [JB-P)<=UJB-E).
By the choice of P, we have: Uas-rP)=249.
Since F' € Q, we get: FclJo.

Then: Fcyeoe<cUB-P)clUB-&).
End of proof in Case 1.

Case 2: F ¢ Q. Proof in Case 2: Recall: F € F.

So, by definition of R, we have: rad F' € R. Then rad F' < max R.
Since Fe FandF¢ Q, bydefinitionof Q, weget: F[\G # &.
So, since radF <maxR =r =radG,

by Theorem 6, we get: 3-G2F.
Since Ge P J{G} =€, weget 3-Ge3-E&,s0 3-G<JB-¢).
Then: Fc3-G<elJB-¢8).
End of proof in Case 2. U

Let | \| denote Lebesgue-outer-measure on R2.

THEOREM 8.
Let (Ay, Ay, ...) be a sequence of Lebesque-measurable subsets of R
Then: ask — oo, ANAUY U4 = (A UAU-).

Proof. For all keN, let Dj:=A4\AU - -UA-1).

Then, Vk e N, Dy is Lebesgue-measurable
and, VkeN, Di{J---UDr= AU Ak
and DD\ = AiJA U
and (D1, Do, .. .) is pw-dj.

Since  (Di, Ds,...) is pw-dj, by countable-additivity of A, we get
ADLUD2U-+) = (MD1)) + (A(D2)) + -+

also, by finite-additivity of A\, we get

By definition of infinite-summation, we have

as k — 0, (/\(Dl)) + -+ ()\(Dk)) — (/\(Dl)) + (/\(DQ)) + -
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Then: ask—o, MDDy — MDLUDsJ-).
Then: ask—o, AAU U —» AAUA ). O

The next result says:  for any collection of open disks,
if its union has finite Lebesgue-measure, then
Jfinite pw-dj subcollection that covers at least 10% of that union.

THEOREM 9. Let A< B. Assume: A(|JA) < .
Then:  3finite pu-dj E < A st. AMJE)=0.1-(ANUA).

Proof. In case A(|JA) =0, let&:=.
We therefore assume A(| JA) # 0. Then A(|JA) > 0.
By hypothesis, A(|JA) < . Let ¢ := A\ A).
Then O0<c¢<o. Then: 09 -c<e.
Since | J.A is Lindelof, choose A;, A,,...€ A
s.t. A JA Y- =UA

Since A, Ay,...e ASBCST, we get:

(Ay, Ay, ...) is a sequence of Lebesgue-measurable subsets of R
So, by Theorem 8, we have:

as k — o, AMAUY - UAr) = (AU A U-).
So, since 09-c<c=ANUA) = 2xA1UJAU- ),

choose keN st. ANAU---UJA4k) =09-c
Let 7 :={A;,...,As}. Then ANUF)=09-¢ and FcA
Also, F is finite, so, since F < A< B, by Theorem 7,

choose a pw-dj £ € F s.t. [JB3-&) 2UF.
Since £ € F and since F is finite, we get: £ is finite.
Since £ € F € A, it remains only to show: A(| J&) = 0.1-(A(|J A)).
Since ¢ = A\(|JA), we want: \(| JE) =>0.1- v«
We have:  ¥Be B, A(3-B)=9-(A(B)).

Since |JF < |J (3-&), by monotonicity and subadditivity of A,
MUF) < D (\3B-E)).
Ee&
Since \UF) < Y,(AB-E) = >,(9-(\E)) = 9- ) (ME)),
Ee& Ee& Ee&
we get: (1/9)-AUF) < D.(AE).
Ee&
Since £ € B < T, we get: VE €&, FE is Lebesgue-measurable.

So, since £ is finite and pw-dj, by finite-additivity of A\, we get:



AUE) = Y AE)).

Ee&

Since A(JF) =09 - ¢, we get:  (1/9)- MU F)) = 0.1-c.

Then AUJE) = D(ME)) = (1/9)- AUF)) = 01-c O
Ee&

Let A and B be sets.
By Bisa ’superset of A

., we will mean: B 2 A.

Let B be a set of sets and let A be a set.
By Bisa ’ covering of A

| B is a superset of A.

,  we will mean:

DEFINITION 10. Let Q< R?, VcB.
By Visa ’ﬁne—covering of Q

. we mean:

VeeQ, V6>0, VeV st (zeV)&(radV <9).

NOTE: A fine-covering is a covering, i.e.. VQ < R%, VYV C B,
if Vis a fine-covering of ), then [JV2Q.

Let @) be aset and let P be aset of sets.  We'll say

Pis if: UP <.

According to the next theorem,
for any fine-covering V € B of a set Q < R?
for any open W < R,
there is  a subset of V  that is
both inside W and a fine-covering of Q[ W.

THEOREM 11. Let Q,W < R?, V< B.
Assume: W eT and V is a fine-covering of Q.
Let V' :={VeV|VcW}.  Then: V' is a fine-covering of Q(\W.

Proof. Given xeQ(\W, §>0,
want: VeV st (zeV)&(radV <9).
Since ze QW< Wand WeT, choosef3>0 st. BcW.

Let a := min{3/2,6}. Then a >0 and a</f/2 and «a <.
Since ze Q1W< Q and a>0 and V is a fine-covering of @Q,
choose VeV s.t. (zeV)&(radV < «).

Since radV < a < ¢, it remains only to show: VeV .
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By definition of V', since V €V, we wish to show: V < W.

GivenveV, want: velV.
Since B? < W, it suffices to show: ve B?.  Want: |v — 2| < 3.
Since VeV < B, choose ceR*andr >0 st. V=B

Since v,x eV =Bl weget: |v—c/l<r and |z—c|<T.
Since r =rad B, =radV < a < /2, we get: 2r < B.
Then: |jv—z| < [v—¢| + |c—z| <7 + 1 = 2r < L. O

According to the next theorem,
for any fine-covering ¥V € B of a set Q < R?,
for any open W < R?  that is a superset of Q,
there is  a subset of V  that is
both inside W and a fine-covering of Q.

THEOREM 12. Let W cR?, QcW, VcB.
Assume: W eT and V is a fine-covering of Q).
Let V' :={VeV|Vc W}  Then: V' is a fine-covering of Q.

Proof. Since Q < W, we get: QAW =Q.
So, by Theorem 11, we get: V' is a fine-covering of Q. I

According to the ’ Carathéodory-condition
VQ < R?, (@ is Lebesgue-measurable iff

VSR AWS) = [AMSNQ)] + [AMS\Q) ]
That is: Q@ is Lebesgue-measurable iff @ “splits all sets well”.

Y

According to the next theorem,
for any Q < R? of finite Lebesgue-outer-measure,
for any fine-covering V of @),
there is  a finite pw-dj subset of V  covering at least 1% of Q.

THEOREM 13. Let Q< R? VcB.
Assume: 'V is a fine-covering of Q. Assume: A(Q) < 0.
Then:  3Ifinite pw-dj E<V  st.  MQ(UE)) = 0.01- (NQ)).

Idea of proof: In case A\(Q)) =0, let £ := &J, so assume A\(Q) > 0.
Let ¢ :=0.1-(\(Q)). By outer-regularity of A\, choose W e T

st. W2@Q and MNW)<(AQ))+e.
Then: W approximates () in measure, to within e.
By Theorem 12, choose a fine-covering V' < V, inside W, of Q).
Since Q € [JV' € W and since W approximates () in measure,



we conclude that: JV' also approximates () in measure.

By Theorem 9, choose a finite pw-dj £ € V' s.t.
& covers at least 10%  of YV

There are details to check, but,

assuming our choice of ¢ = 0.1 (A(Q)) is small enough, i.e.,

assuming ( J V" approximates () sufficiently closely in measure,
then, because & covers at least 10%  of YV,

it will follow that & covers at least 1% of Q. QED

Proof. In case A\(Q) =0, let £ := J.  We therefore assume A\(Q) # 0.
Then A\(Q) > 0. By hypothesis, \(Q) < 0. Let b:= Q).
Then 0 < b <oo. Then: 1.1-0>0.
Since 1.1-b > b= A(Q), by outer-regularity of A,
choose WeT st. Wo2Q and AW)<1.1-b.

Let V' :={VeV|V<cW}. Then V' c<V. Also, YV < W.
Let V.=V Then: Vv <o W.
So, by monotonicity of A, we get:  AN(V) < A(W).
Let ¢ := A(V). Then: ¢ < AW).
Since ¢ < A(W) < 1.1, we get: ¢<1.1-b.

So, since b < o0, we get: ¢ < 0. Let A:=YV'".

Since A =)' <V and since V € B, we get: ACc B.

So, since A(|JA) =AXUV') =AV)=c< oo, by Theorem 9,
choose a finite pw-dj € € A s.t. AUJE) = 0.1-(AMJA)).

Then, since A(JA) = A(JV) =A(V)=¢, ANJE) =01 e«

Since E € A=V, we get: £ V.

So, since VoV, weget: Ec<V.

It remains only to show: AMQNWUE)) =0.01-(NQ)).
Since b = A(Q), we want: AQNOWUE)) =0.01- b
Let F := [ J¢&. Want: \(Q() £ )=0.01- b
Let z:= ANQE). Want: T >0.01- b
We have: VBeB, M B)<w

So, since £ €V < B and £ is finite, we get:  A(|J&) < ©

So, since E=J¢, we get: A EF ) <o

Let y:=\(E). Then: y < 0.

Since z = A(QE) < M(E) < w0, we get: r <.

Since £V, weget JE< YV
Since E=JEcYvV' =V, weget: V(E = E.
Then: A(V(E) = \(E).



8

Since £ €V < B< T and since T is a topology, we get: (JE e T.

Since E = [ J& € T, it follows that:  E is Lebesgue-measurable.

So, by the Carathéodory-condition,
AV) = [MV\E)] + [AMVNE)].

So, since AV E)=\E)<ow, weget:
AVAE) = [AV)] = [AMVNIE)].

So, since  ¢=A(V) and N(V[E)= A\
AVA\E) = ¢ — Y.

Since F is Lebesgue-measurable, by the Carathéodory-condition,
Q) = [NQE)] + [NQNE)].

So, since  AMQE)<AE) <o, weget:

NQE) = M@ - [AQNE)].
So, since b= A(Q) and N(Q(F) ==z, we get:

(E) =y, we get:

NQE) = b - o
By Theorem 12, V' is a fine-covering of @),  so:
Uv o0.

Since V =JV' 2 Q, we get: VAE 2 Q\E.
So, by monotonicity of A,  we get: AVAE) = MQ\E).
So, since A(V\E) = c—y and A(Q\F) = b — «z, c—y = b—u.
Recall: b<ow, c¢c<ow, x<o00, y<owo, c<I1.1-0b.
Since y = M(E) = M| JE&) = 0.1 -¢,

we get: c—y<09-c
Since ¢ < 1.1 - b, we get: 0.9-¢<0.99-0.
Since b—r<c—y<09-¢<0.99-b,

we get: x>=>001-b. O

For any two sets A and B, we define: = (A\B) U (B\A).
For any A, B < R?, by|[A= BJ wemean: A AAB) =
We will read “=" as:

For all sets A, B, we have:
(A < BUAAB) ) & ( B < A|J(AAB) ).
So, by monotonicity and subadditivity of A, we conclude:
VA, B € R?, (A=DB) = (AMA) = A(B)).
For any sets A, B,Y,Z, we have:

(AUY) A (BUZ) < (AAB) |J (YAZ)  and
(ANY) A (BOZ) < (AAB) |J (YAZ) and
(A\Y) A (B\Z) < (AAB) | (YAZ).

So, VA,B)Y,ZcR? ifA=B and Y =2, then:

—e



AUY=BJZ and AY =B()Z and A\Y =B\Z.

For all S € R?, let denote  the closure in R? of S.
NOTE: VzeR? Vr >0, wehave: A(B!)=mr?=\Br).
It follows that: VBeB, B=B.

The next result says that
if @ < R? has finite Lebesgue-outer-measure, and
if V < B is a fine-covering of @, and
if, using a finite pw-dj £ €V, we can cover some portion of @,
then, using a bigger finite pw-dj collection F < V),
we can cover substantially more, by which we mean:
the UNcovered portion decreases by at least 1%.

THEOREM 14. Let QcR?, VcB, £cV.
Assume: YV is a fine-covering of Q. Assume: NQ) < .
Assume: &£ is finite and pw-dj.
Then:  3Ifinite pw-dj F <V s.t. ESF and s.t.
MAUF)) < 0.99 - (AMQ\(UE)))-

Idea of Proof: Let S:=J¢. Then: £ is inside S.
Since £ is a finite set of disks, we get: S=5.

Then RA\S = R%\S. Let W := R%\S.

Then: W =R*\S and W isopen in R%

Wehave QO = QN(RAS) = Q\S = Q\(UE),
so QW = ( the portion of @ that is uncovered by & ).
Using Theorem 11, choose V' €V  s.t.
V' is a fine-covering of QW and V' is inside W.

Apply Theorem 13 to get  a finite pw-dj subset & <V’ which
covers at least 1% of QM W, and, therefore,
covers at least 1% of ( the portion of @) that is uncovered by & ).

Since & € V' and since V' is inside W and since W = R%\S,

we conclude: &’ is inside R?\S.
On the other hand, recall: £ is inside S. Let F:=£JE. QED

Proof. Let £ := {E|E € &}. We have: VBeB, B=DB.
So, since £ €V < B, we get: VEe€&, E=E.
So, since & is finite, we get: Ue=UE.

Let S:=|J&. Since £ is finite, we get: S =|J&. Then S=S.
Let W :=R?\S.  Since S is closed in R?, we get: W eT.
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Let V' :={VeV|Vc W} Then: V' <V and [JV < W.
Also, by Theorem 11, V' is a fine-covering of Q (| W.
Let Q :=QNW. Then V' is a fine-covering of @'.
Since Q" = QW < @, by monotonicity of A, we get: \(Q') < A(Q).
Since  AQ') < A(Q) < 0, by Theorem 13,
choose a finite pw-dj & < V' st. MQ'(UE)) = 0.01-(AMQ)).
Since &' < V', we get: JE <YV Recall: (JV' < W.
Since S 2 9, we get:  R%\S < R%S. Recall: S =[J€.
Since | J& < YV =W = R%2S < R%\S = RA(JE),
we et U NUE) - 2.
Then: VEe&, VE €&, E N E =0
So, since € and &’ are both pw-dj, we get: £ JE is pw-dj.
Since £ and &£’ are both finite, we conclude: £ J &’ is finite.
By hypothesis, £ € V, so, since &' < V' <V, we get: £ JE < V.
Let F:=£&J&'. Then F is finite and pw-dj. Also, F < V.
Since £c<&YE = F,
it remains only to show: A\(Q\( [JF )) < 0.99- MQ\(UE))).
Recall: S =J€. Let 5" :=J&"
Then, since [JF=UEUE)=UEUUE)=SUY,
we want to show: A(Q\(S|JS")) < 0.99- (AQ\ S )).
By hypothesis, V < B. So, since &' < V' <V, we get: & < B.
Since &' € B < T and since T is a topology, we get: | JE € T.
So, since §' =&, we get: S eT.
Then S’ is Lebesgue-measurable, so, by the Carathéodory-condition,
we get:  AMQ) = [AMQ\S)] + [MQ 5]
Let c:=MQ"), a:=XQ\), b:=XQ' 9.
Then: c = a + b.
By choice of &', we have:  AMQ'((JE")) = 0.01 - (A(Q")).
Then: MNQ'() S )=0.01-(\NQ")).
Then: b >0.01- e
Recall: S =38.
Then: Q\S = Q\S. Recal: W =RA\S and Q =QNOW.
Since Q\S=Q\S=QNRAS)=QNW =Q', we get:
both (Q\S)\S" = Q"\S" and AQ\S) = MQ").
Since Q\(SUYS) = (Q\S\S' = Q'\S', we get:
ANQUSUS)) = N@\S).
Since A(Q\(SJS")) = MQ'\S") = a and since A\(Q\S) = A(Q') = ¢,

we want to show: a<0.99-c.
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Recall: c=a+b and b>=0.01-c
Since c=a+b=>a+0.01-c
we get: 0.99 - c > a. Then: a<0.99-c. O

Let A, BcR2
By B isan ’a.e.—superset of A

,  we will mean:  A\(A\B) = 0.

Let A, BcCR? &>0.
By Bisan ‘5—eﬂ‘icient-superset of A ‘, we will mean:

Ac B and A(B) < e - (A(A)).
c-efficient-a.e.-superset of A
AMA\B) =0 and A\(B) <e®- (A(A)).

By B isan ,  we will mean:

Let B be a set of subsets of R2, A < R2.
By Bisan ’a.e.—covering of A

,  we will mean:

| B is an a.e.-superset of A.

Let B be a set of subsets of R?, AcCR? ¢>0.
e-efficient-covering of A

we will mean:

By Bis an

i

| B is an e-efficient-superset of A.

By B is an |e-efficient-a.e.-covering of A| we will mean:

| B is an e-efficient-a.e.-superset of A.

DEFINITION 15. Let S < R2. By S is|Vitali|, we mean:
YV c B, if Vs a fine-covering of S,
then  dcountable pw-dj D <V s.t. ANS\(JD)) =0.

So, a Vitali set is one for which
any fine-covering admits a countable pw-dj a.e.-subcovering.
In Theorem 17, below, we will show:  any subset of R? is Vitali.

By an |a.e.-partition | of a set S € R?, we will mean:

a pw-dj set of subsets of S that is an a.e.-covering of S.

According to the next theorem, for any S < R?
for any countable a.e.-partition of S into relatively-open subsets,
if each subset is Vitali, then S is Vitali.
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THEOREM 16. Let ScR?* W, W, ...eT.
Assume: (Wi, Wa,...)is pw-dj ) & (AM(S\(W1UWalJ---))=0).
Assume: VneN, SO\W, is Vitali. Then: S is Vitali.

WARNING: In the following proof, Vn € N, UDn = U D.

DeD,,
o0
By contrast, U D, = D, UDQ U cee
n=1 "
Care must be taken not to confuse U D,  with U D,,.
n=1

Proof. Given V <€ B, assume V is a fine-covering of S,

want: Jcountable pw-dj D <V s.t. A(S\(JD)) = 0.
Forallne N, let V,:={VeV|VcW,}. Then: VneN, V, < V.
Also, by Theorem 11, Vne N, V, is a fine-covering of S W,,.
For al ne N, let Qn =S\ W,.
Then: VneN, V, is a fine-covering of @),.
By hypothesis, we have: Vn e N, (@, is Vitali.
Then, VneN, choose a countable pw-dj D, <V,

st. AM@Q\UDn)) =0.

Let D:=D,JD:J---.
Since, VneN, D, is countable, we get: D is countable.
Since, VneN, D,cV,cV, we get: D cC V.
It remains to show: (1) Dispw-dj and (2) A(S\(JD)) =0.

Proof of (1): Given A, B € D, assume A # B, want: A(\B = (.

Since AeD=D,UD:J---, chooseae N st. AeD,.
Since Be D =D, D2+, choose be N st. BeD,.
In case a = b, we have A, B e D,, and so,

since D, is pw-dj and since A # B, we get: ANB=.

We therefore assume that a # b.

By hypothesis, (W, Wa,...) is pw-dj.  Then: W,W, = &.
Since Ae D, < V,, by definition of V,, we get: A< W,.
Since Be D, < V,, by definition of V,, we get: B < W,,.
Then ANBS W, (W=, so A(B=d.

End of proof of (1).

Proof of (2):  Let D :=|JD. Want: A\(S\D) = 0.
Let Q= QUQU -
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For all sets X,Y,Z, wehave: X\Z < (X\Y) U X¥\2).
Therefore, S\D < S\Q) U @\D).
It therefore suffices to show: AS\Q) =0 = AXQ\D )
By hypothesis, we have: AS\WLUwaly--+)) =
Let W := W UWalJ---. Then: A(S\ w ) =

For all n € N, by definition of Q,, we have: S(\W, = Q,.
Since SO = (SOAW)USAW) U+ = QU U+ - @,

we get:  S\(SW) = S\Q.
For any sets X,Y, by definition of set-subtraction, we have:

X\Y = X\(XN V).

Since S\W = S\(SW) = S\Q, we get: AS\W) = A(S\Q).
Since A(S\Q) = A(S\W) = 0,

it remains only to show: A(Q\D) = 0.
Since Q@ = Q1 JQ2U -+, weget:  OQ\D = (Q:1\D)J(Q2\D)J---

It therefore suffices to show: VneN, XQ,\D)=0.
Given n € N, let P:=Q,, Want: A\(P \D) = 0.
By choice of D,,, we have: AM@\UDn)) = 0.
Let C:=D,. Then: AM(P\(lJ C))=0.
SinceD =D:UD:J---2D,=C, weget: |JD2JC.

Since D =D 2JC, we get: P\D < P\(|JO).
So, since A(P\(|JC)) =0, we get:  A(P\D) = 0.
End of proof of (2). O

THEOREM 17. Let S < R2. Then: S s Vitali.

Idea of Proof: Intersecting S  with each set of
an a.e.-partition of R? by open bounded subsets,
we get an a.e.-partition of S into  relatively-open bounded subsets.
By Theorem 16, it suffices to show each realtively-open subset is Vitali.
Given one of these subsets, (), and a fine-covering of @,
we seek  a countable pw-dj a.e.-subcovering of ().
Since () is bounded, we get: A (Q) < 0.
Starting with the empty set  (which covers none of @),
we use Theorem 14 repeatedly to find an increasing sequence of
finite pw-dj coverings of more and more of Q).
Taking the union of these countably-many finite partial coverings,
we arrive at a countable pw-dj a.e.-covering of Q). QED

Proof. Let 2 :=(0,0). ForalljeN, let Bj:= B! and D, := B,.
Let DO = @ For all j € N, let Wj = Bj\Dj—l-
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Then: Wi, Wy---€T. Also, (Wi, Wy, ...) is pw-dj.
We have: VieN, X(Bj)=mj*=X\D;,).
It follows that: VjeN, AND;\B;) = 0.
SO, since R2\(Wl U W, U SR ) - (Dl\Bl) U (DQ\BQ) U SR
we get: A RAWLUWalJ---)) = 0.
SO, since RQ\(WlLJWQU . ) =2 S\(W1UW2U . )
we get: ACS\(WUWalJ---) ) =0.
By Theorem 16, it suffices to show: Vne N, S[\W, is Vitali.
Given ne N, let Q := S\ W,, want:  Q is Vitali.

Given V € B, assume V is a fine-covering of @),
want: dcountable pw-dj D <V s.t. AQ\(JD)) =0.
Since Q=S\W,cW,=B,\D, 1< B,
and since A(B,,) = mn? < o,
by monotonicity of A\, we conclude: A(Q ) < .
Let & := . Then & <V and & is finite and pw-dj.
By applying Theorem 14 repeatedly, choose &;,&5,&5,...<V

st. &c&cecbhe - and
st. VjeN, & is finite and pw-dj and
st WieN, AQUE)) < 099- (MQ\(U&-1)).

Let D:= & J&U . Then D <V and D is countable.

It remains to show: (1) Dispw-dj and (2) N(Q\(UD)) =0.

Proof of (1): Given E,F € D, assume F # F, want: E(\F = .

Since Ee D =& J&U- -, choose pe N st. FEeé,.
Since FeD =& J&U -, choose e N st. Fef&,
Let 7 := max{p,q}. Recall: &§ €& <---. Then E Fe&,.

So, since &, is pw-dj and since E # F, we get: E(F = .
End of proof of of (1).

Proof of (2): Recall: ~ A\(Q) < o0. Let m := \(Q).

Then: 0< m <oo. Then: as k — o0, (0.99)* - m — 0.
It therefore suffices to show: Vi e N, AQ\(JD)) < (0.99)%-m.
Given ke N, lets:=(0.99)%  want: N\(Q\(UD))< s -m.
Since & =&, weget (J&E =, so Q\(U&) = Q.
Since D =& J&E - 2 &, we get:

Up = U &k

Then: oUD) = Q&

So, by monotonicity of A\, we get:
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Then:  A(Q\(UD))

A A NN

End of proof of (2). []

We make the convention that, Ye>0, c-o00 = 0.
Then: VQ S R? VeeR, (AMQ)=o) = (AR?) < (NQ))).
So, using outer-regularity of A, we can prove:
Let QcR?® &>0. Assume: A\(Q) > 0.
Then: W eT st W is an e-efficient-superset of Q.
(NOTE: Incase \(Q) =0, let W :=R2)

According to the next theorem, for any @ < R2,

for any fine-covering of @), for any ¢ > 0,

there is a countable pw-dj e-efficient-a.e.-subcovering of Q).
The set () need not be Lebesgue-measurable.

THEOREM 18. Let Q< R?, VcB, £>0.
Assume: V is a fine-covering of Q).
Then: Jcountable pw-dj C <V  s.t.

(AMQ\UC) =0) & (AMUC) <e-(MQ)) ).

Proof. In case A\(Q) =0, let C := ¢J. We therefore assume A(Q) > 0.
By outer-regularity of \, choose W eT s.t.
both W 2Q and AW)<e - (MQ)).

Let V' :={VeV|Vc W} Then: V' <V and [V < W.
By Theorem 12, V' is a fine-covering of Q.
So, since, by Theorem 17, Q is Vitali,

choose a countable pw-dj C < V' s.t. AQ\(UC)) = 0.
Since C € V' <V, it remains only to show: A(|JC) <e®- (A(Q)).
Since C < V', we get: | JC < YV
Since | JC < [JV' < W, by monotonicity of A, we get: A(| JC) < A(W).
Then:  A(JC) < A(W) < e - (MQ)). O

DEFINITION 19. Let QcR2?, &> 0.
Then: T, | = {BeB|A(B) > - (AMQN B))}.
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Then Z¢, is  the set of all

disks B that are NOT e-efficient in covering Q[ B.
The letter “Z” stands for “inefficient”.
By Theorem 18, every fine-covering has some e-efficiency.
The next theorem is based on the contrapositive:

Since Z;, has no e-efficiency, it cannot be a fine-covering.

THEOREM 20. Let Q =< R?, ¢>0. Assume: AQ) > 0.
Then: I is not a fine-covering of Q.

Idea of proof:
Assume, for a contradiction, that: Z is a fine-covering of Q.
By Theorem 18, choose

a countable pw-dj e-efficient-a.e.-subcovering, C, of Q.
Since C is an a.e.-covering of @, we get: Q[ (| JC) = Q.
Since C < 75, we get:  each C' € C is e-inefficient at covering ) NC.
Summing, we find that:  C is e-inefficient at covering QNO).
So, since Q((LUC) = Q, C is e-inefficient at a.e.-covering Q.
This contradicts the choice of C. QED

Proof. Assume T, is a fine-covering of ().  Want: Contradiction.
By Theorem 18, choose a countable pw-dj C € 7, s.t.
(AQUC) =0) & (AUC) <€ - (AQ):
Since A(Q\(JC)) =0 < X@Q), weget: Q\(UC) # Q.
Then |JC # &. Then C # .
Since C € Z5 < B < T and since T is a topology, we get: [ JC e T.
Let A:=(JC. Then Ae7. Then A is Lebesgue-measurable.
So, by the Carathéodory-condition, we get:
AQ) = QN A + NQA)]
So, since AQ\A) = AQ\(UC)) =0,
we get: ANQ) = MQNA).
Since CcZ<B<S T, we conclude:
VC' e(C, C is Lebesgue-measurable.

So, since C is countable and pw-dj,

by countable-additivity of A, )\(U C) = Z (A(C)).

since  Q(A=QJo =@ O

CeC CeC

I
-
3
D
=
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CeC
So, since A(Q) = AM(Q[A), we get:  NQ) < Z (A(QHC))
CceC
By choice of C, )\(U C)<e - (MQ))
Sice 3@ = MO < (MQ) <=3 (@),
CceC CeC
weget: D (MC) < ¢ Y (MQ[O)
CceC CeC

On the other hand, since C € Zg,, by definition of Z;), we get:
vCel, XNC) > - (AMQNO)).
So, since C # (J, summing these inequalities gives:

MNC) > e Y (AQ[)C). Contradiction. O

CeC CeC
DEFINITION 21. For every X < R?, we define:

tim 205 _ }

DPy| := X
X {ze 0t A(BI)

Elements of DPx are called “X-density-points”.

According to the next theorem,

every subset of R? is comprised a.e. of density-points.
The same result can be proved, similarly, in any Euclidean space.
Interestingly, the subset need not be Lebesgue-measurable.

THEOREM 22. Let X < R2, Then: A(X\DPx) = 0.

Sketch of proof:

Forall jeN, let S, :z{xeX

lim inf MXHB;) = ,j }
r—0+ )\(B;) 7+ 1
Then DPX = Sl ﬂSg ﬂ <+, SO X\DPX = (X\Sl) U (X\Sg) U M
It therefore suffices to show, given je N, that A (X\S;) =0.
Let ) := X\S; and assume, for a contradiction, that A\(Q) > 0.
Let e :=In((j+1)/j). Then e*=j;/(j+1) and > 0.
Since () € X, by monotonicity of A\, we get:

Vr e R? Vr > 0, NQMBL) < MX () BL).

ANX (B '
For all z € @), since x ¢ S5, we get: ligl)(i)gf ()\(Qg) :) < 7 ‘j_ T
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For all x € ), we have

L AQNBY L AXNOBY) B
1 f =2 f T _ €
so, for some sequence of positive reals ry,79,... — 0, we have
A B
Vi e N, —((;\2((;;1)93 ) <eF,
andso  YieN AB) > e (AQNBY)
and so VieN, B el.

Then Z¢, covers each point of @ by balls of arbitrarily small radii.
Then Z, is a fine-covering of @, contradicting Theorem 20. QED

Proof. We wish to show: for M\-a.e. x € X, xe€ DPy.
Define F:R?x (0;0) — [0;1]  by:

MX (B,
Vo e R%, Vr >0, F(yc,r)z%
We wish to show: for \-ae. ze X, lim (F(x,r)) = 1.

r—0t

Define ¢,¢ : X — [0;1] by: Vxe X,
o(z) = lim(i)grlf (F(xz,r)) and (z)=limsup (F(z,r)).

r—0+t
We wish to show: for l-ae. ze X, ¢(z) =1=19(z).
We have: Vre X, o(z) <y(z) <1
Therefore, it suffices to show: for l-ae. x € X, ¢(x) > 1.

Let P:={re X |¢(r) < 1}. Want: \(P) = 0.
Forall jeN, let P, == {zxeX |o(x)<j/(j+1)}
Since P = P |JP,J -+, it suffices to show: VjeN, A\(P;)=0.
Given j € N, let Q) := P}, want: A\(Q) =0.
Assume \(Q) > 0, want: contradiction.
Let ¢ :=1In((j + 1)/4). Then: e = j/(j +1).
So, since Q=P ={reX|o(x)<j/(j+1)},

we get: Q={reX|p(x)<e*}. Note that @) < X.
Since (j +1)/j > 1 and since ¢ = In((j + 1)/j), we get: &> 0.
So, by Theorem 20, Zg, is not a fine-covering of Q. Let W :=15.

Then W is not a fine-covering of ), so choose x € Q and ¢ > 0 s.t.
YIWeW, (zeW) = (radW =9).

Since = € @, we get: o(x) < e®.

Since limigf(F(m,r)) = ¢(x) < e7°,

r—>
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choose r € (0;0) st.  F(z,r) < e = Let W := BI.
Since re (0;4), we have r > 0, so:  wr? >0.
So, since A(W) = \(B%) = 7r?, we get:  A(W) > 0.
Since Q < X, we get: QAW < XOW.

So, by monotonicity of A\, we get:  AQ[W) < A(X O\ W).
AQOAW) _AXNOW)  AMXNB;)

Since W) < NG = NB1) = F(z,r) <e™s,
we get AMRAOW) < e=- (AMW)),
50 et - (AMQMW)) < AW),
SO AW) > e - (AMQNW)),

so, since W = B} € B, by definition of Zg), we conclude: W € Z5,.
Since W eZ; =W andsince xze B, =W, by choice of z and 4,
we get:  rad W = 0.
On the other hand, since radW =rad Bl =r € (0;0),
we get:  rad W < 4. Contradiction. 0

For any function f, let |D|denote the domain of f.

For any function f, for any set S, we define:
[*S| == {xeDys]| f(z) e S}.
Note:  Vfunction f, Vset S, we have: f*S < Dy.

DEFINITION 23. Let X cR?, let f:X — R and let v X.
Then, for alle >0, forallr >0, we define:

AL(f,8)] = {ue X By st |(f(w) — (f(=)] <e}

— ) o A(2)
We say[f is GIOP at a] if: Ve >0, lim S 0ra

=1.

b

Here, “CiOP” stands for: ‘“continuous-in-outer-probability”.
Every function, measurable or not, is CiOP a.e.:

THEOREM 24. Let X cR?, f:X —R.
Then:  for A-a.e. x € X, [ is CiOP at x.

Here, we assume that the domain of f is a subset of R?

and that the image of f is a subset of R,
but the result could be proved for any two Euclidean spaces.
Interestingly, neither X nor f need be Lebesgue-measurable.

Proof. Let Y1,Y,, ... be a countable base for the topology on R.
Forall jeN, let X,:=f*Y].
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By Theorem 22, we have: VjieN, MX;\DPx,)=0.
For all jeN, let D; := DPy;.
Then: VjeN, ANX;\ D; )=0.
Forall jeN, let Z; = X;\ Dj.

Then: VjeN, NZ;) = 0.

Let Z .= Z;|JZ.- . Then: A\(Z) = 0.

It therefore suffices to show: Ve e X\Z, fis CiOP at x.
. : oo AAL(f9))
Given r € X\Z, givene >0, want: Tlilgl+ TBQ)
Let y := f(x). We have: ye (y—e;y+e).
So, since Y7, Y5, ... is a base for the topology on R,
choose jeN st yeY; < (y—ey+e).
Since f(x) =y €Y, we get: x € f*Y].

= 1.

Since x € X\Z, we get: reX and x¢ Z.
Sincex ¢ Z = Z1\JZo\J--- 275, weget: x¢ Z;.
So, since  z e f*Y; = X;, we get: e X;\Z;.

Since D] = DP_)(] = X] and ZJ = X]\D], we get: X]\Z] = D]
ANX; (B

Since v € X;\Z; = D; = DPx;, we get: rli%l+ % = 1.

So, by the Squeeze Theorem, it suffices to show:

e AGNBY) AL _
\BL) \BL)

Given r > 0, want: A\(X; () B.) < MAL(f,e)) < A(By).
By monotonicity of A,

it suffices to show: X;B: < Al(f,e) < B
By definition of A% (f, ¢), Ar(fe) < X(BL.
Then: Al(f,e) < B
It remains to show: X;NB, < AL(f,e).
Given ue X;()Bi, want: ue AL(f,¢e).
Since we X;(\BL, weget: wueX; and wueDB].

Since we X; = f*Y; €Dy =X andue B, weget: ue X()BL.
So, by definition of A%(f,e), we want: |(f(u))— (f(z))| <e.
Since we X; = f*Y;, weget: f(u)eY]

By the choice of 7, we have: Y,<(y—¢ey+e).

Since f(u)eY; < (y—ey+e), weget: |(f(u)— vy |<e

By definition of y, y = f(x). Then: |(f(uw)) — (f(z))| <e. O



