Cents and Citizens

The main results in this note are: MORE LATER

DEFINITION 1. We define $|\#\emptyset| := 0$. For any non \emptyset finite set S, #S denotes the number of elements in S. For any infinite set S, we define $\#S := \infty$. For any sets A, B, let $|B^A|$ denote the set of all functions $A \rightarrow B$. For any function f, let $|\mathbb{D}_f|$ denote the domain of f. For any function f, let $|\mathbb{I}_f| := \{f(x) \mid x \in \mathbb{D}_f\}$ denote the image of f. For any function f, for any set S, let $f_*S \mid := \{f(x) \mid x \in S \cap \mathbb{D}_f\}$ and let $f^*S := \{ x \in \mathbb{D}_f \mid f(x) \in S \}.$ For any function f, for any $x \in \mathbb{D}_f$, let $f_x := f(x)$. Let $|\mathbb{R}^*| := \mathbb{R} | | \{\infty, -\infty\}.$ **DEFINITION 2.** Let $a, b \in \mathbb{R}^*$. $\begin{array}{l} Then: \ \hline (a;b) \ & := \{x \in \mathbb{R}^* \ | \ a < x < b\}, \\ \hline [a;b) \ & := \{x \in \mathbb{R}^* \ | \ a \leqslant x < b\}, \\ \hline (a;b] \ & := \{x \in \mathbb{R}^* \ | \ a \leqslant x \leqslant b\}, \\ \hline \hline [a;b] \ & := \{x \in \mathbb{R}^* \ | \ a \leqslant x \leqslant b\}. \end{array}$ Let $\mathbb{Z}^* := \mathbb{Z} \bigcup \{\infty, -\infty\}.$ **DEFINITION 3.** Let $a, b \in \mathbb{R}^*$. $\begin{array}{c} Then: \hline (a..b) \\ \hline (a..b] \\ \vdots = (a;b) \bigcap \mathbb{Z}^*, \quad \hline [a..b] \\ \vdots = [a;b] \bigcap \mathbb{Z}^*, \\ \hline [a..b] \\ \vdots = [a;b] \bigcap \mathbb{Z}^*. \end{array}$ Let $\mathbb{N} := [1..\infty)$ and let $\mathbb{N}_0 := [0..\infty)$. For any set S, for any $m \in \mathbb{N}$, let $S^m := S^{[1..m]}$. For any set S, a **sequence** in S is an element of $S^{\mathbb{N}}$.

For any topological space X, $[\mathcal{T}_X]$ denotes the set of open subsets of X. Give \mathbb{R}^* its standard topology.

For any topological space X, for any $W \subseteq X$,

give W the relative topology inherited from X. For any finite set X, give X the discrete topology. For any topological space X,

give X the Borel structure generated by \mathcal{T}_X .

For any Borel space X, for any $W \subseteq X$,

give W the relative Borel structure inherited from X. For any countable set X, give X the discrete Borel structure.

DEFINITION 4. Let X be a Borel space. Then:

 $\begin{array}{c|c} \mathcal{B}_X & \text{denotes the set of Borel subsets of } X, \\ \hline \mathcal{M}_X & \text{denotes the set countably-additive functions } \mathcal{B}_X \to [0; \infty], \\ \hline \mathcal{F}\mathcal{M}_X & := \{\mu \in \mathcal{M}_X \mid \mu(X) < \infty\}, \\ \hline \mathcal{P}\mathcal{M}_X & := \{\mu \in \mathcal{M}_X \mid \mu(X) = 1\} \quad and \\ \hline \mathcal{B}\mathcal{F}_X & \text{denotes the set of Borel bounded functions } X \to \mathbb{R}. \end{array}$

NOTE: For any countable set X, $\mathcal{BF}_X = \mathbb{R}^X$.

DEFINITION 5. Let Ω be a finite non \emptyset set. By an $\overline{\Omega - MC}$, we mean: a function $E : \Omega \times \Omega \rightarrow [0; 1]$ s.t. $\forall \phi \in \Omega, \quad \sum_{\psi \in \Omega} [E(\psi, \phi)] = 1.$

In the preceding definition, "MC" stands for Markov-chain. The set Ω is the set of "states", and the quantity $E(\psi, \phi)$ should be thought of as

the probability of transitioning from state ϕ to ψ . Since the state ϕ must transition to *some* state,

these probabilities should sum to 1 over ψ .

DEFINITION 6. Let Ω be a finite non \emptyset set, E and Ω -MC. For all $m \in \mathbb{N}$, let

 $\begin{array}{l}
\left[\operatorname{Ch}_{m}E\right] := \{\omega \in \Omega^{[0..m]} \mid \forall j \in [1..m], \ E(\omega_{j}, \omega_{j-1}) > 0\}. \\
For \ all \ m \in \mathbb{N}, \ let \ \boxed{\operatorname{Cyc}_{m}E} := \{\omega \in \operatorname{Ch}_{m}E \mid \omega_{0} = \omega_{m}\}. \\
Let \ \boxed{\operatorname{Per}_{E}} := \{m \in \mathbb{N} \mid \operatorname{Cyc}_{m}E \neq \varnothing\}.
\end{array}$

Elements of $\operatorname{Ch}_m E$ are called "chains in E". Elements of $\operatorname{Cyc}_m E$ are called "cycles in E".

DEFINITION 7. Let Ω be a finite non \emptyset set, E an Ω -MC. By E is symmetric, we mean:

 $\mathbf{2}$

 $\forall \phi, \psi \in \Omega, \quad E(\phi, \psi) = E(\psi, \phi).$ By E is **irreducible**, we mean: $\forall \phi, \psi \in \Omega, \quad \exists \omega \in \operatorname{Ch}_m E \text{ s.t. } (\omega_0 = \phi) \& (\omega_m = \psi).$ By E is **aperiodic**, we mean: gcd $\operatorname{Per}_E = 1.$ By E is **odd-periodic**, we mean: $\{1, 3, 5, 7, \ldots\} \cap \operatorname{Per}_E \neq \emptyset.$ **THEOREM 8.** Let Ω be a finite non \emptyset set, E an Ω -MC.

Then: (i) $(\#\Omega = 1) \Rightarrow (E \text{ is aperiodic})$ and (ii) $((E \text{ is symmetric}) \& (\#\Omega \ge 2)) \Rightarrow (2 \in \operatorname{Per}_E)$ and (iii) $((2 \in \operatorname{Per}_E) \& (E \text{ is odd-periodic})) \Rightarrow (E \text{ is aperiodic}).$ and (iv) $((E \text{ is symmetric}) \& (E \text{ is odd-periodic})) \Rightarrow (E \text{ is aperiodic}).$

Proof is omitted.

DEFINITION 9. Let Ω be a finite non \emptyset set, $E, F \Omega$ -MCs. Then the Ω -MC E * F is defined by: $\forall \phi, \psi \in \Omega$, $(E * F)(\psi, \phi) = \sum_{\chi \in \Omega} [(E(\psi, \chi)) \cdot (E(\chi, \phi))].$

For any Ω -MC E and any $m \in \mathbb{N}$, we define $\boxed{*^m E} := E * E * \cdots * E \quad (m \text{ times}).$

DEFINITION 10. Let Ω be a finite non \emptyset set, E an Ω -MC. Let $\nu \in \mathcal{PM}_{\Omega}$. Then $\boxed{E * \nu} \in \mathcal{PM}_{\Omega}$ is defined by: $\forall \phi \in \Omega, \quad (E * \nu) \{\phi\} = \sum_{\psi \in \Omega} (E(\phi, \psi)) \cdot (\nu\{\psi\}).$

DEFINITION 11. Let Ω be a finite non \emptyset set, E an Ω -MC. Then: $\mathcal{PM}_{\Omega}^{E} := \{ \nu \in \mathcal{PM}_{\Omega} \mid E * \nu = \nu \}.$

Elements of $\mathcal{PM}_{\Omega}^{E}$ are called "*E*-invariant probability measures on Ω ".

According to the next result, for an irreducible E,

there can be at most one E-invariant probability measure:

THEOREM 12. Let Ω be a finite non \varnothing set, E an Ω -MC. Assume E is irreducible. Then $\#\mathcal{PM}_{\Omega}^{E} \leq 1$.

Proof omitted.

DEFINITION 13. Let Ω be a finite non \emptyset set. Then $\nu_{\Omega} \in \mathcal{PM}_{\Omega}$ is defined by: $\forall \omega \in \Omega, \quad \nu_{\omega} \{\omega\} = \frac{1}{\#\Omega}.$ That is, ν_{Ω} gives equal probability to each state in the state-space Ω .

THEOREM 14. Let Ω be a finite non \emptyset set, E an Ω -MC. Assume E is symmetric. Then $\nu_{\Omega} \in \mathcal{PM}_{\Omega}^{E}$.

Proof omitted.

THEOREM 15. Let Ω be a finite non \emptyset set, E an Ω -MC. Assume E is symmetric and irreducible. Then $\mathcal{PM}_{\Omega}^{E} = \{\nu_{\Omega}\}.$

Proof omitted.

4