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Introduction

Queueing networks constitute a large family of models in a variety of settings,
involving “jobs” or “customers” that wait in queues until being served. Once
its service is completed, a job moves to the next prescribed queue, where it
remains until being served. This procedure continues until the job leaves the
network; jobs also enter the network according to some assigned rule.

In these lectures, we will study the evolution of such networks and ad-
dress the question: When is a network stable? That is, when is the underlying
Markov process of the queueing network positive Harris recurrent? When the
state space is countable and all states communicate, this is equivalent to the
Markov process being positive recurrent. An important theme, in these lec-
tures, is the application of fluid models, which may be thought of as being, in
a general sense, dynamical systems that are associated with the networks.

The goal of this chapter is to provide a quick introduction to queueing
networks. We will provide basic vocabulary and attempt to explain some of
the concepts that will motivate later chapters. The chapter is organized as
follows. In Section 1.1, we discuss the M/M/1 queue, which is the “simplest”
queueing network. It consists of a single queue, where jobs enter according
to a Poisson process and have exponentially distributed service times. The
problem of stability is not difficult to resolve in this setting.

Using M /M /1 queues as motivation, we proceed to more general queueing
networks in Section 1.2. We introduce many of the basic concepts of queueing
networks, such as the discipline (or policy) of a network determining which
jobs are served first, and the traffic intensity p of a network, which provides
a natural condition for deciding its stability. In Section 1.3, we provide a pre-
liminary description of fluid models, and how they can be applied to provide
conditions for the stability of queueing networks.

In Section 1.4, we summarize the topics we will cover in the remaining
chapters. These include the product representation of the stationary distri-
butions of certain classical queueing networks in Chapter 2, and examples of
unstable queueing networks in Chapter 3. Chapters 4 and 5 introduce fluid



6 1 Introduction

models and apply them to obtain criteria for the stability of queueing net-
works.

1.1 The M/M/1 Queue

The M/M/1 queue, or simple queue, is the most basic example of a queue-
ing network. It is familiar to most probabilists and is simple to analyze. We
therefore begin with a summary of some of its basic properties to motivate
more general networks.

The setup consists of a server at a workstation, and “jobs” (or “cus-
tomers”) who line up at the server until they are served, one by one. After
service of a job is completed, it leaves the system. The jobs are assumed to
arrive at the station according to a Poisson process with intensity 1; equiva-
lently, the interarrival times of succeeding jobs are given by independent rate
-1 exponentially distributed random variables. The service times of jobs are
given by independent rate-u exponentially distributed random variables, with
@ > 0; the mean service time of jobs is therefore m = 1/u. We are inter-
ested here in the behavior of Z(t), the number of jobs in the queue at time ¢,
including the job currently being served (see Figure 1.1).

. -
.

Fig. 1.1. Jobs enter the system at rate 1 and depart at rate u. There are currently
2 jobs in the queue.

The process Z(-) can be interpreted in several ways. Because of the inde-
pendent exponentially distributed interarrival and service times, Z(-) defines
a Markov process, with states 0,1,2,.... (M/M/1 stands for Markov input
and Markov output, with one server.) It is also a birth and death process on
{0,1,2,...}, with birth rate 1 and death rate u. Because of the latter interpre-
tation, it is easy to compute the stationary (or invariant) probability measure
7m of Z(+) when it exists, since the process will be reversible. Such a measure
satisfies

Tm(n +1) =mmy,(n) forn=0,1,2,...,

since it is constant, over time, on the intervals [0,n] and [n+ 1, 00). It follows
that when m < 1, m,, is geometrically distributed, with

Tm(n) =(1—m)m™, n=0,1,2,.... (1.1)
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All states clearly communicate with one another, and the process Z(-) is
positive recurrent. The mean of 7, is m(1 — m)~!, which blows up as
m ] 1. When m > 1, no stationary probability measure exists for Z(-). Using
standard reasoning, one can show that Z(-) is null recurrent when m = 1 and
is transient when m > 1.

The behavior of Z(-) that was observed in the last paragraph provides the
basic motivation for these lectures, in the context of the more general queueing
networks which will be introduced in the next section. We will investigate
when the Markov process corresponding to a queueing network is stable, i.e.,
is positive Harris recurrent. As mentioned earlier, this is equivalent to positive
recurrence when the state space is countable and all states communicate.

For M/M/1 queues, we explicitly constructed a stationary probability
measure to demonstrate positive recurrence of the Markov process. Typically,
however, such a measure will not be explicitly computable, since it will not be
reversible. This, in particular, necessitates a new, more qualitative, approach
for showing positive recurrence. We will present such an approach in Chapter
4.

1.2 Basic Concepts of Queueing Networks

The M/M/1 queue admits natural generalizations in a number of directions.
It is unnecessary to assume that the interarrival and service distributions are
exponential. For general distributions, one employs the notation G/G/1; or
M/G/1 or G/M/1, if one of the distributions is exponential. (To emphasize
the independence of the corresponding random variables, one often uses the
notation GI instead of G.)

The single queue can be extended to a finite system of queues, or a queueing
network (for short, network), where jobs, upon leaving a queue, line up at
another queue, or station, or leave the system. The queueing network in Figure
1.2 is also a reentrant line, since all jobs follow a fixed route.

AEnAEnE
JouU U

=1 =2 =3

Fig. 1.2. A reentrant line with 3 stations.

Depending on a job’s previous history, one may wish to prescribe different
service distributions at its current station or different routing to the next
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station. This is done by assigning one or more classes, or buffers, to each
station. Except when stated otherwise, we label stations by j =1,...,J and
classes by k = 1,..., K; we use C(j) to denote the set of classes belonging to
station j and s(k) to denote the station to which class k belongs. In Figure
1.3, there are 3 stations and 5 classes. Classes are labelled here in the order
they occur along the route, with C(1) = {1, 5}, C(2) = {2,4}, and C(3) = {3}.

S S m
— —
=1 = =3

Fig. 1.3. A reentrant line with 3 stations and 5 classes. The stations are labelled
by j = 1,2, 3; the classes are labelled by £ = 1,...5, in the order they occur along
the route.

Other examples of queueing networks are given in Figures 1.4 and 1.5.
Figure 1.4 depicts a network with 2 stations, each possessing 2 classes. The
network is not a reentrant line but still exhibits deterministic routing, since
each job entering the network at a given class follows a fixed route. When the
individual routes are longer, it is sometimes more convenient to replace the
above labelling of classes by (i, k), where i gives the route that is followed and
k the order of the class along the route.

Fig. 1.4. A queueing network having 3 routes, with 2 stations and 4 classes.
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Figure 1.5 depicts a network with 2 stations and 3 classes. The routing
at class 2 is random, with each job served there having probability 0.4 of
being sent to class 1 and probability 0.6 of being set to class 3. For queueing
networks in general, we will assume that the interarrival times, service times,
and routing of jobs at each class are given by sequences of i.i.d. random
variables that are mutually independent (but whose distributions may depend
on the class).

e
@/

Fig. 1.5. A queueing network with 2 stations and 3 classes. The random routing at
class 2 is labelled with the probability each route is taken.

Queueing networks occur naturally in a wide variety of settings. “Jobs”
can be interpreted as products of some sort of complex manufacturing process
with multiple steps, as tasks that need to be performed by a computer or
communication system, or as people moving about through a bureaucratic
maze. Such networks can be quite complicated. A portion of the procedure in
the manufacture of a semiconductor wafer is depicted by the reentrant line in
Figure 1.6. Another simplified example, with classes emphasized, is given in
Figure 1.7. Typically, such procedures can require hundreds of steps.

We will say that a queueing network is multiclass when at least one station
has more than one class; otherwise, the network is single class. The term Jack-
son network is frequently used for a single class network with exponentially
distributed interarrival and service times, and generalized Jackson network is
used for a single class network with arbitrary distributions. (The networks in
Figures 1.3-1.7 are all multiclass; the networks in Figures 1.1-1.2 are single
class.) Unless otherwise specified, it will be assumed that there is a single
server at each station j. This server will be assumed to be non-idling (or work
conserving), that is, it remains busy as long as there are jobs present at any
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Fig. 1.6. Part of the procedure in the manufacture of a semiconductor wafer. The
procedure starts at the top and ends at the bottom. (Example courtesy of P. R.
Kumar.)

k € C(j). Stations are assumed to have infinite capacity, with jobs never being
turned away. (That is, there is no limit to the allowed length of queues.)

As already indicated, the interarrival times, service times, and routing of
jobs are given by sequences of independent random variables. Although their
specific distributions will be relevant for some matters, their means will be of
much greater importance. We therefore introduce here the following notation
and terminology for the means; systematic notation for the random variables
will be introduced in Chapter 4.

We denote by «ay, the rate at which jobs arrive at a class k from outside
the network. When k € A, the subset of classes where external arrivals are
allowed, ay, is the reciprocal of the corresponding mean interarrival time; when
k & A, we set ap = 0. The vector a = {ag, k = 1,..., K} is referred to as
the external arrival rate. (Throughout the lectures, we interpret vectors as
column vectors unless stated otherwise.) We denote by myg, my > 0, the mean
service time at class k, and by M the diagonal matrix with mg, k=1,..., K,
as its entries; we set ur = 1/my, which is the service rate. We also denote
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Fig. 1.7. Part of the procedure in the manufacture of another semiconductor wafer.
(Example courtesy of J. G. Dai.)

by P = {Pyy, k., £ =1,..., K} the mean transition matriz (or mean routing
matriz), where Py ¢ is the probability a job departing from class k goes to
class £. (In Figure 1.5, P, 1 = 0.4 and P53 = 0.6.)

In these lectures, we will be interested in open queueing networks, that is,
those networks for which the matrix

def _

QE (I-PHY)Y ' =14+PT (P2 +... (1.2)
is finite. (“ 7 ” denotes the transpose.) This means that jobs at any class are
capable of ultimately leaving the network. Closed queueing networks, where
neither arrivals to, nor departures from, the network are permitted, are not
discussed here, although there are certain similarities between the two cases.

Disciplines for multiclass queueing networks

We have so far neglected an important aspect of multiclass queueing net-
works. Namely, when more than one job is present at a station, what deter-
mines the order in which jobs are served? There are numerous possibilities. As
we will see in these lectures, the choice of the service rule, or discipline (also
known as policy), can have a major impact on the evolution of the queueing
network.

Perhaps the most natural discipline is first-in, first-out (FIFO), where the
first job to arrive at a station (or “oldest” job) receives all of the service,
irrespective of its class. (If the job later returns to the station, it starts over
again as the “youngest” job. The jobs originally at a class are assigned some
arbitrary order.) Another widely used discipline is processor sharing (PS),
where the service at a station is simultaneously equally divided between all
jobs presently there. PS can be thought of as a limiting round robin discipline,
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where a server alternates among the jobs currently present at the station,
dispensing a fixed small amount of service until it moves on to the next job.

The FIFO and PS disciplines are egalitarian in the sense that no job,
because of its class, is favored over another. The opposite is the case for static
buffer priority (SBP) disciplines, where classes are assigned a strict ranking,
and jobs of higher ranked (or priority) classes are always served before jobs of
lower ranked classes, irrespective of when they arrived at the station. Within
a class, the jobs are served in the order of their arrival there. The disciplines
are called preemptive resume, or more simply, preemptive, if arriving higher
ranked jobs interrupt lower ranked jobs currently in service; when the service
of such higher ranked jobs has been completed, service of lower ranked jobs
continues where it left off. If the service of lower ranked jobs is not interrupted,
then the discipline is nonpreemptive.

For reentrant lines, two natural SBP disciplines are first-buffer-first-served
(FBFS) and last-buffer-first-served (LBFS). For FBFS, jobs at earlier classes
along the route have priority over later classes. For example, jobs in class 1,
in the network given in Figure 1.3, have priority over those in class 5, and
jobs in class 2 have priority over those in class 4. For LBFS, the priority is
reversed, with jobs at later classes along the route having priority over earlier
classes.

In these lectures, we will concentrate on head-of-the-line (HL) disciplines,
where only the first job in each class of a station may receive service. (This
property is frequently referred to as FIFO within a class.) FIFO and SBP
disciplines are HL, but PS is not. The single class networks we consider will
always be assumed to be HL unless explicitly stated otherwise. A major simpli-
fying feature of HL disciplines is that the total amount of “work” (or “effort”)
already devoted to partially served jobs does not build up. Since large num-
bers of jobs will therefore tend not to complete service at a station at close
times, this avoids “bursts” of jobs from being suddenly routed elsewhere in
the network.

Another non-HL discipline is last-in, first-out (LIFO), where the last job
to arrive at a station is served first. Other plausible non-HL disciplines from a
somewhat different setting are first-in-system, first-out (FISFO) and last-in-
system, first-out (LISFO). FISFO is the same as FIFO, except that the first
job to enter the queueing network (rather than the station) has priority over
other jobs; the discipline may be preemptive or nonpreemptive. LISFO gives
priority to the last job to enter the network.

Throughout these lectures, the term queueing network will indicate that
a discipline, such as FIFO or FBFS, has already been assigned to the system.
In much of the literature, the discipline is specified afterwards. This linguistic
difference does not affect the theory, of course.

For the M /M /1 queue in the previous section, the interarrival and service
times were assumed to be exponentially distributed. As a consequence, the
process Z(-) counting the number of jobs is Markov. For queueing networks
with exponentially distributed interarrival and service times, the situation
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is often analogous. For instance, for preemptive SBP disciplines, the vector
valued process Z(t) = {Zk(t), k = 1,..., K} counting the number of jobs
at each class is Markov; the same is true for PS. For the FIFO and LIFO
disciplines, the process will be Markov if one appends additional information
giving the order in which each job entered the class. In all of these cases, the
state space is countable, so one can apply standard Markov chain theory. We
will denote by X(-) the corresponding Markov processes.

The situation becomes more complicated when the interarrival and ser-
vice times are not exponentially distributed, since the residual interarrival
and service times need to be appended to the state in order for the process to
be Markov. The resulting state space is uncountable, and so a more general
theory, involving Harris recurrence, is required for the corresponding Markov
process. We will give a careful construction of such processes and will sum-
marize the needed results on positive Harris recurrence at the beginning of
Chapter 4. We avoid this issue until then, since the material in Chapters 2
and 3 typically does not involve Markov processes on an uncountable state
space. (The sole exception is the uncountable state space extension for sym-
metric processes at the end of Section 2.4.) In a first reading of the lectures,
not too much will be lost by assuming the interarrival and service times are
exponentially distributed.

Traffic intensity, criticality, and stability

The mean quantities a, M, and P introduced earlier perform an important
role in determining the long-time behavior of a queueing network. To provide
motivation, we first consider reentrant lines.

The (long term) rate at which jobs enter a reentrant line is ay, and the
mean time required to serve a job over all of its visits to a station j is
Ekec(j) my. S0, the rate at which future “work” for the station j enters the

network is
p; =0 Z mg. (1.3)
keC(j)

We recall that a queueing network is defined to be stable when its un-
derlying Markov process is positive Harris recurrent. When the state space is
countable and all states communicate, this is equivalent to the Markov process
being positive recurrent. It is intuitively clear that, in order for a reentrant
line to be stable, p; < 1, for all 7, is necessary. Otherwise, by the law of large
numbers, the work in the system, corresponding to j, will increase linearly to
infinity as ¢ — oo, and so the same should be true for the total number of jobs
in the system. (When the state space is countable, it follows from standard
Markov chain theory that a stable network must be empty a fixed fraction of
the time, as t — oo, from which it follows that, in fact, p; < 1 must hold for
all 5.)

A natural condition for stability (assuming all states communicate), is
that p; < 1 for all j. This turns out, in fact, not to be sufficient for multiclass
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queueing networks, as we will see in Chapter 3. Not surprisingly, the much

stronger condition
D opi<1 (1.4)
J

suffices for stability, since whenever the network is not empty, the total work
in the network tends to decrease faster than it increases. (This will follow from
Proposition 4.5.)

The situation is analogous for queueing networks with general routing,
after the correct quantities have been introduced. We set

A= Qa, (1.5)

and refer to the vector A as the total arrival rate. (Recall that vectors are to
be interpreted as column vectors.) Its components Ag, k =1,..., K, are the
rates at which jobs enter the K classes; they each equal o for reentrant lines.
The traffic equations
Ae=ar+ Y AP, (1.6)
k

or, in vector form, A = a + PT ), are equivalent to (1.5), and are useful in
certain situations. Employing m and A, we define the traffic intensity p; at
station j to be

pPj = Z mk/\k. (1'7)

keC(j)

(p; is also known as the nominal load.) The traffic intensity is the rate at which
work for the station j enters the network, and reduces to (1.3) for reentrant
lines. We write p for the corresponding traffic intensity vector.

We continue the analogy with reentrant lines, and say that a station j
is subcritical if p; < 1, critical if p; = 1, and supercritical if p; > 1. When
all stations of a network are either subcritical or are critical, we refer to the
network as being subcritical or critical. We will sometimes abbreviate these
conditions by writing p < e and p = e, where e = (1,...,1)T; we similarly
write p < e,when p; <1 for each j. When at least one station is supercritical,
we refer to the network as being supercritical. As in the reentrant line setting,
a supercritical queueing network will not be stable, and the number of jobs
in the network will increase linearly as ¢ — oco. This is a bit tedious to show
directly; it will follow quickly using fluid limits in Proposition 5.21. Of course,
since a reentrant line with p < e need not be stable, the same is the case
for queueing networks with general routing. We will show in Chapters 4 and
5, though, that the condition p < e is sufficient for the stability of queueing
networks under various disciplines. Also, (1.4) suffices for stability irrespective
of the discipline; a variant of this is shown in Example 1 at the end of Section
4.4.

In Chapters 4 and 5, we will also establish criteria for when a queueing
network is e-stable. By this, we will mean that the underlying Markov process
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is ergodic, i.e., it possesses a stationary distribution 7 to which the distribution
at time t converges in total variation norm as ¢ — oo, irrespective of the initial
state. When the state space is countable, this is equivalent to the probabilities
converging to 7(x) at each point z. As we will see, results on stability can be
modified to results on e-stability with little additional work.

We have so far not used the term “unstable”. Somewhat different defi-
nitions exist in the literature; in each case, they mean more than just “not
stable”. For us, a queueing network will be unstable if, for some initial state,
the number of jobs in the network will, with positive probability, go to infinity
as t — oco. (When the network has only a finite number of states with fewer
than a given number of jobs, and all states communicate with one another,
this is equivalent to saying that for each initial state, the number of jobs in the
network goes to infinity almost surely as t — 00.) According to the paragraph
before the last, a supercritical queueing network will be unstable; in fact, the
number of jobs in the network grows linearly in time. This will typically be
the case for unstable networks, such as those given in Chapter 3.

1.3 Queueing Network Equations and Fluid Models

One of the main themes in these lectures will be the application of fluid models
to study the stability of queueing networks. Fluid models will be introduced
and studied in detail in Chapter 4; they will then by applied to specific dis-
ciplines in Chapter 5. We provide here some of the basic motivation for fluid
models.

In the last section, we gave various examples of queueing networks. Such
systems are frequently complicated. They can be interpreted as Markov pro-
cesses, but to derive specific results, one needs a means of expressing the
properties of the specific queueing network. Queueing network equations pro-
vide an analytic formulation for this. After deriving these equations and taking
appropriate limits, one obtains the corresponding fluid models.

Queueing network equations tie together random vectors, such as A(t),
D(t), T(t), and Z(t), that describe the evolution of a queueing network. The
individual coordinates of these K dimensional vectors correspond, respec-
tively, to the cumulative number of arrivals Ay (t) and departures Dy(t) at a
class k up to time ¢, the cumulative time T (t) spent serving this class up to
time ¢, and the number of jobs Zi(t) at this class at time ¢; we introduced
Z(t) in the last section. Examples of queueing network equations are

A) = B(H) + 3. #*(Du(1)), (18)
k

Z(t) = Z(0) + A(t) — D(t), (1.9)
Di(t) = Su(Th(t)), k=1,..., K. (1.10)
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We are employing here the following terminology. The vector F(t) is the
cumulative number of jobs arriving by time ¢ at each class from outside the
network (i.e., external arrivals). When the interarrival times are exponentially
distributed, F(-) will be a Poisson process. The vector ®*(dy) is the number
of the first dj departures from class k that are routed to each of the K classes;
Sk (tx) is the cumulative number of departures from class k after ¢ units of
service there. We will denote by @ and S the matrix and vector corresponding
to these quantities.

The quantities E(-), S(-), and &(-) should be thought of as random, but
known input into the system, from which the evolution of A(-),D(:),T(-),
and Z(-) will be determined via (1.8)—(1.10) and other equations. The middle
equation is easiest to read, and just says that the number of jobs at time ¢ is
equal to the original number, plus arrivals, and minus departures. The first
equation says the total number of arrivals is equal to the number of external
arrivals plus the number of arrivals from other classes; the last equation gives
the number of departures at a class as a function of the time spent serving jobs
there. We note that the first two equations hold irrespective of the discipline,
whereas the last equation requires the discipline to be HL.

Other choices of variables, in addition to A(-), D(-),T(:) and Z(-), are fre-
quently made. We will include other variables, such as the immediate workload
W (-), in our detailed treatment in Section 4.3. Often, different formulations
of the queueing network equations are equivalent, with the exact format be-
ing chosen for convenience. One can, for example, eliminate A(t) and D(¢) in
(1.8)—(1.10), and instead employ the single equation

Z(t) = Z(0) + E(t) + Y #*(Sk(Ti(1)) — S(T(1)), (1.11)
k

if one is just interested in the evolution of Z(t) (which is most often the case).
Note that, for multiclass networks, neither (1.8)—(1.10) nor (1.11) supplies
enough information to solve for the unknown variables, since the discipline has
not been specified, and so T'(-) has not been uniquely determined. To specify
the discipline, an additional equation (or equations) is required. For single
class networks, this complication is not present. As an elementary example,
note that for the M/M/1 queue, (1.11) reduces to the simple scalar equation

Z(t) = Z(0)+ E(t) — S </Ot 1{Z(s) > O}ds) , (1.12)

since departing jobs are not rerouted into the queue and the network is non-
idling.

Fluid model equations are the deterministic analog of queueing network
equations, with one replacing the random quantities E(-), S(+), and &(-) by
their corresponding means. The fluid model equations corresponding to (1.8)-
(1.10) are then
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A(t) = at + PTD(t), (1.13)
Z(t) = Z(0) + A(t) — D(t), (1.14)
Dk(t):Mka(t)a k:]-v"'7K7 (115)

where a, P, and pj were defined in the previous section. By employing the
matrix M, one can also write (1.15) as

D(t) = M~'T(t). (1.15)
Similarly, the fluid model equation corresponding to (1.11) is
Z(t) = Z(0) + at + (PT — )M 'T(t). (1.16)

For the M/M/1 queue, this reduces to the scalar equation

Z(t) = 2(0) + ot — u/Ot 1{Z(s) > 0} ds. (1.17)

Fluid model equations can be thought of as belonging to a fluid network
which is the deterministic equivalent of the given queueing network. Jobs are
replaced by continuous fluid mass (or “job mass”), which follows the same
routing as before. The constant rate at which such mass enters the network is
given by the vector a.. The rate at which mass is served for a class is ux and
the service time per unit mass is my = 1/p. A set of fluid model equations,
as in (1.13)—(1.15), is referred to collectively as a fluid model.

The solutions of fluid models are frequently much easier to analyze than are
the corresponding queueing network equations. As we will see in Chapter 4,
fluid model equations can be derived from the corresponding queueing network
equations by taking limits of Z(-) and the other quantities after hydrodynamic
scaling. (That is, “law of large numbers” scaling of the form Z(st)/s as s —
00.) Fluid models will provide a valuable tool for demonstrating the stability
of queueing networks, as we will see in Chapters 4 and 5. Fluid models are
also an important tool for studying heavy traffic limits, which lie outside the
scope of these lectures.

To analyze the stability of a queueing network, one introduces the following
notion of stability for a fluid model. A fluid model is said to be stable if there
exists an N > 0, so that for any solution of the fluid model equations, its Z(+)
component satisfies

Z(t)=0 fort> N|Z(0)|. (1.18)

(Here, |-| denotes the ¢! norm.) We will show in Chapter 4 that, under certain
conditions on the interarrival and service times, a queueing network will be
stable if its fluid model is stable.

In the special case of the fluid model equation (1.17) corresponding to the
M/M/1 queue, it is easy to explicitly solve for Z(-). For p > «, the solution
drifts linearly to 0 at rate p — «, after which it remains there, and so
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Z(t)zO fortEZ(O)/(u—a), (1.19)

which is a special case of (1.18). This behavior of the solution of equation
(1.17) corresponding to a subcritical M /M /1 queue is not surprising, since the
solution Z(-) of (1.12) possesses the same negative drift & — p when Z(t) > 0.
For more general networks, one typically constructs a Lyapunov function with
respect to which the fluid model solution Z(-) of (1.16) exhibits a uniformly
negative drift until hitting 0.

Despite the utility of fluid models, one needs to exercise some caution in
their application. In particular, a fluid model need not have a unique solution
for a given initial condition, since solutions might bifurcate. As we will see in
Section 4.3, this can be the case even for certain standard disciplines. (Such
behavior might occur at times when there are two or more empty multiclass
stations.) On account of this, thinking of fluid model equations as belonging
to a fluid network loses some of its appeal. In practice, it is often better to
think directly in terms of the fluid model which is defined by the appropriate
system of equations.

1.4 Outline of Lectures

We conclude the introduction with an outline of the subject matter we will
be covering. The material can be broken into three parts, Chapter 2, Chapter
3, and Chapters 4 and 5, each with its own distinct character.

Chapter 2 discusses the “classical” queueing networks introduced in
[BaCMP75] and the accompanying theory of quasi-reversible queueing net-
works in [Ke79]. The examples considered in [BaCMP75] include networks
with the FIFO, PS, and LIFO disciplines that were introduced in Section 1.2,
and an infinite server network, which we will introduce in Chapter 2. Expo-
nentially distributed interarrival times, and in some cases, exponentially dis-
tributed service times, are assumed. For p < e, these networks are stable and
explicit product-like formulas are given for their stationary distributions. This
special structure is a generalization of that for the M /M /1 queue. Independent
work of F. P. Kelly, leading to the book [Ke79], employed quasi-reversibility
to show that these explicit formulas hold in a more general setting. These
results have strongly influenced the development of queueing theory over the
past several decades.

In the previous sections, we mentioned that even when p < e, a queueing
network may be unstable. This behavior came as a surprise in the early 1990’s.
Various examples of instability have since been given in different settings,
primarily in the context of SBP and FIFO disciplines. At this point, there is
no comprehensive theory, and in fact, not much is known, in general, about
how the Markov processes for such networks go to infinity as t — co. Chapter
3 presents the best known examples of unstable subcritical queueing networks
in more-or-less chronological order, with an attempt being made to provide



1.4 Outline of Lectures 19

some feeling for the development of the subject. Examples include those from
[LuK91],[RyS92], [Br94a], [Se94], and [Du97].

In Chapter 4, we give general sufficient conditions for the stability of a
queueing network. The main condition is that the fluid model of the queueing
network be stable; general conditions on the interarrival and service times of
the queueing network are also needed. In the previous section, we gave a brief
discussion of how the fluid model equations are obtained from the queueing
network equations that describe the evolution of the queueing network. The
material in Chapter 4 is largely based on [Da95] and the sources employed
there. We go into considerable detail on the arguments leading to the main
result, Theorem 4.16, because we feel that it is important to have this material
accessible in one place.

The first part of Chapter 5 consists of applications of Theorem 4.16, where
stability is demonstrated, under p < e, for a number of disciplines. In Sections
5.1, 5.2, and 5.3, the stability of single class networks, SBP reentrant lines with
FBFS and LBFS priority schemes, and FIFO networks, with constant mean
service times at a station, are demonstrated. In each case, the procedure is
to demonstrate the stability of a fluid model; the stability of the queueing
network then follows by applying the above theorem.

Sections 5.4 and 5.5 are different in nature from the previous three sections.
Section 5.4 is concerned with the question of global stability. That is, when
is a queueing network stable, irrespective of the particular discipline that is
applied? Again applying Theorem 4.16, a queueing network will be globally
stable if its fluid model is. For two-station fluid models with deterministic
routing, a complete theory is given. Section 5.5 investigates the converse of
Theorem 4.16, namely the necessity of fluid model stability for the stability of
a given queueing network. It turns out that there is not an exact correspon-
dence between the two types of stability, as examples show. Robust conditions
for the necessity of fluid model stability are presently lacking. The material
in Chapter 5 is taken from a member of sources, including [Br96a], [DaWe96],
[Br99], [DaV00], and [DaHV04].

We conclude this section with some basic notation and conventions. We let
Z_ and R denote the positive integers and real numbers; Z o and R o will
denote the sets appended with {0}; and Z%¢, R%, Zi}o, and Ri,o will denote
their d dimensional equivalents. For z,y € RY, 2 < y means 3 < yi for
each coordinate k; x < y means z < yi for each coordinate. Unless indicated
otherwise, | - | denotes the ¢! (or sum) norm, e.g., |z| = E?Zl |z;| for € R%.
By a Vb and a A b, we mean max{a,b} and min{a, b}. For z € R, by |z| and
[x], we mean the integer part of  and the smallest integer that is at least x.
By a(t) ~ b(t), we mean a(t)/b(t) — 1 as t — oo, and by a ~ b, that a and b
are approximately the same in some weaker sense.

When convenient, we will refer to a countable state Markov process as a
Markov chain. (In the literature, Markov chain often instead refers to a dis-
crete time Markov process.) We say that a Markov chain is positive recurrent
if each state is positive recurrent and all states communicate. (The second
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condition is sometimes not assumed in the literature.) As already mentioned,
instead of the term “queueing network” , we will often employ the shorter “net-
work” ) when the context is clear. Throughout these lectures, continuous time
stochastic processes will be assumed to be right continuous unless indicated
otherwise.



2

The Classical Networks

In this chapter, we discuss two families of queueing networks whose Markov
processes are positive recurrent when p < e, and whose stationary distribu-
tions have explicit product-like formulas. The first family includes networks
with the FIFO discipline, and the second family includes networks with the
PS and LIFO disciplines, as well as infinite server (IS) networks. We intro-
duced the first three networks in Section 1.2; we will define infinite server
networks shortly. These four networks are sometimes known as the “classical
networks”. Together with their generalizations, they have had a major influ-
ence on the development of queueing theory because of the explicit nature
of their stationary distributions. For this reason, we present the basic results
for the accompanying theory here, although only the FIFO discipline is HL.
These results are primarily from [BaCMP75], and papers by F. P. Kelly (such
as [Ke75] and [Ke76]) that led to the book [Ke79].

In Section 2.1, we state the main results in the context of the above four
networks. We first characterize the stationary distributions for networks con-
sisting of a single station, whose jobs exit from the network when service is
completed, without being routed to another class. We will refer to such a sta-
tion as a node. We then characterize the stationary distribution for networks
with multiple stations and general routing. Since all states will communicate,
the Markov processes for the networks will be positive recurrent, and hence
the networks will be stable.

In the remainder of the chapter, we present the background for these results
and the accompanying theory. In Section 2.2, we give certain basic properties
of stationary and reversible Markov processes on countable state spaces that
we will use later. Sections 2.3 and 2.4 apply this material to obtain generaliza-
tions of the node-level results in Section 2.1 to the two families of interest to
us. The first family, homogeneous nodes, includes FIFO nodes under certain
restrictions, and the second family, symmetric nodes, includes PS, LIFO, and
IS nodes.

The concept of quasi-reversibility is introduced in Section 2.5. Using quasi-
reversibility, the stationary distributions of certain queueing networks can be
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written as the product of the stationary distributions of nodes that correspond
to the stations “in isolation”. These queueing networks include the FIFO, PS,
LIFO, and IS networks, and so generalize the network-level results in Section
2.1. Except for Theorem 2.9, all of the material in this chapter is for queueing
networks with a countable state space.

The main source of the material in this chapter is [Ke79]. Section 2.2 is
essentially an abridged version of the material in Chapter 1 of [Ke79]. Most
of the material in Sections 2.3-2.5 is from Sections 3.1-3.3 of [Ke79], with
[Wa88], [ChYO01], [As03], and lecture notes by J.M. Harrison having also been
consulted. The order of presentation here, starting with nodes in Sections 2.3
and 2.4 and ending with quasi-stationarity in Section 2.5, is different.

2.1 Main Results

In this section, we will give explicit formulas for the stationary distributions
of FIFO, PS, LIFO, and infinite server networks. Theorems 2.1 and 2.2 state
these results for individual nodes, and Theorem 2.3 does so for networks. In
Sections 2.3-2.5, we will prove generalizations of these results.

The range of disciplines that we consider here is of limited scope. On
the other hand, the routing that is allowed for the network-level results will
be completely general. As in Chapter 1, routing will be given by a mean
transition matrix P = {Py ¢, k,£ = 1,..., K} for which the network is open.!
For all queueing networks considered in this section, the interarrival times
are assumed to be exponentially distributed. When the service times are also
exponentially distributed, the evolution of these queueing networks can be
expressed in terms of a countable state Markov process. By enriching the state
space, more general service times can also be considered in the countable state
space setting. This will be useful for the PS, LIFO, and IS networks.

In Section 1.1, we introduced the M /M /1 queue with external arrival rate
«a = 1. By employing the reversibility of its Markov process when m < 1, we
saw that its stationary distribution is given by the geometric distribution in
(1.1). Allowing « to be arbitrary with am < 1, this generalizes to

w(n) = (1 —am)(am)” forn=0,1,2,.... (2.1)

For a surprisingly large group of queueing networks, generalizations of (2.1)
hold, with the stationary distribution being given by products of terms similar
to those on the right side of (2.1).

! In the literature (such as in [Ke79]), deterministic routing is frequently employed.
For these lectures, we prefer to use random routing, which was used in [BaCMP75]
and has been promulgated in its current form by J. M. Harrison. By employing
sufficiently many routes, one can show the two approaches are equivalent. We
find the approach with random routing to be notationally more flexible. The
formulation is also more amenable to problems involving dynamic scheduling,
which we do not cover here.
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We first consider queueing networks consisting of just a single node. That
is, jobs at the unique station leave the network immediately upon completion
of service, without being routed to other classes. Classes are labelled k =
1,..., K. The nodes of interest to us in this chapter fall into two basic families,
depending on the discipline.

The first family, homogeneous nodes, will be defined in Section 2.3. FIFO
nodes, which are the canonical example for this family, will be considered here.
For homogeneous nodes, including FIFO nodes, we need to assume that the
mean service times my at all classes k are equal. In order to avoid confusion
with the vector m, we label such a service time by m?® (with “s” standing
for “station”). We will refer to such a node as a FIFO node of Kelly type. In
addition to assuming the interarrival times are exponentially distributed, we
assume the same is true for the service times.

The state x of the node at any time will be specified by an n-tuple of the
form

(2(1),.., 2(n)), (2.20)

where n is the number of jobs in the node and
z(i) e {l,...,K} fori=1,...,n (2.2b)

gives the class of the job in the " position in the node. We interpret i =
1,...,n as giving the order of arrival of the jobs currently in the node; because
of the FIFO discipline, all service is directed to the job at ¢ = 1. The state
space Sp will be the union of these states. The stochastic process X (t), ¢t > 0,
thus defined will be Markov with a countable state space. For consistency with
other chapters, we interpret vectors as column vectors, although this is not
needed in the present chapter (since matrix multiplication is not employed).

All states communicate with the empty state. So, if X (-) has a stationary
distribution, it will be unique. Since there is only a single station, a stationary
distribution will exist when the node is subcritical. Theorem 2.1 below gives an
explicit formula for the distribution. As in Chapter 1, oy denotes the external
arrival rates at the different classes k; p denotes the traffic intensity and is in
the present setting given by the scalar

p= mSZak. (2.3)
k

As elsewhere in this chapter, when we say that a node (or queueing network)
has a stationary distribution, we mean that its Markov process, on the chosen
state space, has this distribution. (For us, “distribution” is synonymous with
the somewhat longer “probability measure”.)

Theorem 2.1. Fach subcritical FIFO node of Kelly type has a stationary
distribution m, which is given by

m(x) = (1-p) Hmsax(i), (2.4)
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for x = (z(1),...,z(n)) € So.

The stationary distribution 7 in Theorem 2.1 can be described as follows.
The probability of there being a total of n jobs in the node is (1 — p)p™. Given
a total of n jobs, the probability of there being n1,...,nk jobs at the classes

1,..., K, with n =ny + ...+ ng and no attention being paid to their order,
is
" K
-n mia ). 2.5
I S by (G2 (25)
k=1
Moreover, given that there are nq, ..., nx jobs at the classes 1, ..., K, any or-

dering of the different classes of jobs is equally likely. Note that since all states
have positive probability of occurring, the process X (-) is positive recurrent.
Consequently, the node is stable.

The other family of nodes that will be discussed in this chapter, symmetric
nodes, will be defined in Section 2.4. Standard members of this family are PS,
LIFO, and IS nodes. The PS and LIFO disciplines were specified in Chapter 1.
In an infinite server (IS) node, each job is assumed to start receiving service as
soon as it enters the node, which it receives at rate 1. One can therefore think
of there being an infinite number of unoccupied servers available to provide
service, one of which is selected whenever a job enters the node. All other
disciplines studied in these lectures will have only a single server at a given
station. We note that although the PS discipline is not HL, it is related to the
HLPPS discipline given at the end of Section 5.3.

We consider the stationary distributions of PS, LIFO and IS nodes. As
with FIFO nodes, we need to assume that the interarrival times of jobs are
exponentially distributed. If we assume that the service times are also expo-
nentially distributed, then the process X (-) defined on Sy will be Markov. As
before, we interpret the coordinates i = 1,...,n in (2.2) as giving the order of
jobs currently in the node. For LIFO nodes, this is also the order of arrival of
jobs there. For reasons relating to the definition of symmetric nodes in Section
2.4, we will instead assume, for PS and IS nodes, that arriving jobs are, with
equal probability 1/n, placed at one of the n positions of the node, where n
is the number of jobs present after the arrival of the job. Since in both cases,
jobs are served at the same rate irrespective of their position in the node, the
processes X (-) defined in this manner are equivalent to the processes defined
by jobs always arriving at the rear of the node.

The analog of Theorem 2.1 holds for PS, LIFO, and IS nodes when the
service times are exponentially distributed. We no longer need to assume that
the service times have the same means, so in the present setting, the traffic
intensity p is given by

p= kaak. (2.6)
k

For subcritical PS and LIFO nodes, the stationary distribution 7 is given by
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m(z) =(1~p) H Mg (i) (i) (2.7)
i=1

for x = (x(1),...,2(n)) € Sop. For any IS node, the stationary distribution =
is given by

e P
m(@) = — 117w (2.8)
Ti=1

The stability of the infinite server node for all values of p is not surprising,
since the total rate of service at the node is proportional to the number of
jobs presently there.

For PS, LIFO, and IS nodes, an analogous result still holds when exponen-
tial service times are replaced by service times with more general distributions.
One employs the “method of stages”, which is defined in Section 2.4. One en-
riches the state space Sy to allow for different stages of service for each job,
with a job advancing to its next stage of service after service at the previous
stage has been completed. After service at the last stage has been completed,
the job leaves the node. Since the service times at each stage are assumed to
be exponentially distributed, the corresponding process X () for the node, on
this enriched state space S., will still be Markov. On the other hand, the total
service time required by a given job will be the sum of the exponential service
times at its different stages, which we take to be i.i.d. Such service times are
said to have Erlang distributions.

Using the method of stages, one can extend the formulas (2.7) and (2.8),
for the stationary distributions of PS, LIFO, and IS nodes, to nodes that have
service distributions which are countable mixtures of Erlang distributions.
This result is stated in Theorem 2.2. The state space here for the Markov
process X (-) of the node is S, which is defined in Section 2.4. The analog of
this extension for FIFO nodes is not valid.

Theorem 2.2. Fach subcritical PS node and LIFO node, whose service time
distributions are miztures of Erlang distributions, has a stationary distribution
7. The probability of there being n jobs in the node with classes x(1),...,z(n)
is given by (2.7). The same is true for any IS node with these service time
distributions, but with (2.8) replacing (2.7).

Mixtures of Erlang distributions are dense in the set of distribution func-
tions, so it is suggestive that a result analogous to Theorem 2.2 should hold
for service times with arbitrary distributions. This is in fact the case, although
one needs to be more careful here, since one needs to replace S, with an un-
countable state space which specifies the residual service times of jobs at the
node. More detail on this setting is given at the end of Section 2.4. Because
of the technical difficulties for uncountable state spaces, (2.7) and (2.8) are
typically stated for mixtures of Erlang distributions or other related distribu-
tions on countable state spaces. Moreover, quasi-reversibility, which we discuss
shortly, employs a countable state space setting.
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So far in this section, we have restricted our attention to nodes. As men-
tioned at the beginning of the section, the results in Theorems 2.1 and 2.2
extend to analogous results for queueing networks, which are given in Theo-
rem 2.3, below. FIFO, PS, LIFO, and IS queueing networks are the analogs
of the respective nodes, with jobs at individual stations being subjected to
the same service rules as before, and, upon completion of service at a class k,
a job returning to class ¢ with probability Py ¢, which is given by the mean
transition matrix P. In addition to applying to these queueing networks, The-
orem 2.3 also applies to networks that are mixtures of such stations, with one
of the above four rules holding for any particular station. We also note that
the formula in Theorem 2.3 holds for Jackson networks, as a special case of
FIFO networks. The product formula for Jackson networks in [Ja63] predates
those for the other networks.

In Theorem 2.3, we assume that the service times are exponentially dis-
tributed when the station is FIFO, and are mixtures of Erlang distributions
in the other three cases. The distribution function 7 is defined on the state
space

S=5"%x...x87,

where S = S if j is FIFO and S7 = S, for the other cases, and 77 is defined
on S7. (The choice of K in each factor depends on S7.)

Theorem 2.3. Suppose that each station j of a queueing network is either
FIFO of Kelly type, PS, LIFO, or IS. Suppose that in the first three cases, the
station is subcritical. Then, the queueing network has a stationary distribution
w that is given by

J
m(z) = Hﬂ'j(.l?j), (2.9)

forx = (z1,...,27). Here, each 7/ is either of the form (2.4), (2.7), or (2.8),
depending on whether the station j is FIFO of Kelly type, PS or LIFO, or IS,
and oy in the formulas is replaced by Ag.

Theorem 2.3 will be a consequence of Theorems 2.1 and 2.2, and of the
quasi-reversibility of the nodes there. Quasi-reversibility will be introduced in
Section 2.5. Using quasi-reversibility, it will be shown, in Theorem 2.11, that
the stationary distributions of certain queueing networks can be written as
the product of the stationary distributions of nodes that correspond to the
individual stations “in isolation”. This will mean that when service of a job at
a class is completed, the job will leave the network rather than returning to
another class (either at the same or a different station). The external arrival
rates g at classes are replaced by the total arrival rates Ay of the network
in order to compensate for the loss of jobs that would return to them. Quasi-
reversibility can be applied to queueing networks whose stations are FIFO,
PS, LIFO, or IS. By employing Theorem 2.11, one obtains Theorem 2.3 as a
special case of Theorem 2.12.
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2.2 Stationarity and Reversibility

In this section, we will summarize certain basic results for countable state,
continuous time Markov processes. We define stationarity and reversibility,
and provide alternative characterizations. Proposition 2.6, in particular, will
be used in the remainder of the chapter.

The Markov processes X (t), t > 0, we consider here will be assumed to
be defined on a countable state space S. The space S will be assumed to
be irreducible, that is, all states communicate. None of the states will be
instantaneous; we will assume there are only a finite number of transitions
after a finite time, and hence no explosions. Sample paths will therefore be
right continuous with left limits. The transition rate between states z and y
will be denoted by ¢(z, y); the rate at which a transition occurs at z is therefore

q(z) et >_yes 4(z,y). The embedded jump chain has mean transition matrix

{p(z,y), z,y € S}, where p(z,y) ef q(z,y)/q(x) is the probability X () next
visits y from the state z. The time X (-) remains at a state 2 before a transition
occurs is exponentially distributed with mean 1/¢(z).

A stochastic process X (t), t > 0, is said to be stationary if (X(t1),...,
X(ty)) has the same distribution as (X (t1 + u),..., X (¢, + u)), for each
nonnegative t1,...,t, and w. Such a process can always be extended to
—00 < t < oo so that it is stationary as before, but with t¢q,...,¢, and u
now being allowed to assume any real values. When X (-) is a Markov process,
it suffices to consider just n = 1 in order to verify stationarity.

A stationary distribution m = {n(z), v € S} for a Markov process X (-)
satisfies the balance equations

7(@) Y alwy) = 3 w(y)aly,x) forw e 5, (2.10)

yeS yeS

which say that the rates at which mass leaves and enters a state x are the
same. We are assuming here that ) o m(z) = 1. Since all states are assumed
to communicate, © will be unique. If 7 exists, then it is the limit of the dis-
tributions of the Markov process starting from any initial state. If a measure
7 satisfying (2.10) with ) _¢m(2) < oo exists, then it can be normalized so
that > qm(z) =1.If Y g 7(x) = oo, then there is no stationary distribu-
tion, and for all z,y € S,

PX(t)=¢| X(0)=2)—0 ast— oo.

(See, e.g., [Re92] for such basic theory.)

A stochastic process X (t), —oo < t < oo, is said to be reversible if
(X (t1),...,X(t,)) has the same distribution as (X (u —t1),..., X (u — t,)),
for each t1,...,t, and u. This condition says that the process is stochasti-
cally indistinguishable, whether it is run forward or backwards in time. It is
easy to see that if X (-) is reversible, then it must be stationary. When X (-)
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is Markov, it suffices to consider n = 2 in order to verify reversibility. The
Markov property can be formulated as saying that the past and future states
of the process X (-) are independent given the present. It follows that the re-

versed process X (t) def X(=t) is Markov exactly when X(-) is. If X(-) has
stationary measure m, then 7 is also stationary for X(-) and the transition
rates of X (-) are given by

i) = Z8a(0.2) foraye s, (2.11)
A stationary Markov process X () with distribution = is reversible exactly
when it satisfies the detailed balance equations

m(z)q(z,y) = w(y)q(y,z) forz,y € S. (2.12)

This condition says that the rate at which mass moves from z to y is the same
rate at which it moves in the reverse direction. This condition need not, of
course, be satisfied for arbitrary stationary distributions. When (2.12) holds,
it often enables one to express the stationary distribution in closed form, as,
for example, for the M /M /1 queue in Section 1.1. It will always hold for the
stationary distribution of any birth and death process, and, more generally,
for the stationary distribution of any Markov process on a tree. By summing
over ¢, one obtains the balance equations in (2.10) from (2.12).

An alternative characterization of reversibility is given by Proposition 2.4.
We will not employ the proposition elsewhere, but state it because it provides
useful intuition for the concept.

Proposition 2.4. A stationary Markov process is reversible if and only if its
transition rates satisfy

q(z1,22)q(x2,23) - -+ @(Tn—1,Tn)q(Tn, T1) (2.13)

= q(1,20)q(Tn, Tn—1) - - - q(x3, ¥2)q(22, 71),
for any x1,x2,...,ZTy.

The equality (2.13) says that the joint transition rates of the Markov
process are the same along a path if it starts and ends at the same point,
irrespective of its direction along the path.

Proof of Proposition 2.4. The “only if” direction follows immediately by plug-
ging (2.12) into (2.13).
For the “if” direction, fix z¢, and define

n

m(x) = H[Q(ﬂvz‘—l,xi)/q($i7$i—1)], (2.14)

i=1

where z,, = z and xo, z1, ..., x, is any path from z¢ to x, with ¢(x;, z;—1) > 0.
One can check using (2.13) that the right side of (2.14) does not depend on the
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particular path that is chosen, and so 7(x) is well defined. To see this, let 9%,
and &5 be any two paths from g to x, and 2, and Z, be the corresponding
paths in the reverse directions. Then, the two paths from zg to itself formed
by linking 2 to P, respectively 2, to 2, satisfy (2.13), from whence the
uniqueness in (2.14) will follow.

Assume that for given y, ¢(y,z) > 0. Multiplication of both sides of (2.14)
by ¢(z,y) implies that

W(x)q(x,y - q Y,z <Hq Ti—1,%4 /Q(xuxz 1) (Q(xay)/Q(yvx))
i=1
= q(y, )7 (y).

This gives (2.12), since the case ¢(z,y) = q(y,z) = 0 is trivial. Since the
process is assumed to be stationary, Y m(z) < oo, and so 7 can be scaled so

that >~ m(x) =1. |

The following result says that under certain modifications of the transition
rates q(z,y), a reversible Markov process will still be reversible. It will not be
needed for later work, but has interesting applications.

Proposition 2.5. Suppose that the transition rates of a reversible Markov
process X (+), with state space S and stationary distribution w, are altered by
changing q(x,y) to ¢'(x,y) = bg(x,y) when x € A and y & A, for some A C
S. Then, the resulting Markov process X'(-) is reversible and has stationary
distribution

(2.15)

/() = em(x)  forx € A,
= chr(x) for x & A,

where ¢ is chosen so that > 7'(x) = 1. In particular, when the state space
is restricted to A by setting b = 0, then the stationary distribution of X'(-) is
given by

/ w(y) forx € A. (2.16)
yeA

Proof. Tt is easy to check that ¢ and 7’ satisfy the detailed balance equations
n (2.12). |

The following illustration of Proposition 2.5 is given in [Ke79].

Example 1. Two queues with a joint waiting room. Suppose that two inde-
pendent M/M/1 queues are given, with external arrival rates «; and mean
service times m;, and a;m; < 1. Let X;(¢) be the number of customers (or
jobs) in each queue at time ¢t. The Markov processes are each reversible with
stationary distributions as in (2.1). It is easy to check that the joint Markov
process X (t) = (X1(t), X2(t)), —oo < t < o0, is reversible, with stationary
distribution



30 2 The Classical Networks
w(n1,n2) = (1 — arma) (1 — agma)(armq)™ (aeme)™?  for n; € Zy .

Suppose now that the queues are required to share a common waiting room
of size N, so that a customer who arrives to find N customers already there
leaves without being served. This corresponds to restricting X (-) to the set
A of states with n1 + ny < N. By Proposition 2.5, the corresponding process
X'(+) is reversible, and has stationary measure

7' (n1,n2) = 7(0,0)(a1my)™ (aema)™  for (ny,ng) € A. [ |

It is often tedious to check the balance equations (2.10) in order to de-
termine that a Markov process X (-) is stationary. Proposition 2.6 gives the
following alternative formulation. We abbreviate by setting

Q(x) = Z q(xvy)a qA(x) = Zd(xay)v (2'17)

yeS yeS

where ¢(z,y) are the transition rates for X(-) and ¢(z,y) > 0 are for the
moment arbitrary. When X () has stationary distribution 7 and §(x,y) is
given by (2.11), it is easy to check that

q(z) = ¢(x) for all z. (2.18)

The proposition gives a converse to this. As elsewhere in this section, we are
assuming that S is irreducible.

Proposition 2.6. Let X (t), —oo < t < 00, be a Markov process with transi-
tion rates {q(x,y), x,y€S}. Suppose that for given quantities {G(x,y), z,y€
S} and {r(x), x€ S}, with §(x,y) > 0, n(x) >0, and ), w(x) = 1, that q,
4, and w satisfy (2.11) and (2.18). Then, 7 is the stationary distribution of
X (-) and q gives the transition rates of the reversed process.

Proof. Tt follows, by applying (2.11) and then (2.18), that

> w@)g(x,y) =) Y dy.x) = 7()iy) = (y)a(y).

zeS zeS

So, 7 is stationary for X (-). The transition rates of the reversed process are
therefore given by (2.11). |

Proposition 2.6 simplifies the computations needed for the demonstration
of stationarity by replacing the balance equations, that involve a large sum
and the stationary distribution m, by two simpler equations, (2.18), which
involves just a large sum, and (2.11), which involves just w. On the other
hand, the application of Proposition 2.6 typically involves guessing ¢ and .
In situations where certain choices suggest themselves, the proposition can be
quite useful. It will be used repeatedly in the remainder of the chapter.
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2.3 Homogeneous Nodes of Kelly Type

FIFO nodes of Kelly type belong to a larger family of nodes whose station-
ary distributions have similar properties. We will refer to such a node as a
homogeneous node of Kelly type. Such nodes are defined as follows.

Consider a node with K classes. The state x € Sy of the node at any time
is specified by an n-tuple as in (2.2), when there are n jobs present at the
node. The ordering of the jobs is assumed to remain fixed between arrivals and
service completions of jobs. When the job in position ¢ completes its service,
the position of the job is filled with the jobs in positions ¢+1,...,n moving up

to positions 4,...,n — 1, while retaining their previous order. Similarly, when
a job arrives at the node, it is assigned some position 4, with jobs previously
at positions i, ...,n being moved back to positions ¢ + 1,...,n + 1. Each job

requires a given random amount of service; when this is attained, the job
leaves the node. As throughout this chapter, interarrival times are required
to be exponentially distributed. As elsewhere in these lectures, all interarrival
and service times are assumed to be independent.

We will say that such a node is a homogeneous node if it also satisfies the
following properties:

(a) The amount of service required by each job is exponentially distributed
with mean my, where k is the class of the job.

(b) The total rate of service supplied at the node is ¢(n), where n is the
number of jobs currently there.

(c) The proportion of service that is directed at the job in position 7 is §(i, n).
Note that this proportion does not depend on the class of the job.

(d) When a job arrives at the node, it moves into position ¢, ¢ = 1, ..., n, with
probability 5(¢,n), where n is the number of jobs in the node including
this job. Note that this probability does not depend on the class of the
job.

When the mean my does not depend on the class k, we will say that such
a node is a homogeneous node of Kelly type. We will analyze these nodes in
this section. We use m?® when the mean service times of a node are constant,
as we did in Section 2.1.

The rate at which service is directed to a job in position i is §(i,n)d(n).
So, the rate at which service at the job is completed is §(i,n)¢p(n)/m*. We
will assume that ¢(n) > 0, except when n = 0. The rate at which a job arrives
at a class k and position ¢ from outside the node is ayG(i,n). We use here
the mneumonics § and ¢ to suggest births and deaths at a node. Of course,
ST Blin) = Sy 8(i,m) = 1.

We have emphasized in the above definition that the external arrival rates
and service rates § and § do not depend on the class of the job. This is crucial
for Theorem 2.7, the main result in this section. This restriction will also be



32 2 The Classical Networks

needed in Section 2.4 for symmetric nodes, as will be our assumption that
the interarrival times are exponentially distributed. On the other hand, the
assumptions that the service times be exponential and that their means my
be constant, which are needed in this section, are not needed for symmetric
nodes. We note that by scaling time by 1/m?®, one can set m® = 1, although
we prefer the more general setup for comparison with symmetric nodes and
for application in Section 2.5.

In Section 2.5, we will be interested in homogeneous queueing networks of
Kelly type. Homogeneous queueing networks are defined analogously to homo-
geneous nodes. Jobs enter the network independently at the different stations
according to exponentially distributed random variables, and are assigned
positions at these stations as in (d). Jobs at different stations are served inde-
pendently, as in (a)-(c), with departing jobs from class k being routed to class
¢ with probability Py, and leaving the network with probability 1 — Xy Py ;.
Jobs arriving at a class £ from within the network are assigned positions as in
(d), according to the same rule as was applied for external arrivals. The ex-
ternal arrival rates and the quantities in (a)-(d) are allowed to depend on the
station. When the mean service times my, are assumed to depend only on the
station j = s(k), we may write mj; we refer to such networks as homogeneous
queueing networks of Kelly type.

The most important examples of homogeneous nodes are FIFO nodes.
Here, one sets ¢(n) = 1,

0 otherwise,

Bi,m) = {1 for i =n,

and

0 otherwise,

1 fori=1
5(i,n)—{ ors=>

for n € Z. That is, arriving jobs are always placed at the end of the queue
and only the job at the front of the queue is served. Another example is given
in [Ke79], where arriving jobs are again placed at the end of the queue, but
where L servers are available to serve the first L jobs, for given L. In this
setting, ¢(n) = L An, [ is defined as above, and

1/n fori<n <L,
d(,n)=<1/L fori<L <mn,
0 for i > L.

The main result in this section is Theorem 2.7, which is a generalization
of Theorem 2.1. Since the total service rate ¢ that is provided at the node
can vary, the condition

B def Z <pn/H¢(i)> < 00 (2.19)
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replaces the assumption in Theorem 2.1 that the node is subcritical. Here,
p=ms Ele ay, is the traffic intensity.

Theorem 2.7. Suppose that a homogeneous node of Kelly type satisfies B <
o0 in (2.19). Then, it has a stationary distribution w that is given by

n

n(x) = B~ [[(mPawiy /9()), (2:20)

forz = (z(1),...,2(n)) € So.

As was the case in Theorem 2.1, the structure of the stationary distribution
7 in Theorem 2.7 exhibits independence at multiple levels. The probability of
there being a total of n jobs at the node is p" /BT, ¢(i). Given a total of
n jobs at the node, the probability of there being ni,...,nx jobs of classes
1,..., K, respectively, is given by the multinomial distribution in (2.5). More-
over, the ordering of the different classes of jobs is equally likely. As was the
case in Theorem 2.1, all states communicate with the empty state, and the
Markov process X (+) for the node is positive recurrent.

Demonstration of Theorem 2.7

The proof of Theorem 2.7 that we will give is based on Proposition 2.6.
In order to employ the proposition, we need to choose quantities ¢ and 7 so
that (2.11) and (2.18) are satisfied for them and the transition rates ¢ of the
Markov process X (-) for the node. It will then follow from Proposition 2.6
that 7 is the stationary distribution for the node and ¢ gives the transition
rates for the reversed process X (). A similar argument will be used again for
symmetric nodes in Section 2.4 and for networks consisting of quasi-reversible
nodes in Section 2.5. We will summarize a more probabilistic argument for
Theorem 2.7 at the end of the section.

In order to demonstrate Theorem 2.7, we write ¢ and our choices for ¢
and 7 explicitly in terms of «, 3, 8, and ¢. To be able to reuse this argument
in Section 2.4 for symmetric nodes, we write my, for the mean service times,
which in the present case reduces to the constant m?.

The nonzero transition rates ¢(z,y) take on two forms, depending on
whether the state is obtained from x by the arrival or exit of a job. In the
former case, we write y = ag,;(z) if a class k job arrives at position ¢; in the
latter case, it follows that « = ax;(y), if ¢ is the position of the exiting class
k job. One then has

~JaB(i,ny) for y = axi(x),
q(z,y) =9 i (2.21)
{mk (5(’&, n:c)¢(nx) for z = ak,i(y)7
where n, and n, are the number of jobs at the node for states x and y.

Finding the transition rates ¢(z,y) of the reversed process involves some
guessing, motivated by our idea of what X (-) should look like. It is reasonable
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to guess that X (+) is also the Markov process for a homogeneous node. The
external arrival rates aj and &j will then be the same for both processes,
since arrivals for X (-) correspond to exits for X (-), and under the stationary
distribution 7, the two rates must be the same. The mean service times my
and 7, will also be the same. It is reasonable to guess that ¢(n) = ¢(n);
this would be the case if X (-) were reversible, as it is for the M/M/1 queue.
Running X (-) backwards in time mentally, it is also tempting to set

B(z,n) =4(i,n), S(Z,n) = fB(i,n) forne€Zy, i <n.

For instance, if the original node is FIFO, then jobs arrive at i« = n and exit
at ¢ = 1; if the node is run backwards in time, jobs arrive at ¢ = 1 and exit at
i = n. Substitution of these choices for «, 3, d, ¢, and m in (2.21) yields

. ar0(i,ny) for y = a,i(x),

Q@) = {m;lﬂ(i, ng)p(ng) for x = agi(y). (2.22)

We still need to choose our candidate for the stationary distribution 7 of
both X (-) and X(-). The equality (2.11), that is needed for Proposition 2.6,
is equivalent to

m(z)q(z,y) = n(y)i(y, z) (2.23)

(
holding whenever y = ay, ;(z) or ¢ = a;(y). When y = ay;(z) and g(z,y) > 0,
substitution of (2.21) and (2.22) into (2.23) implies that

m(y)/m(x) = mrow/P(ny). (2.24)

The case x = ag,i(y) yields the same equality, but with the roles of = and y
reversed. Reasoning backwards, it is not difficult to see that (2.23) also follows
from (2.24).

Set x = (z(1),...,z(n)), for n € Zy o. One can repeatedly apply (2.24) by
removing jobs from x one at a time, starting from the last, until the empty
state is reached. We therefore choose 7 so that

n

7(2) = B~ [ [(magy o /90)), (2.25)

i=1

where the normalizing constant B = 1/7(0). Under (2.25), (2.24) must hold.
We have therefore verified (2.11) for this choice of 7. In particular, this holds
for mi = m?®, as in Theorem 2.7.

In order to employ Proposition 2.6, we also need to verify (2.18). One can

check that
ZQ(J%?J) = zk:ak +¢(nx)zm;(1i)5(i7nx)- (2-26)

Y

The first sum on the right side of (2.26) follows by summing the top line of
(2.21) over all 4 and k. The relationship = = ay ;(y) implies that x(7) = k, and
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so the last sum in (2.26) follows by summing the last line of (2.21) over all s.
Using the same reasoning, one obtains the formula

Z@(J%y) = Zak +¢(nx)2m;(lz)ﬁ(z,nx) (2-27)
k i

Y

from (2.22). As before, the first sum on the right side is obtained from arriving
jobs and the last sum is obtained from exiting jobs.
We see from (2.26) and (2.27) that a sufficient condition for (2.18) is that

Zm;&)é(i,nz) = Zm;(ﬁ)ﬁ(i,nx). (2.28)

In Theorem 2.7, my = m?®, which factors outside of the sum on both sides of
(2.28). Since the resulting sums both equal 1, (2.28), and hence (2.18), holds
in this setting. Note that this is the only point in the argument at which we
need my to be constant.

We have shown that both (2.11) and (2.18) are satisfied for ¢ and ¢’ given
by (2.21) and (2.22), and 7 given by (2.25), under the assumptions in Theorem
2.7. Tt therefore follows from Proposition 2.6 that 7 is the stationary distri-
bution for the Markov process with transition rates ¢q. This implies Theorem
2.7.

Some observations

One can generalize the above proof of Theorem 2.7 so that it applies to ho-
mogeneous queueing networks of Kelly type, rather than to just homogeneous
nodes of Kelly type as in the theorem. Then, the stationary distribution 7 can
be written as the product of stationary distributions 77 of nodes correspond-
ing to the individual stations, when they operate “in isolation”. This is done
in Section 3.1 of [Ke79]. We prefer to postpone the treatment of homogeneous
networks until Section 2.5, where they are considered within the context of
quasi-reversibility.

One can give a more probabilistic proof of Theorem 2.7 that is based on
the following intuitive argument. The rates 8(i,n), 6(i,n) and ¢(n) governing
the arrival and service rates of jobs, as well as the mean service time m?®, do
not distinguish between classes of jobs. Jobs are therefore served as they would
be for an M /M /1 queue modified to have the total rate of service ¢(n), when
there are n jobs, and having the arrival rate ), aj. By randomly choosing the
class of each job, with probability ax/ >, o for each k, at either time 0 or at
some later time ¢, the distributions at time ¢ of the two resulting processes will
be the same. If the stationary distribution for the modified M/M/1 queue is
chosen as its initial distribution, the resulting distribution 7’ for the K classes
will therefore also be stationary.

One can show, by using reversibility, that the probability of there be-
ing n jobs for the stationary distribution of the modified M/M/1 queue is
p" /BT, ¢(i), where B is as in (2.19). Because of the random way in which
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the classes of jobs are chosen above for 7/, the remaining properties in the
alternative characterization of 7 in (2.20), that are given after the statement
of Theorem 2.7, also hold. Therefore, 7’ = 7, as desired.

We also note the following consequence of the proof of Theorem 2.7, that
is a special case of phenomena that will be discussed in Section 2.5. (It also
follows from the alternative argument that was sketched above.) The transi-
tion rates ¢ of the reversed Markov process X (-) in (2.22) are the rates for a
homogeneous node of Kelly type. For this reversed node, arrivals are therefore
given by K independent Poisson processes for the different classes, that are
independent of the initial state. These arrivals correspond to exiting jobs for
the original homogeneous node. It follows that the K different exit processes
for the classes are also independent Poisson processes that are independent of
any future state of the node.

2.4 Symmetric Nodes

PS, LIFO, and IS nodes all belong to the family of symmetric nodes. They
are defined similarly to the homogeneous nodes of Kelly type in the previous
section, with a few major differences. The basic framework is the same, with
state space Sp given by (2.2) and existing jobs being reordered as before upon
the arrival and departure of jobs at the node. Moreover, the interarrival times
are exponentially distributed.

In order for such a node to be a symmetric node, we require that it also
satisfy the following properties:

(a) The amount of service required by each job is exponentially distributed
with mean my. We will soon allow more general distributions, but this will
require us to extend the state space.

(b) The total rate of service supplied at the node is ¢(n), where n is the
number of jobs currently there.

(c) The proportion of service that is directed at the job in position i is (i, n).
Note that the proportion does not depend on the class of the job.

(d) When a job arrives at the node, it moves into position ¢, ¢ = 1, ..., n, with
probability (i, n), where n is the number of jobs in the node including
this job. This function is the same as that given in (c).

In Section 2.5, we will also be interested in symmetric queueing networks.
These networks are defined analogously, with properties (a)-(d) being assumed
to hold at each station, and departing jobs from a class k being routed to a
class ¢ with probability Py . More detail is given in Section 2.3 for homoge-
neous networks, where the procedure is the same.

The properties (a)-(d) given here are more restrictive than the properties
(a)-(d) in the previous section in that we now assume, in the notation of
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Section 2.3, that § = 3, in parts (c) and (d). These properties are more
general in that the service time means my need no longer be equal at different
classes. After comparing the stationary distributions of these nodes with those
of Section 2.3, we proceed to generalize the exponential distributions of the
service times in (a) in two steps, first to mixtures of Erlang distributions, and
then to arbitrary distributions.

The PS, LIFO, and IS nodes are standard examples of symmetric nodes.
For the PS discipline, one sets

B(i,n) =1/n fori<mn,

for n € Z,, and for LIFO, one sets

Blin) = {1 for i =n,

0 otherwise.
In both cases, ¢(n) = 1. For IS nodes, ¢(n) = n and
B(i,n) =1/n fori<n.

The analog of Theorem 2.7 holds for symmetric nodes when B < oo, for
B in (2.19), with the formula for the stationary distribution m,

n

7(2) = B~ [ [(magy o /9(0)), (2.20)

i=1

for x = (z(1),...,2(n)), replacing (2.20). One can check that the same ar-
gument as before is valid. One applies Proposition 2.6, for which one needs
to verify (2.11) and (2.18). As before, the formulas for ¢ and ¢ are given by
(2.21) and (2.22), but with 6 = 8. The formula for 7 is given by (2.25).

The argument we gave for (2.11) involved no restrictions on my, and there-
fore holds in the present context as well. The argument we gave for (2.18)
consisted of equating (2.26) and (2.27), and therefore verifying (2.28). Pre-
viously, (2.28) held since m;l was constant, and so could be factored out of
both sums. It is now satisfied since 6 = 3, and so the summands are identical.
One can therefore apply Proposition 2.6, from which the analog of Theorem
2.7 for symmetric nodes follows, with (2.29) replacing (2.20).

The method of stages

As mentioned earlier, the assumption that the service times be expo-
nentially distributed is not necessary for symmetric nodes. By applying the
method of stages, one can generalize the service time distributions to mixtures
of Erlang distributions. (These are gamma distributions that are convolutions
of identically distributed exponential distributions.) We will show that the
analog of the formula (2.29) for the stationary distribution continues to hold
in this more general setting.
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In order for the stochastic process corresponding to the node to remain
Markov for more general service times, we need to enrich the state space
So. For this, we replace each coordinate z(i) in (2.2) by the triple x(i) =
(2(i), 5(), (7)), where

w(i) € {1,... K}, s(i)eZ,, v(i)e{l,. .. s@)} (2.30)

Such a triple gives the refined class of a job, with z(i) denoting its class as
before. The third coordinate v(i) gives the current stage of a job, with s(¢)
denoting the total number of stages the job visits before leaving the node. The
state space S, will consist of such n-tuples z = (x(1),...,x(n)), n € Z4 o,
under a mild restriction to ensure all states are accessible.

The basic dynamics of the node are the same as before, which satisfies the
properties for symmetric nodes given at the beginning of the section, including
properties (b)-(d); we are generalizing here the assumption in (a). Instead of
entering the node at a class k with rate ay, jobs enter at a refined class (k, s, s)
with rate appy(s), where > _pg(s) = 1. Once at a refined class (k, s,v), such
a job moves to (k,s,v — 1) after completing its service requirement, which is
exponentially distributed with mean my(s). After a job completes its service
at the stage v = 1, it leaves the node. The current stage v of a job can therefore
be thought of as the residual number of stages remaining before the job leaves
the node. We note that the proportion of service that is directed at a job in
position 4 is 3(i,n), which does not depend on its class or refined class.

The distribution of the service time that is required for the job between
entering and leaving class k is a mixture of Erlang distributions, and has mean

my & Zspk(s)mk(s). (2.31)

The state space S. mentioned earlier is defined to consist of n-tuples whose
components (k, s,v) satisfy pr(s) > 0, in order to exclude inaccessible states.
Under this restriction, all states will communicate. The state space is of course
countable. When pi(1) = 1 at all k, the service times are all exponentially
distributed and the model reduces to the one considered at the beginning of
the section. As with homogeneous and symmetric nodes with exponentially
distributed service times, the networks corresponding to symmetric nodes with
stages can be defined in the natural way.

We wish to show that the nodes just defined have stationary distributions
7 that generalize (2.29). This result is stated in Theorem 2.8.

Theorem 2.8. Suppose that the service times of a symmetric node are miz-
tures of Erlang distributions, and that the node satisfies B < oo in (2.19).
Then, the node has a stationary distribution m that is given by

n

7T(.13) = B_l H(pz(z) (S(Z))mz(z) (S(Z))aa:(z)/(b(z))a (2'32)

i=1

where © = (x(1),...,x(n)) € Se and x(i) = (x(i), s(¢),v(i)), fori=1,...,n.
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As was the case in Theorem 2.7 and in (2.29), the structure of the station-
ary distribution 7 is Theorem 2.8 exhibits independence at multiple levels.
The probability of there being a total of n jobs at the node is p™ /B []}_; ¢(4).
Given a total of n jobs at the node, the probability of there being nq,...,ng

jobs at the classes 1,..., K is given by the multinomial
" K
—n I I Nk
p (m, e ,nK> k_l(mkak) ' (2:33)

The ordering of these classes is equally likely. Note that none of these quanti-
ties depends on the particular service time distributions, except for the means
mg.

The stationary distribution also has the following refined structure. Given
the class of the job at each position ¢, the probability of the job at a given
position, whose class is k, having refined class (k, z,v) is

Pr(8)mi(s)/my,

and these events are independent at different i. Summing over all stages
strictly greater than v and over all s, while keeping everything else fixed,
this implies that the conditional probability of the job at position i being in
a strictly earlier stage than v is

m; Z(s — )pr(s)mi(s). (2.34)

Note that (2.34) depends on the actual service time distributions, and not
just on their means.

Demonstration of Theorem 2.8

In order to demonstrate Theorem 2.8, we employ Proposition 2.6. To do
so, we need to verify (2.11) and (2.18) for the transition rates ¢ of the Markov
process on S, corresponding to the node, with an appropriate choice of the
quantities ¢ and 7.

In order to specify ¢ and ¢, we modify the function ay ;(-) we used for
exponential service times on the state space Sy. Here, ag, s ;(z) will denote
the state y obtained from state x by the arrival of a job at position ¢, with
refined class (k, s, s). Since jobs exit from the node at refined classes of the
form (k, s, 1) (rather than at (k, s, s)), we need additional notation. With an
eye on defining ¢, we denote by day s :(x) the state y that is obtained from z
by inserting a job with refined class (k, s, 1) at 4; the positions of jobs already
at the node are shifted in the usual way. We also denote by s;(z) the state
y obtained from a state z satisfying 2 < wv(i) < s(i), when the stage at ¢
advances to v(i) — 1. (s;(x) is not defined for other x.)

Using this notation, one can check that ¢ is given by
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arpr(s)B(i,ny) for y = ak,s,i(x),
q(x,y) = S (mi(s)) B>, na)d(ne)  for @ = ag:(y), (2.35)
(mi(s)) " B(i,ne)p(ng)  for y = si(x),

with ¢(z,y) = 0 otherwise. Employing the same motivation as in Section 2.3,
we choose ¢ so that

axpr(8)B(, ny) for y = dr,s,i (),
q(x,y) = < (m(s)) "' B(i,ne)p(ny)  for x = ak,si(y), (2.36)
(mi(s)) " B(i,ny)¢(ny)  for z = si(y),

with ¢(x,y) = 0 otherwise. The transition function § is the same as ¢, except
that jobs arrive at the stage v = 1, exit at v = s(¢), with changes in stage
occurring from v — 1 to v, for 2 < v < s(7). We choose 7 as in (2.32).

The assumptions for Proposition 2.6 can be verified as they were in Section
2.3 for the space Sy, with only a small change in argument. The argument for
(2.11) is the same when either y = ay s ,i(z) or & = ak,5,i(y). For y = ag s,:(),
the equality (2.24) is replaced by its analog

m(y)/m(x) = mp(s)pr(s)ar/d(ny).

When y € s;(x), one has

m(y)/m(z) = q(z,y)/4(y, z) = 1, (2.37)

in which case (2.11) is obvious. So, (2.11) holds in all cases. (Note that for the
homogeneous nodes in Section 2.3 with distinct § and ¢, the analog of (2.37)
does not hold, and so the method of stages employed here for generalizing the
exponential distributions will not work.)

The formula (2.18) holds for the same reasons as before, except that one
now has

Z q(x,y) = Zd(xa y) = Z ay + (b(nx) Z(mx(z)(s(z)))_lﬁ(zvnﬂc)a
k

Y Y i

with mg ;) (s(i)) replacing mg ;). So, the assumptions for Proposition 2.6 hold.
Application of the proposition therefore implies Theorem 2.8.

One can generalize the above argument so that it applies to symmetric
queueing networks. Then, the stationary distribution 7 can be written as the
product of stationary distributions 77 of nodes corresponding to the individual
stations. As in the previous section, we choose to postpone the treatment of
symmetric networks until Section 2.5, where they are considered within the
context of quasi-reversibility.
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Ezxtensions to general distributions

We have employed the method of stages to generalize the formula (2.29),
for the stationary distribution of symmetric nodes with exponentially dis-
tributed service times, to the formula (2.32), which holds for service times
that are mixtures of Erlang distributions. The method of stages can also be
employed to construct service times with other distributions. This approach is
employed, for example, in Section 3.6 of [Wa88] and in Section 3.4 of [As03],
where the more general phase-type distributions are constructed. [As03] also
gives further background on the problem.

Let H = Uxn—; Hn, where Hy denotes the family of mixtures of Erlang
distributions, but with the restriction that mg(s) = 1/N for all k and s. Tt is
not difficult to show that H is dense in the set of distribution functions, with
respect to the weak topology; this result is given in Exercise 3.3.3 in [Ke79].
The basic idea is that the sum of Ns i.i.d. copies of an exponential distribu-
tion, with mean 1/N, has mean s and variance s/N, and so, for large N, is
concentrated around s. For large enough N, one can therefore approximate a
given service time distribution function Fj as closely as desired, by setting

P (s) = E(s/N) = K ((s = 1)/N), for s € Zy, (2.38)

equal to the probability that a job chooses a refined class with s stages,
when it enters class k. Here, F,ﬁv is the distribution function satisfying
FN(s'") = Fy(s"), for Ns' € Z, and which is constant off this lattice. For
the same reason, the phase-type distributions that were mentioned in the
previous paragraph are also dense.

Since the family H of mixtures of Erlang distributions is dense, it is tempt-
ing to infer that a stationary distribution will always exist for a symmetric
node with any choice of service time distributions Fj, satisfying (2.19), with
my, replacing m® in the definition of p, and that this distribution has the same
product structure as given below the statement of Theorem 2.8. Such a result
holds, although the state space needs to be extended so that the last com-
ponent v of the refined class (k, s,v) of a job can now take on any value in
(0, s]; this corresponds to the residual service time of that job. The resulting
state space S, for the Markov process is uncountable; this causes technical
problems which we discuss at the end of the section. Since the space is un-
countable, it is most natural to formulate the result in a manner similar to
that given below Theorem 2.8.

Theorem 2.9. Suppose that a symmetric node satisfies B < oo in (2.19).
Then, it has a stationary distribution ™ on S with
n
7(26) = k(@) i =1,...,n) = B~ [[(macoyan /6(0))- (2.39)
i=1
Conditioned on any such set, the residual service times of the different jobs
are independent, with the probability that a job of a class k has residual service
time at most r being
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T
Fy(r) = i/ (1 — Fi(s))ds. (2.40)
mg Jo

One can motivate (2.39) by applying Theorem 2.8 to a sequence of nodes
indexed by N, with plY for each class k being given by (2.38). Since F}N = F},
and mY — my, as N — oo, one should expect (2.39) to follow from (2.32). In
order to motivate (2.40), one can reason as follows. Applying Theorem 2.8,
one can check that, under the stationary distribution 7% and conditioned on
the job at a given position being k, the probability that the stage there is

strictly greater than v is

S (s — o)l (s) / Sl (9).

s>v

One can also check that Y- . (s—v)pp (s) = > .o, FY (s/N), where N (s) =
1 — F{¥(s). So, the above quantity equals

NN [ SR )

By setting v = Nr, r > 0, and applying the Monotone Convergence Theorem
to the numerator and denominator separately, one obtains the limit

1 <
— [ Fy(s)ds. (2.41)

On the other hand, the same reasoning as above (2.38) implies that, for
large N, the stage v scaled by N typically approximates the residual service
time. So, (2.41) will also give the limiting distribution of the residual service
times as N — oo. Taking the complementary event, one obtains (2.40) from
(2.41).

The same reasoning as above implies (2.40) is also the probability that the
amount of service that has been received by a job is at least r. We point out
that F}¥, as in (2.40), is the distribution of the residual time for the stationary
distribution of a renewal process, with lifetime distribution Fj.

The above reasoning, although suggestive, is not rigorous. In particular,
implicit in the explanations for both (2.39) and (2.40) is the assumption
that the stationary distribution 7 and the residual service time distributions
Fy, ..., F} are continuous in F1, ..., Fk. A rigorous justification for Theorem
2.9 is given in [Ba76]. There, the Markov processes XV (-) corresponding to
the above sequences of nodes are constructed on a common uncountable state
space S, where the residual times of the jobs are included in the state. The
Markov process that corresponds to the node in Theorem 2.9 is expressed as
a weak limit of the processes X% (-); this provides a rigorous justification for
the convergence of 7V and F{V, ..., F¥ that is needed for the theorem. [Ba76]
in fact demonstrates the analog of Theorem 2.9 in the more general context
of symmetric queueing networks.
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The above uncountable state space setting requires a more abstract frame-
work than one typically wishes for a basic theory of symmetric networks. The
countable state space setting is typically employed in the context of either
mixtures of Erlang distributions, the more general phase-type distributions,
or some other dense family of distributions. (See, for example, Section 3.4
of [As03], for more detail.) Quasi-reversibility, which we discuss in the next
section, also employs a countable state space setting.

2.5 Quasi-Reversibility

In Sections 2.3 and 2.4, we showed that the stationary distributions of ho-
mogeneous nodes of Kelly type and symmetric nodes are of product form.
Employing quasi-reversibility, it will follow that the stationary distributions
of the corresponding queueing networks are also of product form, with the
states at the individual stations being independent and the distributions there
being given by Theorems 2.7 and 2.8.

Quasi-reversibility has two important consequences. When a queueing net-
work can be decomposed in terms of nodes that are quasi-reversible, the sta-
tionary distribution of the network can be written as the product of the sta-
tionary distributions of these individual nodes. It will also follow from the
“duality” present in quasi-reversibility that the exit processes of such net-
works are independent Poisson processes, a property that is inherited from
the processes of external arrivals of the network. Quasi-reversibility does not
depend on the routing in a network, but holds only under certain disciplines,
like those mentioned in the first paragraph.

In this section, in order to avoid confusion, we will say that a departing
job from a class that leaves the network exits from the network (as opposed to
being routed to another class). For nodes, such as in the two previous sections,
departures and exits are equivalent.

Before introducing quasi-reversibility, we first motivate the basic ideas with
a finite sequence of M /M /1 queues that are placed in tandem:

—-1-2—-...2k—... o K— . (2.42)

Jobs are assumed to enter the one-class station, with j = k = 1, according to a
rate-a Poisson process, and are served in the order of their arrival there. Upon
leaving station 1, jobs enter station 2 and are served there, and so on, until
leaving the network after having been served at station K. All jobs are as-
sumed to have exponentially distributed service times which are independent,
with means my so that amy < 1.

An M/M/1 queue with external arrival rate o and mean service time m
has stationary distribution given by (2.1), if ma < 1. Under this distribution,
the corresponding Markov process X (t), —oo < t < 00, is reversible, and so is
stochastically equivalent to its reversed process X (t) = X(—t). In particular,
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the stationary process X1 (+) for the number of jobs at station 1 is stochastically
equivalent to its reversed process Xl() Interpreting Xl() in terms of the
arrival and departure of jobs, with the former corresponding to an increase
and the latter a decrease of X 1(+), jobs arrive according to a rate-a Poisson
process. But, each arrival of a job for X’l(-), at time t, corresponds to the
departure of a job for X;(-), at time —t. It follows that the departure process
of jobs for X;(-) is a Poisson rate-a process. Moreover, departures preceding
any given time ¢ are independent of X (¢1). What we are observing here, is
that the specific nature of the Poisson input into station 1 results in an output
of the same form.

Let X5(+) denote the process for the number of jobs at station 2, and
assume that Xs(to) has the stationary distribution (2.1), with m = ma, for a
given to and is independent of X (¢) for ¢ > to. The arrival process of Xs(+)
is also the departure process of Xi(), which is a rate-a Poisson process, by
the previous paragraph. It follows that X5(-) is also the stationary process
of an M/M/1 queue. Its arrivals, up to a given time t1, with ¢; > to, are
independent of X (t1) by the previous paragraph. Consequently, X;(¢;) and
X5(t1) are independent, each with the distribution in (2.1), with m; and mo
replacing the mean m. Since ¢; was arbitrary, the joint process (X1(-), X2(-))
is Markov and stationary, for all ¢ > #y. Since to was arbitrary, (X1(-), X2(-))
in fact defines a stationary Markov process over all ¢.

Continuing in this manner, one obtains a stationary Markov process
X(t) = (X1(t),...,Xk(t)), —oo < t < oo, whose joint distribution at any
time is a product of distributions of the form in (2.1). One therefore obtains
the following result.

Theorem 2.10. Assume that the interarrival time and the service times of
the sequence of stations depicted in (2.42) are exponentially distributed, with
amy < 1 for each k =1,..., K. Then, the network has a stationary distribu-
tion m, which is given by

K
m(ny,...,ng) = H(l — amy)(amy)™, (2.43)
k=1

forn, € Zy .

We note that although the components of the stationary distribution given
by (2.43) are independent, this is not at all the case for the components
Xi(+) of the corresponding stationary Markov process X (-). In particular, a
departure at station k coincides with an arrival at station k + 1.

Results leading up to Theorem 2.10 and the above proof are given in [Jab4],
[Bub56], and [Re57]. More detail on the background of the problem is given on
page 212 of [KeT79].

The same formula as in (2.43) holds when the routing in (2.42) is re-
placed by general routing, if the total arrival rates A\ are substituted for
a. More precisely, suppose that a subcritical Jackson network (i.e., a single
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class network with exponentially distributed interarrival and service times)
has external arrival rates « = {ay, k = 1,..., K} and mean routing matrix
P ={Pyys, k,L=1,...,K}. Then, it has the stationary distribution =, with

K

a1, oomi) = [T = Xema) i)™, (2.44)
k=1

for np € Z4 . This result is no longer as easy to see as is (2.43); it was
shown in the important work [Ja63]. The result will follow as a special case
of Theorems 2.3 and 2.12.

Basics of quasi-reversibility

The “input equals output” behavior of the network in (2.42) was central
to our ability to write the stationary distribution of the network as a product
of the stationary distributions at its individual stations. Quasi-reversibility
generalizes this concept, and leads to similar results for more general families
of networks. Quasi-reversibility was first identified in [Mu72] and has been
extensively employed in work by F.P. Kelly. The property can be defined in
different equivalent ways; we use the following analytic formulation.

We consider a node for which arrivals at its classes k = 1,..., K are given
by independent Poisson processes, with intensities o = {ay, k£ = 1,..., K},
that do not depend on the state of the node at earlier times, and for which
the exits occur only one at a time and do not coincide with an arrival. The
evolution of the node is assumed to be given by a Markov process X (-) with
stationary distribution 7w defined on a countable state space S. Assume that
all states communicate. Also, let ¢ denote the transition function of X (-) and
q the transition function of the reversed process X () satisfying (2.11).

Under the above assumptions, any change in the state of the node due
to a transition from x to y must be due to an increase by 1 in the number
of jobs at some class k, for which we write y € Ag(z); a decrease by 1 at
some k, for which we write y € Ex(z); or a transition that involves neither
an increase nor a decrease, for which we write y € I(x), and which we refer
to as an internal transition. Note that y € I(z) and = € I(y) are equivalent.
An example of an internal transition is the “advance in stage” y = s;(x) in
Section 2.4, although in the current setting far more general changes of state
are allowed, including the simultaneous swapping of positions by many jobs.
General changes of state are also allowed with the arrival or exit of a job.

We will say the node is quasi-reversible if for each class k and state =z,

> dzy) =B (2.45)
yEAL(x)

for some () > 0. The equality (2.45) says that the rate of arrivals at each
class k for the reversed process X(:) does not depend on the state x. It is
equivalent to the apparently stronger
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Yo dwy) = Y gy = (2.46)

yEAL(x) yEAR(x)

for each k and z, which states that 8 = ai. (Note that the last equality
follows automatically from the definition of ay.)

To see (2.46), we note that by (2.45), the arrival times of X(-) form inde-
pendent rate-0; Poisson processes at the K classes. The same reasoning that
was applied to the sequence of M/M/1 queues in (2.42) implies that the exit
times of X (-) also form independent rate-3; Poisson processes. By assump-
tion, only one exit occurs at each such time. Moreover, under the stationary
distribution 7, the rates at which jobs enter and leave a class are the same.
Since the former is g, this implies 8 = ay, as needed for (2.46).

In the preceding argument, we have shown that the exit processes for X (+)
form independent rate-a Poisson processes. Comparison with X (+) also shows
that exits for X (-) preceding any given time ¢; are independent of X (¢1). These
are important properties of quasi-reversible nodes. We have already employed
them in the proof of Theorem 2.10.

The term quasi-reversible can also be applied to a queueing network rather
than just to a node, with equation (2.45) again being employed as the defining
property. (One should interpret Ay (x) in terms of external arrivals at k.) In
this setting, the stronger (2.46) need not hold, since departures from a class,
that are not exits, may occur because of a job moving to another class within
the network, and the reasoning in the paragraph below @.46) is not valid.
Nevertheless, external arrivals for the reversed process X (-) correspond to
jobs exiting the network for X(-). The same reasoning that was employed
for quasi-reversible nodes therefore implies that the exiting processes at the
classes k are independent rate-(3; Poisson processes.

Although we will not use this here, we also note that the partial balance

equations
m@) > qwy)= > wWaly,) (247)

yEA(z) yEAR(z)

for each k and x, are equivalent to (2.46), and hence to the quasi-reversibility
of a node. This follows immediately from the definition of ¢ in (2.11) and the
assumption 7(z) # 0 for all 2. These equations are weaker than the detailed
balance equations, which correspond to reversibility, but include information
not in the balance equations. The partial balance equations are often used as
an alternative to quasi-reversibility.

Construction of networks from quasi-reversible nodes and applications

The main result on quasi-reversibility is Theorem 2.11, which states that
when a queueing network satisfies certain conditions involving quasi-reversible
nodes, its stationary distribution can be written as the product of the sta-
tionary distributions of these nodes. These nodes typically correspond to the
stations of the network in a natural way. Such a queueing network is itself
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quasi-reversible. Examples of these queueing networks are the sequence of
M/M/1 queues in (2.42), Jackson networks, the homogeneous networks of
Kelly type that were defined in Section 2.3, and the symmetric networks that
were defined in Section 2.4.

We will consider queueing networks in the following framework. The net-
work will consist of J stations and K classes on a countable state space S of
the form

S=5'%x...x87,

where S7 is the state space corresponding to the j*" station. We will typically
write * = (z1,...,27) for z € S, where 27 € S7. For concreteness, we will
assume that for each j, S’ is one of the two spaces Sy and S. that were
employed in the last two sections, although the theory holds more generally.
As usual, the queueing network is assumed to have transition matrix P =
{Pge, k,¢ =1,...,K} and external arrival rates o = {oy, k = 1,...,K}.
Recall that A = Qo denotes the total arrival rate, and satisfies the traffic
equations given in (1.6).

We will employ notation similar to what was used earlier in the section,
with Ag(z), Ex(x), I;(z), and Ry ¢(x) denoting the states y obtained from z
by the different types of transitions. As before, Ay(z), Ex(z), and I;(z) will
denote the states obtained by an arrival into the network at &, an exit from the
network at k, and an internal state change at j. For y € Ag(x) or y € Ex(x),
we will require that y/ = 27 for j # s(k), and that the number of jobs at k
increase or decrease by 1, and elsewhere remain the same. For y € I;(x), we
will require that y/ = 27 for j # s(k), and that the number of jobs at each
class remain the same. We let Ry, ¢(x) denote the set of y obtained from z by a
job returning to class £ after being served at class k. We require that ¢/ = 2/
for j # s(k) and j # s(£), and that the number of jobs at k decrease by 1, at
{ increase by 1, and elsewhere remain the same.

The queueing networks we will consider will be assumed to satisfy prop-
erties (2.48)-(2.52), which are given in terms of prechosen quasi-reversible
nodes. Before listing these properties, we provide some motivation, recalling
the sequence of 1-class stations given in (2.42), with the stationary distribu-
tion in (2.43). When a given station j, with j = k, is viewed “in isolation”, it
evolves as an M/M/1 queue with mean service time my, and external arrival
rate «, and has as its stationary distribution the stationary distribution of the
corresponding M /M /1 queue. The stationary distribution of the sequence of
stations is given by the product of the stationary distributions of the individ-
ual queues. Because of the specific structure of the network, Poisson arrivals
into a given station result in Poisson departures, which then serve as Poisson
arrivals for the next station. This property allowed us to view the stations “in
isolation”.

We will show that queueing networks satisfying properties (2.48)-(2.52)
will have stationary distributions that are the product of the stationary dis-
tributions of the quasi-reversible nodes given there. Each such node can be
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interpreted as the corresponding station evolving “in isolation”. Here, “in iso-
lation” will also mean that routing between classes at the same station is not
permitted. The network in the previous paragraph, consisting of a sequence
of 1-class stations, will be a special case of this more general setup.

Because of the more abstract setting now being considered, we will not
explicitly follow the evolution of individual jobs; instead, we will think of the
quasi-reversible nodes as “black boxes”, which have a given output for a given
input, with a corresponding stationary distribution. Rather than employ the
Poisson-in, Poisson-out property directly, we will use the definition of quasi-
reversibility in (2.45). The external arrival rates o, for the classes at a given
node j will be given by the total arrival rate A\ for the corresponding class in
the network. This will be consistent with jobs always leaving the node after
being served, without being routed to another class.

The nodes we employ are assumed to have state spaces S7, j =1,...,J,
which are the components of the state space S for the network. Therefore,
for v = (2%,...,27) € S with 27 € S/, j = 1,...,J, one can also interpret
27 as the state of the corresponding node. Jobs at a given node will have
classes k € C(j), which are in one-to-one correspondence with the classes of
the correspondingly labelled station in the network. For 27 € S7 and k €
C(j), we employ notation introduced earlier in the section for quasi-reversible
nodes, with A7 (27), E{(27), and I’(27) denoting those states y’ obtained
from 2z’ by an arrival or exit at class k, or by an internal state change. We
let ¢/, j = 1,...,J, denote the transition rates for the Markov processes
X (-) of the nodes. The nodes are assumed to be quasi-reversible, with (2.45)
being satisfied by §7, the transition rates of the reversed processes X'J()
As mentioned earlier, the external arrival rates of the nodes are given by
aj, = M. As earlier in the section, we will assume that all states of a given
node communicate.

We will assume that the transition rates ¢(x,y) for the queueing network
can be written in terms of the rates ¢’(27,7) for the nodes as follows. For
y € Ai(z), we assume that

q(z,y) = (ar/M)d (a7, y7). (2.48)
Setting pi (27,97) = ¢7(27,97) /Ay, this can be written as
q(x,y) = arpl (2’ y7), (2.48")

where ZyjeAi(xj)pi(xjjyj) = 1 holds. (Here and later on, when j and k
appear together, we implicitly assume that k& € C(j).) For y € Ex(x), we
assume that

q(z,y) = ¢’ (27,37 Pro, (2.49)

where Py o def g _ > ¢ Prye. For y € Ry ¢(x), we require the existence of an
“Intermediate” state z between z and y, with z € Ey(x) and y € Ay(z), and
such that
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q(z,y) = ¢ (@7, 27)¢" (2", y") (Pre/ M), (2.50)

where h = s(¢). One can also write this as
q(w,y) = ¢’ (@7, 27) Peepp (2", "), (2.50')
For y € I;(z), we assume that

q(z,y) = ¢ (27,y), (2.51)

and finally, on the complement of the above sets, we assume that

q(z,y) = 0. (2.52)

The equations (2.48)—(2.52) have the following interpretation in terms of
the transition rates of the queueing network. The J different stations operate
independently of one another, except for the movement of jobs between them.
So, the transition rates in (2.48), (2.49), and (2.51) depend on z7 and y’
instead of on the entire states x and y. In (2.50"), after a class k job is served,
it moves to class £ with probability Py, ¢, with the probability of the new state
y depending on Just P and y When h # j, z is automatlcally given by
2 =y, 2P =2z" and 2 =i = yj for other values j'. The transition rates
¢’ in each display are those of node j, which does not permit returns. This
node can be thought of as the one obtained from the corresponding station by
replacing transitions to and from each class k by external arrivals and exits
at the same rates.

We now employ the above terminology to state Theorem 2.11. When its
hypotheses are satisfied, the theorem enables us to write the stationary dis-
tribution of a queueing network as the product of the stationary distributions
of the corresponding nodes.

Theorem 2.11. Suppose that the transition rates q(x,y) of a queueing net-
work satisfy (2.48)-(2.52), where the nodes with the transition rates ¢’ (27, y7)
are quasi-reversible with stationary distributions w. Then, the queueing net-
work has stationary distribution m given by

J
x) = Hﬂ'j(.l?j), (2.53)

where © = (z%,...,27). Moreover, the queueing network is itself quasi-

reversible.

The proof of Theorem 2.11 will be given in the next subsection. We first
note the following consequences of Theorem 2.11 and quasi-reversibility.

As an elementary illustration of Theorem 2.11, we return to the “sequence
of M/M/1 queues” in (2.42). Equations (2.48)-(2. 52) all hold in this setting, if
¢’ are the transition rates for the M/M/1 queues with o/ = o and m? = m;.
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All of these equations are easy to see and are nondegenerate in only a few cases.
In (2.48), q(x,y) # O only for k = j = 1 and, in (2.49), ¢(x,y) # 0 only for k =
K =J.In (2.50'), with 1 < k < K, one has Py x+1 = py i (2", y"+1) = 1 if
z is chosen by removing a class k job from x; (2.51) is vacuous in this setting.
Moreover, since the M/M/1 queues are reversible, they are quasi-reversible.
These queues are assumed to be subcritical and have stationary distributions
given by (2.1). Theorem 2.10 therefore follows as a special case of Theorem
2.11.

Equations (2.48)-(2.52) also hold for the more general Jackson networks
(which are, in turn, special cases of FIFO networks of Kelly type). Again,
¢’ are the transition rates for M/M/1 queues, this time with o/ = \; and
m? = m;. The equations are similar to those for the previous example, except
that the mean transition matrix P is general, and so (2.48)-(2.50") may be
nonzero for arbitrary k. The formula for the stationary distribution in (2.44)
is consequently an easy application of Theorem 2.11.

We now generalize Theorem 2.3 of Section 2.1. For homogeneous networks
of Kelly type and symmetric networks, equations (2.48)-(2.52) all hold if the
corresponding nodes are chosen in the natural way. Namely, each such node,
for j =1,...,J, is obtained from the corresponding station by replacing tran-
sitions involving routing from one class to another by exits from the network,
and by increasing the rate of external arrivals at each class k from ay to Ag
to compensate for this. Then, (2.48) and (2.49) are immediate. In (2.507), the
state z is chosen by removing the served job at k from x. The equality (2.50")
then follows since a transition from z to y, with y € Ry ¢(z), consists of a
service completion at k, followed by the routing of the corresponding job to
class [ of a station h, with the job then being assigned a position i according
to the rule p. When S7 = Sp, the transition ¢(z,y) in (2.51) does not occur;
when, for a symmetric node, S7 = S,, the transition corresponds to the ad-
vance of a stage. In either case, (2.51) is clear. Moreover, on account of (2.22)
and (2.36) in Sections 2.3 and 2.4,

Y @@ y)=an forallad €5, (2.54)
yi €Al (x9)

and so each such node is quasi-reversible. Note that this characterization
continues to hold for networks that are of mixed type, with some stations
being homogeneous of Kelly type and others being symmetric.

Recall that in Theorems 2.7 and 2.8, we saw that such nodes themselves
have stationary distributions that are of product form, as given in (2.20) and
(2.32). Theorem 2.7 was stated, for homogeneous nodes, in the context of ser-
vice times that are exponentially distributed, and Theorem 2.8 was stated, for
symmetric nodes, in the context of mixtures of Erlang distributions. Combin-
ing these results with Theorem 2.11, we therefore obtain Theorem 2.12. As in
Theorems 2.7 and 2.8, when the node is homogeneous, 2/ € Sy is assumed,
whereas when the node is symmetric, 27 € S,. In either case, we employ the
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condition
B =Yy (p?/qu(i)) < o0, (2.55)
n=0 =1

with p; = Zkec(j) Mg\

Theorem 2.12. Suppose that each station j of a queueing network is either
homogeneous of Kelly type or is symmetric, and satisfies (2.55). Then, the
queueing network has a stationary distribution w that is given by

J
m(z) = Hﬂj(xj), (2.56)

where each ™ is either of the form (2.20) or (2.32), depending on whether
the station j is homogeneous of Kelly type or is symmetric, and ay in these
formulas is replaced by Ag.

Theorem 2.11 shows that the stationary distribution of a queueing net-
work that is composed of stations corresponding to quasi-reversible nodes
has the product structure given in (2.53). Nevertheless, the processes that
are associated with the stations are not independent. One can see this easily
for the example at the beginning of the section consisting of a sequence of
M/M/1 queues: a departure from one queue coincides with an arrival to the
next. Similarly, the combined arrival processes at different classes (i.e., arrivals
from other classes as well as external arrivals) are typically not independent,
nor are the departure processes.

These processes are not to be confused with the processes of external
arrivals or the processes of jobs exiting from the network, which are in either
case independent. We note, though, that under the stationary distribution
for a queueing network composed of quasi-reversible nodes, the conditional
distribution at a station found by an arriving job is the same as the stationary
distribution there. This is clearly the case for external arrivals, but is also true
for arrivals in general. This is shown on page 70 of [Ke79] by considering the
reversed Markov process for the network.

Demonstration of Theorem 2.11

In order to demonstrate Theorem 2.11, we will employ Proposition 2.6. We
therefore need a candidate ¢ for the transition rates of the reversed process
X (+) for the network under its stationary distribution. Letting ¢’ denote the
reversed transition rates corresponding to ¢’, we define ¢ using the following
analogs of (2.48)-(2.52). We set

q(z,y) = (/)@ (27, y7) = Peod’(27,y7) for y € Ay(z), (2.57)

Q(w.y) = @ (27 y) Pro = @ (@ ) e/ M) fory € By(z).  (2.58)
For y € Ry ¢(x), we set
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sh( h . h

X il A q"(=",y")
q(l‘, y) = q] (xj7 Zj)Pk,K ~ (259)

theA?(zh) qh('zhvwh)
= qA] (l‘], Zj)dh (Zha yh)(PZ,k/)‘k)-
We also set o
q(z,y) = ¢ (27,y’) for z € I;(y), (2.60)
G(z,y) =0 for other values of y. (2.61)
Here, we are setting

Gk = MePros Poo=MNPor/ e, Pro=cr/Ar. (2.62)

The term APy is the rate at which jobs exit from the original network at
class k, and so should be the rate they enter the reversed network at k. The
second equality is obtained by reversing the direction of the mean transition
matrix P; the third equality is obtained by setting ]5;6,0 =1->, pk,z, and
applying the previous equality together with (1.6). We have implicitly set
Ak = A in (2.57). The second equality in (2.59) needs to be justified; it
follows from (2.62) together with

> @) = (2.63)
whe Al (zh)

Since each node is assumed to be quasi-reversible, (2.63) follows from (2.46)
and af = ;. In the proof of Theorem 2.11, we will also employ

de = Zak, (2.64)
k k

which follows from the definition of &;, and (1.6).

Proof of Theorem 2.11. The quasi-reversibility of the queueing network follows
immediately from the first equality in (2.57) and from (2.63), since

> dy) = (/M) > @@ y) = (/M)A = du,
yEAL(z) yI €AI (z7)

which does not depend on z.
The remainder of the proof is devoted to showing that the distribution 7
in (2.53) is stationary. We wish to show that 7 satisfies

m(x)q(x,y) = 7(y)i(y,x) for all z,y € S (2.65)

and
q(z) = ¢(xz) forallz e, (2.66)
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where § is defined in (2.57)-(2.61). These are restatements of (2.11) and (2.18),
and together with Proposition 2.6 imply that 7 is stationary. Since all states
are assumed to communicate, this is the unique such distribution.

Demonstration of (2.65). In order to verify (2.65), one needs to check the
different cases given by the formulas for ¢ in (2.48)-(2.52). Each is straight-
forward, with the most involved case being y € Rye. To check (2.65) for
y € Ry ¢(z), note that by (2.50) and the second part of (2.59), (2.65) reduces
to

ol (a?)m" (") (a7, 27)g" (2", y") = 77 (7 )n" (y") @ (7 27) 3" (2", ") (2.67)

after cancelling the common terms 7/’ (xj/), with j/ # j and j° # h, and
Py ¢/ Xe. This equality follows immediately from the definition of ¢/ and §" in
(2.11).

For the cases where y € Ag(x) and y € Eg(z), (2.65) reduces to analogs
of (2.67), which are somewhat simpler since only one node rather than two is
involved. The case y € I;(x) follows from the definition of ¢/. For pairs 2 and
y not covered in the preceding four cases, ¢(z,y) = §(y,z) = 0 by (2.52) and
(2.61). So, (2.65) holds in this last case as well.

Demonstration of (2.66). This part requires more work. We will show that
q(z) = Z ay — Z Ak + Z ¢ (27) (2.68)
k k j

and

Q(x) =) dr—Y M+ @) (2.69)
k k J

The first sums in the two equalities are equal by (2.64), and the last sums are
equal since (2.18) holds for each node. So, (2.68) and (2.69) together imply
(2.66).

We first show (2.68). We rewrite g(z) as

q(z) = (2.70)
)RS DD DL DED DEED DI D K¢
k yeAp(z) k yEEW(z) Kkt yERpe(z) I y€lj(a)
and analyze the different parts. By (2.48'), the first double sum on the right
equals
D > py) =) an (2.71)
k y.feAi(zj) k
By (2.49), the second double sum equals

S> 0 a@y)Peo. (2.72)
k

yI €B] (x7)
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By (2.507), the third double sum equals

Z S @@ Y P Y phhyh (273)

siem)(x1) ¢ yrearen
—Z > AWy P
PY EE’(xJ) L

By (2.51), the last double sum equals
Y ¢ : (2.74)
J yieli(ad)

Summation of (2.72)-(2.74) gives

+Y ) | dEy). (2.75)

y7€E7(9c7) 7 yje[j(mj)

Also, note that

SOY Py =Y k=3 A (2.76)
k k k

yI€A] (xd)

The sum of (2.75) and the left side of (2.76) is just >~ ¢/(27). On the other
hand, the right side of (2.70) is equal to the sum of the left side of (2.71) and
(2.75). So, q(z) is equal to the sum of }; oy and (2.75), whereas }, ¢’ (29)
is equal to the sum of ), Ay and (2.75). Solving for this last term implies
(2.68).

The argument for (2.69) is similar, and we employ the analog of the de-
composition in (2.70), but for §(z) instead of g(z). By the first equality in
(2.57) and (2.63),

> > i = (/M) Y, P@y) =) ar  (277)
k yeAg(z) k yi€ Al (29) &

Also, using the first equalities in (2.58) and (2.59), and (2.60), the same reason-
ing as that leading to (2.75) implies that the sum of the terms corresponding
to the last three double sums in (2.70) is

DD DR D D R U CERT) (2.78)

k y-feE‘,i(xj) J yIeli(xd)

On the other hand, it follows from (2.63) that

oY dE )= M (2.79)

E yi€Ag(zd) k
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The sum of (2.78) and the left side of (2.79) is just ), ¢’ (/). Employing
(2.77), (2.78), and (2.79) as we did (2.71), (2.75), and (2.76), the same rea-
soning as before implies (2.69). |

Another proof for Theorem 2.11

Another proof for Theorem 2.11, that is more probabilistic, is given in
[Wa82] and [Wa83] (see also [Wa88]). The basic idea of the proof is to modify
the queueing network by imposing an e delay, with € > 0, on all routing
between classes. The corresponding stochastic process will be easier to analyze.
It will not be Markov, but will have a distribution that is of product form and
is invariant over time, and is the same for all values of €. The limiting process
as € | 0 will be the Markov process for the original queueing network, and its
stationary distribution will be this distribution.

We now sketch the argument. Consider the J quasi-reversible nodes that
are associated with the queueing network as in (2.48)-(2.52), but which have
external arrival rates oy instead of A\p. We form a new network from these
nodes by assuming that when jobs leave a node j from class k, they are routed
back to class ¢ of node h with probability Py ¢, but with a fixed deterministic
delay € > 0. During this delay, such jobs are assumed to not affect the transi-
tions within the nodes, which now play the role of individual stations within
the network.

One can construct the corresponding stochastic process inductively over
time intervals of length €, starting with [0, €]. One argues by first assuming
that (a) the initial states at the J stations are independent of one another and
are given by the stationary distributions of the isolated nodes with external
arrival rates Ay and (b) over the time interval (0,¢], the jobs returning to
classes ¢ constitute independent Poisson processes having rates A\, Py ¢, which
are independent of the initial states in (a). Jobs from outside the system arrive
at class £ at rate oy, and so by (b) and the traffic equations (1.6), the combined
arrivals at £ from these two sources of jobs are Poisson processes with rates Ay
and are independent of one another. Because of the e delay for returning jobs,
jobs departing from nodes over (0, €] will not return over this period, and so
do not affect arrivals at £.

On account of these arrival processes, the processes at the stations will be
stationary over (0, €] and independent of one another. Since the corresponding
nodes are quasi-reversible, jobs depart from the classes k according to inde-
pendent rate-\; Poisson processes over this period, which are independent of
the states of the stations at time e. Because of the deterministic e delay re-
quired for returns, these jobs return to the classes £ as Poisson processes with
rates \gPx ¢, over the period (e, 2¢]. Consequently, the analogs of conditions
(a) and (b) hold over the time interval [e, 2¢].

Iteration over the time intervals (e, 2¢], (2¢,3¢], ... produces a stochastic
process on [0,00) whose states at different stations at any fixed time are
independent of one another, and whose distributions are the same as the



56 2 The Classical Networks

stationary distributions of the corresponding isolated nodes. This process can
also be extended to all times ¢ € (—o0, 00).

Letting € | 0, the sequence of these processes will converge to the Markov
process corresponding to the original queueing network. Since each of these
processes has the same joint distribution at any given time, this distribution
will be stationary for the limiting Markov process. Since this distribution has
the desired product form, this reasoning implies (2.53) of Theorem 2.11. By
considering the exit processes of the sequence of processes, one can also show
that the original queueing network is quasi-reversible.



3

Instability of Subcritical Queueing Networks

Until the early 1990’s, the understanding of multiclass queueing networks was
sketchy. In particular, relatively little thought had been given to the stability
of such networks. The network, of course, needs to be subcritical. On the
other hand, the “classical networks” considered in Chapter 2 are all stable
when they are subcritical. Does this behavior hold in general, assuming all
states of the corresponding Markov process communicate? Since one typically
cannot explicitly compute the stationary distribution of a network, the direct
approach in Chapter 2 needs to be replaced.

If stability holds universally for subcritical networks (or, in a broad enough
setting), one should expect a reasonably simple proof of this; the argument
would presumably be elementary because of its robustness. If, however, such
a result holds in some settings but not in others, a general theory (if one
exists) might be complicated. We now know through various examples that
stability does not always hold. Whether a general theory is possible is still an
open question. In this chapter, we present a number of examples exhibiting
different situations in which the number of jobs in the network goes to infinity
as t — oo. Chapter 4 will be devoted to positive results on the stability of
subcritical networks.

This chapter is broken into three sections, according to the order of ap-
pearance and content of the examples. In Section 3.1, the first basic examples
of unstable subcritical queueing networks are given. These consist of exam-
ples in [LuK91] and [RyS92] for static priority disciplines and [KuS90] for a
clearing policy. In Section 3.2, examples of unstable subcritical FIFO networks
are given, which consist of examples in [Br94a,b] and [Se94]. Section 3.3 dis-
cusses examples for other disciplines that illustrate features of interest. They
consist of an unstable network of Kelly type from [DaWe96], and examples
from [Du97] and [Ba98], where the region of stability of certain networks is
examined in greater detail.

Somewhat different definitions of “unstable” exist in the literature. For
us, a queueing network will be unstable if, for some initial state, the number
of jobs in the network will, with positive probability, go to infinity as t —
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0o. This was mentioned in Section 1.2. When the network has only a finite
number of states possessing fewer than a given number of jobs, and all states
communicate with one another, this is equivalent to saying that, for each
initial state, the number of jobs in the network goes to infinity almost surely as
t — oo. Both conditions will be satisfied for the examples in this chapter with
Poisson arrivals and exponential service times. Note that a network that is
not stable is not necessarily unstable as defined above, since the corresponding
Markov process can be null recurrent.

The intent of this chapter is to provide an elementary introduction to the
subject and at the same time impart some feeling for the development of this
subject in the 1990’s. An omission with regard to the latter is the interaction
with contemporary developments for heavy traffic limits. This includes the
example in [DaWa93], which highlighted the general lack of understanding of
the asymptotics for even simple multiclass queueing networks. This material
requires additional terminology and new concepts. Since it lies outside the
scope of these lectures, we omit it with some regret.

There has also been interest in examples exhibiting instability with regard
to certain questions arising in computer science. In this setting, the models
that are investigated and the relevant questions can take on a somewhat dif-
ferent flavor. For one such topic, adversarial queueing, stability under a “worst
case” scenario is examined, where an all-knowledgeable adversary is allowed
to modify the precise timing of input into the system. Service times are de-
terministic and are most often assumed to be the same everywhere. We omit
this topic and instead refer the reader to [BoKRSW96] and [AnAFKLLI6].

As mentioned in Section 1.2, it is sometimes convenient to employ different
notation for the classes of a network, depending on its routing. Most of the
examples in this chapter will be reentrant lines; we will usually label the
classes sequentially based on the order in which they appear along the route.
When the network has more than one deterministic route, this route will be
indicated by the first coordinate. In the first and last examples in Section 3.2,
we will find it convenient to use different notation because of the structure of
the networks, and we include the station as one of the coordinates.

3.1 Basic Examples of Unstable Networks

An elementary example of an unstable subcritical SBP network is given by
the Lu-Kumar network. The example is presented in a deterministic setting
in [LuK91]. Its proof there is short, and requires just a couple paragraphs.
We present here both this version and the model in a random setting, whose
proof is not difficult but requires a bit more work. We also mention a related
earlier model from [KuS90] for a clearing policy.

Independently, an unstable static priority network, the Rybko-Stolyar net-
work, was analyzed in [RyS92]. Its behavior is almost identical to the Lu-
Kumar network, with the routing differing in just one aspect. We discuss this
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network briefly. Although insufficiently appreciated at the time, both networks
have since had a substantial effect on thinking in queueing theory.

The Lu-Kumar network

This network is a reentrant line consisting of two stations, with two classes
at each station. Jobs following the deterministic route first visit station 1 af-
ter entering the network, next visit station 2 twice, and then visit station 1 a
second time, before exiting the network. The route is depicted in Figure 3.1;
as indicated at the beginning of the chapter, we order the classes according to
their appearance along the route. The system evolves according to a preemp-
tive SBP discipline, with jobs at class 4 having priority over those at class 1,
and jobs at class 2 having priority over those at class 3.

k=1 k=2
k=4 k=3
N N
=1 =2
Fig. 3.1.

In [LuK91], a deterministic version of this model is given, with jobs en-
tering periodically at the times 0,1, 2,.... The deterministic service time at
class k is given by my, with

me =mq =2/3 (3.1a)

and
my =m3z = 0. (3.1b)

This version of the model will be referred to as the deterministic Lu-Kumar
network. As we will see, even though the service at classes 1 and 3 is instan-
taneous, their presence affects the evolution of the network. This model is
somewhat artificial, but is easy to analyze. (A modification with more general
my, will be discussed shortly.)

Theorem 3.1. The deterministic Lu-Kumar network is unstable.

Note that because of the presence of instantaneous events at classes 1 and
3, we need to specify an ordering of service in case of “ties”. For this, we
assume jobs at all classes complete service at times t— “just before” ¢; the
assumption, in particular, allows jobs to be served at class 3 and move to
class 4, before a new job enters the network at class 1 and is served there. The
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changes in the long-term evolution of the system induced by other orderings
are minor.

Proof of Theorem 3.1. We assume that there are initially, at t = 0—, M € Z
jobs at class 1 and no jobs elsewhere. Since m; = 0, the M jobs at class 1
immediately leave there and move to class 2, where they begin service. Because
of the priority of class 2 over class 3, jobs at class 3 cannot be served until
class 2 is empty, which means that class 4 must remain empty until then.
Therefore, jobs at class 1 continue to be served until class 2 is empty. Since
meo = 2/3, reasoning along these lines shows that at time 2M — all classes are
empty except for class 3, which has 3M jobs (the M original jobs plus 2M
new jobs).

Since m3 = 0, these 3M jobs are immediately served at class 3 and move
to class 4, where they begin service. Because of the priority of class 4 over
class 1, jobs entering the network at class 1 cannot be served until all of these
jobs depart from class 4. Since m4 = 2/3, this occurs at time 4M —. Over the
elapsing time 2M, M’ = 2M jobs have arrived at class 1; moreover, at time
4M —, there are no jobs elsewhere in the network. The state at time 4M —
therefore has the same form as it had initially, but with twice as many jobs;
moreover, over [0—, 4M —], there are never fewer than M jobs in the network.
This cycle repeats itself indefinitely, resulting in always at least 2" M jobs in
the nt" cycle, which goes to infinity as n — oo. |

We note that for ma = my = ¢, any choice of ¢ > 1/2 suffices for the above
instability of the network; ¢ = 2/3 was chosen above for convenience. The
key feature of the network is that the main body of jobs is forced to remain
“clumped together” as it moves from class 1 to class 4 during each cycle. This
induces underutilization of (or “starvation” at) both stations 1 and 2, and
so is responsible for the instability of the network. The above argument does
not rule out the possibility of the number of jobs in the network remaining
bounded over time when starting from different initial states, since such states
need not communicate.

The above deterministic setting for the Lu-Kumar network and the re-
strictions on myg, in (3.1), are not essential features of the model. Assume
instead that jobs enter the network according to a rate-1 Poisson process and
are served at all classes according to independent exponentially distributed
random variables with means my > 0. We refer to this model as the random
Lu-Kumar network.

Theorem 3.2. The random Lu-Kumar network, with mg +my4 > 1, is unsta-
ble.

The proof of Theorem 3.2 is not difficult, but requires some preparation.
Before proceeding, we first point out that if instead

mi1+my <1, mo+mg<l1 (32)

(that is, the network is subcritical) and
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mo +my < 1, (33)

then the network is stable. This is shown in [DaWe96]. The argument employs
the machinery of fluid models, which are discussed in detail in Chapter 4.
The exponential assumptions on the interarrival times and service times are
important for neither direction, although in this framework, the Lu-Kumar
network corresponds to a countable state Markov process. We recall the FBFS
and LBFS reentrant lines, which were introduced in Chapter 1. It will be
shown in Section 5.2 that when they are subcritical, such reentrant lines are
always stable. The Lu-Kumar network, whose discipline is a mixture of these
disciplines, is unstable.

We recall from Chapter 1 the following notation, which will reoccur more
extensively later on in these lectures. Let Z(t) denote the number of jobs at
class k at time ¢, with Z(t) being the corresponding vector. Since the inter-
arrival and service times are all exponentially distributed, Z(¢) is a Markov
process. We set |Z(t)] = >, Zi(t). Also, let Wj(t) denote the immediate
workload at station j, that is, W;(¢) is the amount of time required to serve
all jobs currently at j, if one excludes other jobs from entering the station.

Before giving the proof of Theorem 3.2, we make the following two obser-
vations. Suppose that

Zy(t) > 0 and Zy(t) >0 for all t € (t1,12], (3.4)
for some t; < to. Then,
Wa(te) = Wa(t1) — (t2 — t1). (3.5)

The direction “<” follows from the priority of class 4 over class 1, which
prevents any jobs from entering station 2 when Z4(t) > 0, and hence over
(t1,t2]. The other direction is automatic. Since Wa(t2) > 0, (3.5) gives an
upper bound on 79, the first time at which either Z(t) = 0 or Z4(t) = 0, in
terms of W2(0). In particular, 7o < 0o a.s.

Similarly, the priority of class 2 over class 3 prevents any jobs from entering
class 4 as long as Z3(t) > 0. Together with the sentence after (3.5), this implies
that a.s.,

Zy(t) =0o0r Z4(t) =0 forallt > 7. (3.6)

As an immediate consequence, we have:

Lemma 3.3. For the random Lu-Kumar network, jobs in the classes 2 and 4
are a.s. not served simultaneously at any time t > 1.

This simple observation is the basis for the proof of Theorem 3.2. It says,
in essence, that service at these classes is restricted as if they belonged to the
same station, with the condition mgy + m4 > 1 implying that this “station”
is supercritical. Consequently, the network is unstable. This observation was
apparently first made in [BoZ92]. A more general version of it is used heavily
in the work on global stability in [DaV00], which is discussed in Section 5.4.
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Proof of Theorem 3.2. Set o; equal to the sum of the service times at classes
2 and 4 of the i*" job entering the network after time 0. Then, o1, 09, ... are
i.i.d. random variables with mean ms + my4. The times at which these jobs
are served are disjoint after time 7y because of Lemma 3.3. So, the time of
departure from the network of the n'® of these jobs is at least S,, — 79, where
Sp =Y., 0i. By the strong law of large numbers,

Sp/n— ma+ms asn— oo
holds a.s. It follows from this limit and the preceding observation that

limsup D(¢)/t < 1/(ma2+m4) ast— oo (3.7)
t—o0
holds a.s., where D(t) is the number of departures from the network over (0, ].
Let A(t) denote the number of arrivals in the network over (0,¢]. Since
A(t) is given by a rate-1 Poisson process, it also follows from the strong law
that
At)/t =1 asn— o0 (3.8)

holds a.s. The difference A(t) — D(t) gives a lower bound on |Z(¢)|. So, by
(3.7) and (3.8),

1itminf [Z({)|/t >1—1/(ma+m4) >0 as.,

with the last inequality holding since mg+my4 > 1. Consequently, |Z(t)| — oo
as t — oo. |

The Kumar-Seidman network

A somewhat earlier example in [KuS90] exhibits behavior similar to the
Lu-Kumar network. The model considered there consists of a reentrant line
with two stations and four classes, with route again given by Figure 3.1. The
model is again deterministic, with rate-1 arrivals and subcritical service times
satisfying mo + my4 > 0. The authors choose a continuous mass setting for
their model, which is somewhat easier to work with. (This setting is also used
for the model from [Se94] that is discussed in Section 3.2, where additional
background is given.)

The discipline is a clearing policy. This requires each station to continue
serving a class until there is no “job mass” left at that class, at which point the
station begins service at one of the remaining nonempty classes, if there are
any. (In the present example, each station has only two classes, and so there
is only one such remaining class.) We refer to the network given in Figure 3.1
with this clearing policy as the Kumar-Seidman network. A clearing policy
might be a practical choice for the discipline when there is a high start-up cost
for switching the processing at a station from one task (i.e., class) to another.

The network was assumed to be subcritical, with ms+my4 > 1. For a direct
comparison with the deterministic Lu-Kumar network, we instead assume the
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more restrictive (3.1). Using the same initial state as in Theorem 3.1, with
job mass M initially at class 1, it is not difficult to check that this model is
unstable in the same way as the Lu-Kumar network, with the job mass going
to infinity as ¢ — oco. Namely, mass starting at and entering class 1 is served
at classes 1 and 2. When the mass at class 2 is exhausted, service takes place
at class 3 and immediately afterwards at class 4, where all of the mass has
moved. At this last step, service ceases at class 1, where mass now builds up
while the mass at class 4 is served. By the time the last mass at class 4 has
been served, the mass is 2M at class 1, which completes the cycle. Note that
the clearing policy here plays the same role as the priority scheme in the Lu-
Kumar network, with the main body of mass being forced to remain together
as it moves from class 1 to class 4 during a cycle. This induces underutilization
of both stations 1 and 2, and is responsible for the instability of the network.

The discipline of the Kumar-Seidman network depends on its earlier states
rather than on the priorities of jobs currently in the network. So, as an example
of instability, it is less convincing than the Lu-Kumar network. ([KuS90] also
considered a “clear-a-fraction” discipline with the routing in Figure 3.2.) The
paper pre-dates [LuK91]. For that reason, networks with the routing in Figure
3.1 (or Figure 3.2), under any discipline, are sometimes referred to as Kumar-
Seidman networks.

The Rybko-Stolyar network

This network also consists of two stations, with two classes at each station.
Jobs are assumed to follow one of two symmetric routes, visiting first one
station and then the other, as indicated in Figure 3.2. The classes along the
first route are labelled (1,1) and (1,2), in the order of their appearance, and
the classes along the second route are labelled (2,1) and (2,2).

1,1 (1,2
2,2 2, 1)
~ ~
j=1 =2

Fig. 3.2.

The system evolves according to a preemptive SBP discipline, with jobs at
(2,2) having priority over jobs at (1,1) and jobs at (1,2) having priority over
those at (2,1). That is, jobs at the last class along a route always have priority
over jobs at the first class. Jobs are assumed to enter the network according
to two independent rate-1 Poisson processes, and are served at the classes
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(i, k) according to independent exponentially distributed random variables,
with rates my 1 = ma1 and my 2 = ma 2, and m; ; > 0.

This model was examined in [RyS92], and is generally referred to as the
Rybko-Stolyar network. Unlike the model in [LuK91], it is random. [RyS92]
showed the following result.

Theorem 3.4. The Rybko-Stolyar network, with my o > %, is unstable.

One can see, with some experimenting, that the Rybko-Stolyar network
should evolve in the same basic manner as the random Lu-Kumar network, if
one matches the classes (1,1), (1,2), (2,1), and (2,2) with the classes 1, 2, 3,
and 4 of the latter network. Jobs entering the Rybko-Stolyar network at (1,1)
have lower priority than jobs at (2,2) and jobs at (2,1) have lower priority
than jobs at (1,2), and so, in either case, must wait until jobs at the latter
classes are served. This is analogous to the relationship between classes 1 and
4, and 3 and 2 in the Lu-Kumar network. In fact, the Rybko-Stolyar network
“becomes” the Lu-Kumar network if one connects the classes (1,2) and (2,1)
as in Figure 3.3.

) )
~
/
~
~ -/
=1 =2
Fig. 3.3.

Both the Lu-Kumar and Rybko-Stolyar networks provide simple examples
of unstable subcritical queueing networks, and can be used to motivate more
complicated examples. The Lu-Kumar network has the advantage of being a
reentrant line; the Rybko-Stolyar network is symmetric with respect to its two
stations. A proof of Theorem 3.4 can be given along the same lines as that of
Theorem 3.2, except that the step bounding 7 needs to be modified. (One can
assume that station 2 is subcritical, from which it will follow that 7o < c0.)
The proof in [RyS92] is different and does not rely directly on Lemma 3.3. We
also note that the Rybko-Stolyar network is stable under the analogs of (3.2)
and (3.3) for m; ;. This was shown in [BoZ92].

3.2 Examples of Unstable FIFO Networks

The examples given in Section 3.1 are for SBP disciplines that have been
specifically designed to impede the even flow of jobs, and therefore “starve”
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their stations for work. These networks were initially regarded as artificial ex-
amples whose instability was not representative of “typical” disciplines, and
so received insufficient attention. It turns out that even subcritical queue-
ing networks with the FIFO discipline may be unstable. FIFO is a natural
discipline and was a typical choice for the discipline of multiclass networks
when multiclass networks started receiving attention. The demonstration of
the existence of unstable subcritical FIFO queueing networks therefore had
substantial influence on the stability theory of queueing networks.

Examples of subcritical FIFO queueing networks that are unstable were
given in [Br94a], [Br94b], and [Se94]. We focus here primarily on the example
in [Br94a]. It is the easiest to understand, and the mechanism that causes the
uneven flow of jobs may be thought of as an extension of that in [LuK91].

An unstable FIFO example

The example in [Br94a] is a reentrant line consisting of two stations. Jobs
following the deterministic route first visit station 1 after entering the network,
next visit station 2 repeatedly for a total of K times (where K will be chosen
large), and then visit station 1 a second time, before exiting the network. We
employ the notation (7, k) here for a class, with j = 1,2 denoting its station
and k denoting the order this class is visited among classes of its station. In
all, there are K + 2 classes in the network.

Jobs are assumed to enter the network according to a rate-1 Poisson pro-
cess and have exponentially distributed service times with means m, ;, corre-
sponding to the k" visit to the j*" station, with

mi2 =mMg1 =¢C (3.9a)

and
mjr =0 for (j,k)# (1,2) and (j, k) # (2,1). (3.9b)

The route and mean service times can be depicted as in (3.10), with the mean
service times being given above the arrows pointing from the corresponding
classes:
) c 0 ) 0 c
— (L1521 52,2) 5 52, k) 51,2)5 (3.10)

One requires ¢ to be close to 1 and § to be small. For the computations in
[Br94al,

399 ) 1 l1-c
— < 1 <—, 6< A1
00°°S0 ¢ S50 °SHke (3:.11)
are used. For instance, one may choose
399
= 100" K =1,600, §=10"1% (3.12)

With additional effort, less extreme values can be chosen. Note that on account
of (3.11),
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K
prL=my11+mio = d+c< 1, pa= Zmz}k =c+ (K — 1)(5 <1, (3.13)
k=1

and so these networks are subcritical.
One can demonstrate the following result.

Theorem 3.5. FIFO queueing networks with the routing in (3.10) and mean
service times in (3.9) and (3.11) are unstable.

According to a simulation in [Da95], instability already occurs at K = 4
for appropriate mean service times, although this is likely difficult to show
analytically. (The simulation is actually for a variant with slightly different
service times than those in (3.9), so that p; = pa holds.) We also note that
the network can be modified so that it remains unstable, without affecting
the main structure of the corresponding proof. For instance, the long string
of returns to station 2 in (3.10),

—-(2,1)—=(2,2)>... ~ (2,K) —
can be replaced by a route segment also involving a third station,
—-(2,1)—=(3,1)—=(2,2) = 3,2) > ... - (2,K) —» (3,K) —

where the service time at (3,k), for k£ = 1,..., K, is the same as at (2, k),
which is again chosen as in (3.9). So, consecutive returns to a station are not
a crucial feature of the model. Similar modifications can be made to the SBP
examples in Section 3.1 without affecting their instability.

In order to investigate the evolution of the queueing networks in Theorem
3.5, we employ the following notation. Here, Z; 1 (¢) will denote the number of
jobs at the class (j, k) at time ¢, with Z(t) denoting the corresponding vector
and |Z(t)| being the total number of jobs. (Recall that since Z(¢) does not
reflect the order of jobs, more information is needed to specify the state of
the corresponding Markov process.) By (j, k)™, we will mean the set of classes
occurring strictly after (j, k) along the route followed by jobs, and by Z;fk(t)
the number of jobs in (j, k)™.

Most of the work in demonstrating Theorem 3.5 is for the following induc-
tion step.

Proposition 3.6. Consider a FIFO queueing network satisfying the routing
in (3.10) and mean service times in (3.9) and (5.11), with

Z1,1(0) =M,  Z;(0) < M/50. (3.14)
Then for some € > 0, large enough M, and appropriate T (depending on M ),
P(Z11(T) > 100M, Z{|(T) < M) >1—e M (3.15)

and
P(|Z(t)| > M/4 for all t € [0,T]) > 1 — e M. (3.16)
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We will later choose T' &= 2¢M /(1 — ¢). Of course, the factor 50 in (3.14)
is not special, although the ratio Z;",(0)/Z;.1(0) should be small.

Once Proposition 3.6 has been established, the proof of Theorem 3.5 is
quick. To see this, suppose Z(0) satisfies (3.14) for some large M. Repeated
application of Proposition 3.6 implies that

oo

P(|Z(t)| < M/4 for some t > 0) < 226_100iEM, (3.17)
i=0

which — 0 as M — oco. All states of the Markov process Z(t) corresponding
to the network communicate with one another, and so, by (3.17), no state
is recurrent. Hence, |Z(t)] — oo a.s. as t — oo, for any Z(0). This implies
Theorem 3.5. Since T' & 2¢M /(1 — ¢), one can also employ Proposition 3.6 to
show that the number of jobs increases linearly in ¢, i.e.,

0= litminf |Z(t)]/t <limsup|Z(t)|/t < cc.
—00 t—o00

Recall that the iterative procedure of viewing time intervals over which the
number of jobs in a system grows geometrically, while the system returns to a
“multiple” of its original state, was also employed in the proof of Theorem 3.1.
Indeed, this is the most natural path to follow in attempting to analyze the
asymptotic behavior of many unstable networks. One question one can ask for
the FIFO queueing network in Theorem 3.5 is whether there are essentially
different ways in which Z(¢) can approach infinity. More generally, one can
ask about the nature of the Martin boundary of the Markov process associ-
ated with this or other unstable queueing networks. These questions remain
essentially uninvestigated.

Outline of the proof of Proposition 3.6

We outline here the proof of Proposition 3.6. We begin by introducing
a sequence of stopping times Si,Ss,..., Sy, ... for the process Z(t). Jobs at
either station at a given time ¢ are ordered according to the times at which
they are next served, so we can talk about a “first” or “last” job in this sense.
(Due to the multiple classes at each station, jobs entering the network earlier
may nevertheless be ordered behind more recent arrivals.) Let S; denote the
time at which the last of the original jobs (jobs at ¢ = 0) at station 1 is

served. Let So,85,...,5,... denote the successive times at which the last
jobs at station 2 are served, where the ordering is made at ¢t = Sy_1. Set
Sp = Sp4+1 = Sp42 = ..., where Sp, is the time at which station 2 becomes

empty. (On account of (3.13), p2 < 1 and so L < oo a.s.) We can think of
the intervals (Sp, Se+1], £ =1,2,..., as “cycles” at the end of which each job
starting at (2,k), k < K, is at (2,k + 1). Note that no job can be served
twice at station 2 before every other job there is served once, due to the FIFO
discipline. We also let T' (which appears in Proposition 3.6) denote the time
at which the last job at (1,2) at time Sz leaves the network.
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We break the outline of the proof into four main steps, corresponding to the
evolution of Z(t) over the intervals (0, S1], (S1,Sk], (Sk,S2k] and (Sax, T].
We present here the intuition for each step, with the reader being referred to
[Br94a] for a rigorous analysis.

Step 1. Behavior on (0, S1]. We assume, as in (3.14), that Z1 1(0) = M with M
large, and that there are few jobs elsewhere in the network. Since m;; =0 <<
1, one has S; << M except on a set of small probability. Also, ma 1 = ¢ >> 4,
and so at time Sp, nearly all of the original jobs in the network are still at
(2,1). Moreover, comparatively few new jobs have entered the network up to
time S7, and so there are few jobs at (1,1). A schematic diagram for this and
following steps is given in Table 3.1.

NGR @D 121 ] (22 | (23 [ |2K-1D2K) (1,2)
0 M * * * * * *
S * M * * * * *
So * cM M * * * *
S3 * M cM M * * *
Sk * HEIM|E2 MK M. .. cM M *
SK+1 * * EITM| B2 M| M cM
Sox * * * * * x |M/(1-c¢)
T |eM/(1-c)] = * * * *

Table 3.1. This table gives the approximate number of jobs at each class of the
network at the successive times 0, S1,. .., Sk+1,T. Classes marked with * are classes
having negligible numbers of jobs off sets of small probability. At t = Sk+1, the total
number of jobs at (1,1) and (2, 1) is approximately ¢ M, which is itself negligible.
Note that at ¢t = T, the state is a “multiple” of that at time 0, with factor ¢/(1 —c).
Since Sk ~ cM/(1 —¢) and T — Sk ~ cM/(1 — ¢), one has T =~ 2¢M /(1 — ¢).

Of course, since we are working with random events here, the above be-
havior is sometimes violated. However, such exceptional events occur with
probabilities that are exponentially small in M, and one can show they can
be ignored without affecting the basic nature of the evolution of Z(t). Here
and later on, we therefore neglect these exceptional probabilities. Needless to
say, a rigorous proof requires accurate bookkeeping of such exceptional prob-
abilities. We discuss this point after completing the description of Z(t) over
[0,T].

Step 2. Behavior on (S1,Sk|. We first consider the evolution of Z(t) over
(51, S2]. Over this time interval, the (approximately) M jobs at (2, 1) all move

0(2,2). Since ms 1 = ¢, the time it takes to serve these jobs is (approximately)
cM . The time required to serve other jobs is minimal, so S3—57 &~ ¢M. During
this time, (approximately) ¢cM new jobs enter the system, which quickly move



3.2 Examples of Unstable FIFO Networks 69

0 (2,1). Thus, at t = Ss, there are (comparatively) few jobs in the system
except at (2,2) and (2,1), where there are (approximately) M and c¢M jobs,
respectively.

Continuing our reasoning along the same lines, we observe that over
(S2, S3], the jobs at (2,1) and (2,2) advance to (2,2) and (2,3), respectively.
Since mg2 = 0 << 1, the time required to serve the jobs at (2,2) is negligible;
the time required for the jobs at (2,1) is ¢?M, so S3 — Sy &~ ¢2M. Over this
time, ¢?M mnew jobs enter the system, which quickly move to (2,1). So, at
time S3, there are few jobs in the system except at (2,3), (2,2), and (2,1),
where there are M,cM and ¢*?M jobs, respectively. Proceeding inductively,
we obtain that at time Sk, there are M jobs at (2, K), ¢cM jobs at (2, K — 1),
and so on down to (2,1), where there are ¢ =1 M jobs. At station 1, there are
few jobs. The elapsed time Sk — Sg_1 ~ E=1M. On account of (3.11), K
is small, and so there are about

K-1
> M A~ M/(1-c) (3.18)
£=0

jobs in the system. Likewise, Sk &~ ¢M/(1 — ¢).

We point out that the large number of “quick” classes for station 2, in
conjunction with the FIFO discipline, serves to trap most jobs within station
2, and prevent them from reaching class (1,2), until there are few remaining
jobs at the “slow” class (2,1). The behavior of this network thus mimics that
of the Lu-Kumar network, with the role of the single low priority “quick” class
of station 2 being played by these many “quick” classes.

Step 8. Behavior on (Sk,Sak]. Over the short period of time (Sk,Sk+1],
the evolution of the system changes. The M jobs from (2, K) arrive at (1,2).
Since mg,1 = ¢, these jobs require time cM to be served at station 1, during
which time new arrivals at (1,1) will not be served. The cycles (S, Se+1],
¢ =K,...,2K — 1, are all of much shorter duration than ¢M, because of
(3.11), as is their union (Sk, S2k]. By the end of this period, the jobs already
at station 2 at time Sk have already arrived at (1,2); because of (3.18), there
are essentially M /(1 — ¢) such jobs. So, at time Sok, there are essentially
M/(1—c) jobs at (1,2) and no jobs elsewhere. Of course, here and elsewhere, we
are taking liberties in ignoring “negligible” quantities of jobs and probabilities.

Step 4. Behavior on (Sak,T]. During (Sex, T, the M/(1 — ¢) jobs at (1,2)
exit the system. The time required to serve these jobs is ¢M/(1 — ¢). So,
T — Sox =~ cM/(1 — ¢). During this time, ¢M/(1 — ¢) jobs enter the system.
These new jobs are obliged to remain at (1,1) until time

T:SQK+(T—SQK) QQCM/(I—C).

At this time, there are few jobs elsewhere in the system. So at time 7', the
state of the system is a “multiple”, by the factor ¢/(1 —¢), of the state at time
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0. This is the type of bound needed in (3.15) of Proposition 3.6. The bound
¢ > 399/400, that we are assuming in (3.11), will be sufficient to derive (3.15)
when the above argument is carried out rigorously. (Presumably, the system
exhibits the same behavior when ¢ > 1/2.)

We still need to demonstrate (3.16) of Proposition 3.6, which gives a lower
bound on |Z(t)| over [0, T]. The previous reasoning in fact shows that, except
on a set of small probability, |Z(¢)| will not drop much below M on [0,T].
This is because, up to time Sk, most of the original M jobs at (1,1) remain
in the system, with there being approximately M /(1 — ¢) jobs in the system
at time Sk. Since m; 2 = ¢, before most of these jobs have left the system,
an additional ¢M/2(1 — ¢) >> M jobs enter the system, which are trapped
at (1,1) until time 7. The bound in (3.16) follows from a rigorous version of
this reasoning.

We stated during the outline of the proof of Proposition 3.6 that the
probabilities of the exceptional events we neglected were exponentially small
in M. Here, we provide a short summary of the approach used in [Br94a] to
show this, referring the reader there for more detail.

Let X7, Xo, X3,... beii.d. mean-1 exponentially distributed random vari-
ables, with Y,, = X3 + ... 4+ X,,. Then, for each a > 0, there exists § > 0,
such that for n > 1,

P(|Yn —nl|/n>a) <e P (3.19)

This is a simple large deviations bound that can be demonstrated in the usual
way, by applying Markov’s Inequality to the moment generating function of
Y... It extends immediately to i.i.d. exponentially distributed random variables
with other means. The variables Y,, can also be inverted to obtain analogous
exponential bounds on the number of exponentially distributed random vari-
ables occurring by a given time.

For a given class (j, k), one can write

Zjxk(t) = Zjk(0) + Aj i (t) — Djk(t), (3.20)

where A; ;(t), respectively Dj; i (t), are the total number of jobs arriving at,
respectively departing from, (j, k) over (0,¢]. By applying (3.19) repeatedly,
one can derive upper and lower bounds on A, ;(¢) and D, x(t), and hence
on Zj i(t), over the times S1, S, ..., Sak, T defined earlier. For instance, re-
placing 1/50 by n for readability, the first bounds employed in [Br94a] are
exponentially small upper bounds in M for the probabilities that

S1 > 2’[7M, A171(31) > 3’17M, D271(51) > 377]\47

with the first of these bounds together with (3.19) being used for the last two
bounds. The last two bounds are then applied to obtain exponentially small
upper bounds on



3.2 Examples of Unstable FIFO Networks 71

Z21(S1) < (1 =3)M,  Z11(S1) + Z21(S1) > (1 + 4n) M,
Z;J(Sl) + D12(S1) > 4nM.
Similar bounds, such as on
Z3 1 (Sk) + D1a(Sk) > 4nM, k=2,... K,

are then obtained. These last bounds limit the rate at which jobs can move
through the system. Together with further estimates, these bounds enable one
to rigorously justify the reasoning employed in Steps 1-4.

Another unstable FIFO example

The following unstable FIFO reentrant line is given in [Se94]. It consists
of four stations, each visited three times, with route given in Figure 3.4. As
in Section 3.1, class k denotes the k' class along the route.

< 2 [ k=9

k=1 0 k=2 0 [ k=3|¢%
B k=6 0 | k=5 0 | k=4 >
0 | k=11] 0 | k=10

< k=12| ©2

Fig. 3.4. The service time for a class is given along the route immediately after the
class.

The model is a continuous, deterministic analog of a queueing network,
whose state at each class is given by a nonnegative real number representing
the quantity of “mass” there. As time evolves, this mass is served in a contin-
uous and deterministic manner. This model is an example of a fluid network.
Fluid networks were mentioned briefly in Section 1.3 and are similar to the
fluid models that are considered in detail in Chapter 4; we omit a systematic
discussion here. We denote by Zi(t) the amount of mass at class k at time
t, by Z(t) the corresponding vector, and by |Z(t)| its magnitude. In analogy
with our definition for queueing networks, we will say this fluid network is
unstable if for some initial state, |Z(t)] — oo as t — co.
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As indicated in the figure, each station has one “slow” class and two
“quick” classes. The “slow” classes have service times ¢; and cy, which are
assumed to satisfy

20c1)? < ea <1, ¢ >1/2; (3.21)

the “quick” classes have 0 service times. The service rates are given by the
reciprocals 1/¢; and oo; service at the “quick” classes is therefore instanta-
neous. The presence of the “quick” classes nonetheless affects the flow of mass
through the system since, according to the FIFO discipline, mass at such
a class must wait until earlier arriving mass at the station’s “slow” class is
served. As with previous reentrant lines, we assume mass enters the system
(in this case, deterministically) at rate 1. These features are similar to those
in [KuS90] and [LuK91].

It is easy to see that this network is subcritical, since the sum of service
times at each station is less than 1. The amount of mass in the network goes
to oo as t — oo, however, for appropriate initial states. Such a state is given
by

ca — 2(cp)?
ZQ(O) = 201M, Zg(o) = .1\4-7 Zlo(O) = TMM, (322)
Cy — 2(61)2
Z12(0) = WM, Z1(0) = 0 elsewhere,

where the mass at class 12 is understood to have arrived before that at class
10. (Since the service at both classes 2 and 8 is instantaneous, the ordering
there is not important.) From this, one obtains:

Theorem 3.7. The FIFO fluid networks defined above are unstable.

As with the networks considered so far in this chapter, the proof consists
of an iterative argument, with the state of the system returning to a geomet-
rically growing “multiple” of the original state after each iteration. As before,
|Z(t)] will grow linearly in ¢.

[Se94] also considers the variant of the above model with mass leaving
the system after classes 3, 6, and 9 (as well as after class 12), and mass, at
unit rate, entering the system at classes 4, 7, and 10 (as well as at class 1).
Since the analog of Theorem 3.7 for this variant is somewhat easier to show,
this is done in [Se94] and the proof of Theorem 3.7 is summarized. In both
cases, replacement of “instantaneous” classes by “quick” classes, with service
times § > 0, and the fluid network by the corresponding queueing network
considerably complicates the bookkeeping necessary for keeping track of jobs.
Although not published, this stochastic version is presumably doable.
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An unstable FIFO network with quick service times

The examples of unstable subcritical networks given so far all have at least
one class with mean service time greater than 1/2. In each of these examples,
it follows that the traffic intensity p; is greater than 1/2 at some station j.
What happens when p; is uniformly small at all stations? Must all such FIFO
queueing networks be stable? The following example from [Br94b] shows this
is not the case.

Jobs are assumed to follow one of two nearly identical routes, the “up-
per’and “lower” routes, at the end of which they exit from the system. As
illustrated in (3.23), there are J stations along each route. (Because of space
considerations, we label only the stations but not the classes along each route.)

—-1-2—-...52—23—>... 23— ...2J—>...—>J—
(3.23)

—-1-1-2—-...-2—-3—-..—23—-.. - J—...—-J—1—

Jobs are assumed to enter each route at rate 1/2. Along each route, the
stations j = 2,...,J are each visited seven times; at each such station, the
first visit is “slow” and the remaining six visits are “quick”. Only the visit
to station 1 at the end of the lower route is “slow”; the three earlier visits to
station 1 along both routes are “quick”.

We now give a precise description of the network depicted in (3.23). We
employ the notation (i,j,k) for a class, with ¢ = u,£ denoting its route,
j=1,...,J denoting its station, and k denoting the order this class is visited,
among classes of its station along this route. One has k = 1,...,7 for j =
2,...,JJ;k=1fori =uwand j=1;and k =1,2,3 for i = £ and j = 1. The two
types of jobs are assumed to enter the system according to independent rate-
1/2 Poisson processes. Service times of jobs are independent and exponentially
distributed, with means

cat (i,5,1), fori=wu,land j=2,...,J,

cat (¢,1,3), (3.24)
dat (i,5,k), fori=ul, j=2,....,Jandk=2,...,7,

dat (u,1,1),(¢,1,1) and (4,1, 2).

We assume that

0<c< 1%)0’ 0<d<c® J=|2ctlog(c™)). (3.25)
Each of the stations 2,...,J therefore has one comparatively slow and six
(very) quick classes for each type of job; station 1 has only the single quick
class for the upper jobs, and two quick classes and one slow class for lower
jobs. The choice of parameters is made for technical reasons. (The coefficient
2 in the definition of J has been chosen so that (1 — ¢)™/ ~ ¢2. The bound
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¢ < 1/100 is somewhat arbitrary.) One can think of this family of networks
as being constructed by piecing together J copies of the middle section of
networks of the type in (3.10). (We only need K = 7 here, although K > 7
can instead be used.)

Under (3.25),

p; <c+60 <2 forj=1,...,J.

So, by choosing ¢ small, the traffic intensity can be chosen as small as desired
for each j. Nonetheless, the following is true.

Theorem 3.8. FIFO queueing networks with the routing in (3.23) and mean
service times in (3.24)-(3.25) are unstable.

To demonstrate Theorem 3.8, one employs an appropriate analog of Propo-
sition 3.6. One can then argue exactly the same way as immediately after
Proposition 3.6 to finish the proof of Theorem 3.8. The spirit of the proof
of this analog is similar to that of Proposition 3.6, although details are more
involved. The purpose of the upper jobs is solely to restrict the flow of the
lower jobs. Because of the multiple stations employed here, the same reasoning
that shows, in the previous network, that the main body of jobs remains close
together, cannot be applied directly. However, with the control resulting from
the upper jobs, one can analyze the flow of lower jobs much as was done in
Proposition 3.6. For more details, the reader is referred to [Br94b] or [Br95].
Presumably, the analog of Theorem 3.8 holds for an appropriate reentrant
line, most likely with a route corresponding to that of the lower jobs in (3.23),
although the reasoning given in [Br94b] no longer suffices.

Theorem 3.8 has the following interesting consequence. One can compare
any FIFO queueing network satisfying (3.24)-(3.25) with the network that
is obtained from it by replacing (3.24) with the assumption that the mean
service time m; j i = c at every class. The lengths of the mean service times
for the new network are, of course, everywhere at least as great as those of
the original network. This new network is a subcritical FIFO network of Kelly
type with p; < 7c for all j. Such a FIFO network has a stationary distribution
that is given by (2.4) and (2.9). In particular, the stationary probability of
there being n jobs at a given station is at most (1 — 7¢)(7¢)™, n > 1, which
means that the network is in fact “very stable” for small ¢. This comparison
shows that decreasing the mean service times within a queueing network may
result in making it unstable.

At present, there is a lack of general criteria for the stability of FIFO queue-
ing networks. The difficulties are illustrated by the previous examples. They
do not, however, rule out two possible criteria for stability. Set m;-“i“ (m?“ax)
equal to the minimum (maximum) over all my, k € C(j), where j is fixed,
and set mf = mM" /mpex,

The first criterion is that, for given m® > 0, there exists an > 0, so that
if a FIFO network satisfies mf > mf and p; < r, for all j, then it is stable.
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The second criterion is that, for given r < 1, there exists an m” < 1, so that
if a FIFO network satisfies mf’ >m% and p; < r, for all j, then it is stable.
According to the first criterion, if the mean service times at a given station
are not too different, then small enough traffic intensities suffice for stability
independently of the specific structure of the network. Similarly, according to
the second criterion, a subcritical network, with p; <1 — € for all j and given

€ > 0, is stable as long as the ratios mf’ are close enough to 1. Networks of

Kelly type, with mf = 1, make up the limiting case in the latter scenerio.
Note that the first criterion becomes elementary if the routing of the network
is instead specified before r is chosen, since the total number of classes is then
fixed. In that setting, » can be chosen small enough so that X;p; < 1, which
implies the network is stable by the example at the end of Section 4.4. No
progress has been made toward justifying or disproving these criteria.

3.3 Other Examples of Unstable Networks

In the previous two sections, we have given a number of examples of subcritical
queueing networks that are unstable. Here, we give several other examples of
unstable queueing networks. In some of these cases, more can be said about
the region of stability as the traffic intensity p varies.

The first example we consider is from [DaWe96]. It consists of a subcritical
SBP reentrant line of Kelly type that is unstable. (Recall that a network is of
Kelly type if all classes at a given station have the same mean service time.)
This contrasts, of course, with the stability of FIFO networks of Kelly type
that was shown in Chapter 2.

The second example is from [Du97]. It exhibits a family of SBP networks
for which the region of stability is nonmonotone in the parameter p, behavior
that is shared with the last example in the previous section. The region of
stability is, moreover, explicitly calculated and is not convex.

The last example is from [BaBo99]. The family of networks given there is
FIFO, but with the added feature that the number of jobs on one of the given
routes in the network is bounded at any given time. The region of stability
here is also calculated explicitly and is neither monotone nor convex. The
boundary is, moreover, self-similar around one of its boundary points.

An unstable network of Kelly type

In contrast to FIFO networks, it is not sufficient for a subcritical queueing
network to be of Kelly type for it to be stable. It is not difficult to produce a
reentrant line, with an appropriate SBP discipline, that exhibits this behavior.
Such an example is provided in [DaWe96].

This example consists of two stations, with each station being visited three
times, and is depicted in Fig 3.5. The priority scheme is (6,5,1) at station 1
and (3,2,4) at station 2, e.g., the last class visited at station 1 has the highest
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priority and the first class visited there has the lowest priority. The discipline
is preemptive. We assume, as usual, that jobs enter the network according to a
rate-1 Poisson process. We also assume that the service times are exponentially
distributed, with mean 0.3 at each class. The network is clearly subcritical,
with p = (.9,.9).

k=1 | 03 k=2 | 03

03| k=6 \ k=3 | 03
03| k=5 \ 03 | k=4 )

Fig. 3.5. This reentrant line has priority scheme (6,5,1) at station 1 and (3,2,4) at
station 2. All service times have mean 0.3.

Theorem 3.9. The static priority reentrant line of Kelly type in Figure 3.5
is unstable.

We motivate Theorem 3.9 by comparing the evolution of the reentrant line
there with the evolution of the Lu-Kumar network; a rigorous argument can
be given by mimicking the proof of Theorem 3.2. First note that if one both
“combines” the last two classes of station 1, k = 5 and k& = 6, into a single
class and “combines” the first two classes of station 2, k = 2 and k& = 3, into
a single class, one obtains the four-class reentrant line whose route and mean
service times are given in Figure 3.6.

We assign to the classes of the new reentrant line the same priority scheme
as in the Lu-Kumar network, with ¥’ = 4 having priority over ¥’ = 1, and=
k' = 2 having priority over k¥’ = 3. Adding the service times at the combined
classes produces service times having gamma distributions with means 0.6, in
both cases.

Some thought shows that this new network is a natural “projection” of that
in Figure 3.5, in the sense that there is a pathwise correspondence between
the evolution of jobs in the two networks, with the understanding that jobs
at kK = 5 and k = 6, respectively at kK = 2 and k = 3, in the old network
are combined into k' = 4, respectively k' = 2, in the new network. This
correspondence relies on the assigned priority scheme for the old network:
both classes 5 and 6, respectively classes 2 and 3, have higher priority than
class 1, respectively class 4, and so the information lost in the projection is
immaterial in assigning the priority of service to jobs in the combined class



3.3 Other Examples of Unstable Networks 7

) )
K=1]| 03 K=2| 06
06 |k =4 03 | k¥'=3 >
- -

Fig. 3.6. “Combining” classes £k = 5 and k£ = 6 into a single class and k = 2 and
k = 3 into a single class produces this reentrant line, with the above mean service
times.

with respect to the other remaining class. Moreover, since class 6 has higher
priority than class 5 and class 3 has higher priority than class 2 in the old
network, jobs currently in service in the new network at class 4 and at class 2
will not be preempted in the middle of their service by other jobs there. This
allows us to maintain the pathwise correspondence between jobs in the two
networks.

Because of the above relationship between the two networks, instability
of one network implies instability of the other. The projected network is the
same as the Lu-Kumar network in Theorem 3.2, except that the exponentially
distributed service times at classes 2 and 4 are replaced by service times
with gamma distributions there, each with mean 0.6. As mentioned after the
statement of Theorem 3.2, the assumption that service times are exponential
is not needed there, if one is willing to allow a more general state space. Since
0.6 > 0.5, as required in the theorem, it will follow that the network in Figure
3.6 is unstable. One can also show Theorem 3.9 without referencing Theorem
3.2, but instead by mimicking its proof; the setup there has some similarity
with the “method of stages” employed in Section 2.4.

Two examples with nonconvex regions of stability

The first example is an SBP queueing network from [Du97]. As in the
Rybko-Stolyar network of Section 3.1, jobs travel along one of two routes
that are oriented in opposite directions. In the present setting, there are three
stations having two classes each, with the classes labelled according to the
route and position along the route, as in Figure 3.7. Jobs of the second route
are assumed to have priority over jobs of the first route at each of the first
two stations, with this being reversed at the third station. The discipline is
preemptive. Jobs enter the routes according to independent rate-aj Poisson
processes, ¢ = 1,2, and have independent exponentially distributed service
times with means m; k.

Consider the functions Fy(p), Fa(p), and F3(p) defined by

Fi(p) = (p11+p23—1)V(p12+p22—1)V(p13+p21—1)V(p13+p22—1),
Fy(p) = (pr1,3+p2,3 — 1)1 —p12 —p22) — (pr,2+ p2,s — 1)(L — p1,3 — p2.1),
F3(p) = (p1,3 +p2,3 — 1) Al(p1,3 — p1,2) V Fa(p)],
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Fig. 3.7. The priority scheme favors the classes (2,3), (2,2), and (1,3), respectively,
at the stations 1, 2, and 3.

where p; r = arm; k. (Recall that ¢ V b = max(a,b) and a A b = min(a,b)).
Also, set F(p) = Fi(p) V F3(p). The regions of stability /instability for the
network can be explicitly written in terms of these functions.

Theorem 3.10. The SBP network in Figure 3.7 is stable if F(p) < 0 and
unstable if F(p) > 0.

The reader should not focus too much on the specifics of F(p). For our
purposes, it is enough to observe that the regions of stability/instability are
explicit and are considerably more complicated for this relatively elementary
network than for either the Lu-Kumar or Rybko-Stolyar network. Moreover,
(a) the region of stability F'(p) < 0 is not convex and (b) stability is not
monotone in p, i.e., one can find p < p’ with F(p) > 0 and F(p’) < 0. Both
properties follow from Theorem 3.10 by setting p1,1 = p2,2, p1,2 = p2,3, and
p1,3 = p2.1, and restricting F'(p) < 0 to this three dimensional subspace. Slices
of this region at fixed values of p;,; can then be analyzed. As a quick check
on the consistency of the instability condition F'(p) > 0, note that Fy(p) > 0
if any of the three stations is supercritical.

In order to show both directions of Theorem 3.10, [Du97] employs er-
godic/transience criteria developed in [MaM81] for reflected random walks
on Ziiho. Motivation for the definition of F(p) is provided by fluid equations
that correspond to the original network. These equations are related to fluid
models, which will be studied in the next chapter.

The second example we discuss is from [BaB99] and examines a family of
networks consisting of a single route with controlled jobs and multiple trans-
verse routes with cross jobs. ([BaB99] employs the terms controlled customers
and cross customers.) Controlled jobs moving along their route visit each of
the J stations in the network once; the cross jobs each visit only a single sta-
tion before exiting the network. No more than L controlled jobs are allowed
in the network at a given time; when there are more than L such jobs, the
excess jobs wait at an outside buffer until a controlled job leaves the network,
at which point the first such job enters the network. There is no such restric-
tion on cross jobs. (See Figure 3.8.) All jobs are served according to the FIFO
discipline at each station. These networks can be thought of as a simple model
with window flow control for packet-switched communication networks.
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Fig. 3.8. The controlled jobs move horizontally and the cross jobs move vertically.
The number of controlled jobs in the network at a given time is restricted, with
excess controlled jobs required to wait at the outside buffer on the left. There are
currently 3 jobs waiting at the outside buffer.

Detailed analysis of such a system is possible under certain restrictive as-
sumptions. Set J = 2 and L = 1, and assume that the service times for all jobs
(both controlled and cross) are deterministic and take value 1. Also, assume
that the interarrival times of the cross jobs at station 1 are deterministic and
take value 7, with 7 > 1, and that there are never any cross jobs at station
2. There are only minimal assumptions on the interarrival times for the con-
trolled jobs, namely that they define a stationary and ergodic point process
with some intensity .

On account of the outside control on jobs, this network differs from the
other examples considered in this chapter. Also, because of the deterministic
aspects of this model, it is more appropriate to weaken the definition of stable
used elsewhere, and only require here that the model support a stationary
process (that need not be ergodic). The definition of unstable remains the
same as before.

This network is interesting because of how its region of stability depends
on 7. For fixed 7, stability is monotone in the parameter A\, and does not
otherwise depend on the arrival process for the controlled jobs; there is a X so
that for A < X, the network is stable, while for A > ), it is unstable. In Figure
3.9, A is graphed as a function of \; = 7~ !, with the heavy line being both
the graph of X and the boundary between the stable and unstable regions.

As in the example in Figure 3.7, the region of stability of the network
is not convex. Also, as in previous examples, it is not monotone. (This non-
monotonicity is in terms of the intensity of the cross traffic, though, instead
of in terms of the mean service times, as in the previous examples.) Moreover,
the graph of \ is self-similar around (0, %), as is indicated in Figure 3.9. An
open question is what part of this behavior remains when the deterministic
interarrival and service times in the model are randomized.

Two other families of networks with nonmonotone regions of stability are
given in[Br98a] and [DaHV99]. In both cases, decreasing the service time
distributions can destabilize the network. In [Br98a), this is done by showing
a network can be stabilized by inserting a single class station immediately
before the visit to each class. (Related deterministic work was done in [Hu94].)
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In [DaHV99], this is done in the context of global stability, which is discussed
in Section 5.4.
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Fig. 3.9. This is the graph of X as a function of A\; = 71, which is the boundary
between the stable and unstable regions. (The heavy line is the graph of X; the
dotted lines help one track the piecewise linear increments of X.)The graph of A is
self-similar around (0, 3). (Example reprinted from [BaB99] with permission from
Baltzer.)
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Stability of Queueing Networks

In Chapter 2, we demonstrated the stability of several families of queueing
networks by explicitly computing their stationary distributions. For queue-
ing networks with other disciplines, or with nonexponential interarrival and
service times, one cannot expect such explicit expressions. So, in order to in-
vestigate the stability of more general queueing networks, another approach is
needed. Such an approach should be more qualitative and less computational
in nature.

The approach we employ in this chapter to study the stability of queueing
networks employs fluid limits and fluid models. Fluid models were discussed
briefly in Section 1.3; we will examine both fluid limits and fluid models in
detail here. Employing these tools, one can reduce the study of queueing
networks to their simpler deterministic analogs. The basic theory is given
here; applications will be given in Chapter 5.

In the next several paragraphs, we give some background on previous re-
sults on the stability of queueing networks. We recall that a queueing network
is defined to be stable if its underlying Markov process is positive Harris re-
current. As mentioned earlier, when the state space is countable and all states
communicate, this definition reduces to the usual definition of positive recur-
rence. Results in earlier works are typically stated within this more restrictive
framework.

Interest in whether general families of queueing networks are stable has
developed since the 1980’s. Most early work was restricted to single class
networks (see, e.g., [Bo86], [Si90], [BaF94], [ChTK94], and [MeD94]). Work
on multiclass networks usually dealt with deterministic systems, with either
discrete or continuous job mass (see, e.g., [PeK89], [KuS90], [LuK91], and
[Ku93]); examples of both types of systems were given in Chapter 3. “Stabil-
ity” for such deterministic systems was shown in various cases in the above
literature, with stability, in this context, typically meaning that the quantity
of job mass in the system converges to 0 or remains bounded over time. As in
the stochastic setting, p < e is the natural requirement for stability.
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Examples of unstable deterministic networks, with p < e, were given in
[KuS90] and [LuK91]. An example of an unstable network in the stochas-
tic setting was given in [RyS92]; these and other examples were discussed
in Chapter 3. Such examples illustrate the importance of the discipline in
determining whether a queueing network is stable.

It has long been believed that queueing networks should be stable under
general assumptions. Inclusive conditions for stability are not known (and
likely do not exist). Instead, stability is typically shown in the context of a
specific discipline, under p < e and perhaps other constraints. The approach
we present in this chapter, using fluid limits and fluid models, reduces the
study of such problems to a simpler, deterministic setting.

The foundation for this approach was given in [RyS92]. For a two station
FIFO queueing network, with the same routing as in Figure 3.2 and with
exponential interarrival and service times, the authors showed stability when
p < e. Their argument involved showing the “stability” of solutions of a re-
lated deterministic system, and showing that rescaled solutions of the random
system remain close to those of the deterministic system. As pointed out in
[RyS92], this procedure is, in principle, quite general in nature. However, for
all but the simplest systems, technical problems arise when comparing solu-
tions of the random and deterministic systems.

Independently, [St95] and [Da95] developed criteria for the stability of
queueing networks, in terms of the stability of limits of rescaled solutions of
the network. (In the terminology of this chapter, [St95] used fluid limits and
[Da95] used both fluid limits and fluid models.) [St95] assumed exponential
distributions for the interarrival and service times; [Da95] considered more
general distributions, but at the price of requiring the use of Markov processes
with general state space. Applications illustrating this approach are given in
[Da95].

The material in this chapter is based on the approach taken in [Da95]. The
main theorem of the chapter, Theorem 4.16, corresponds to Theorem 4.2 in
[Da95]. Our approach here is a modification of that in [Br98al. Care has been
taken to give a detailed presentation of the material, including that cited in
[Da95]. As a consequence, the chapter is quite long; in the remainder of the
introduction, we summarize its contents.

Summary of chapter

Chapter 4 consists of five sections. In Section 4.1, we present the founda-
tions for the Markov processes we will need. We first give a detailed construc-
tion of the underlying Markov process for an HL queueing network. We next
summarize relevant results from general Markov process theory. The third
part of the section defines Harris recurrence and positive Harris recurrence,
and gives an alternative formulation, in Theorem 4.1, that we will use.

We recall that a queueing network is e-stable, if its underlying Markov
process is ergodic. In the last part of Section 4.1, we give general conditions
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under which ergodicity holds. At the end of Section 4.4, we will use this to
give criteria under which a queueing network is e-stable. In the continuous
time, countable state space setting, positive Harris recurrence and ergodicity
are equivalent.

Much of the material in Section 4.1 may be unfamiliar to readers. We point
out that concepts such as positive Harris recurrent and petite are motivated by
similar concepts in both the discrete time and countable state space settings.
Various proofs either rely on, or are motivated by, similar results in these
settings. Those readers who are interested in further background can refer to
Section 4.5, which serves as an appendix to this section.

When the interarrival and service times are exponentially distributed, the
underlying Markov process of the queueing network can, for many disciplines,
be constructed on a countable state space. This considerably simplifies the
preparation that is required to derive Theorem 4.16. In particular, one does
not require the general machinery that is introduced in Section 4.1. For readers
wishing such a “shortcut”, we present a summary, at the end of the different
sections, saying how the general approach presented here can be modified. (In
Section 4.4, the summary is instead presented after Theorem 4.16.) Here in
the introduction, we will also point out these shortcuts.

In Section 4.2, we present two results on bounded sets that we will need
later on. The first, Proposition 4.6, is a variant of Foster’s Criterion, which
we refer to as the Multiplicative Foster’s Criterion. The main condition is
that, off of a bounded set, the Markov process X (-) have a uniformly negative
drift on an appropriate time scale. One also requires that the bounded set be
either petite or uniformly small, which are defined in Section 4.1. (In essence,
petite means that all sets, weighted according to some measure, are “equally
accessible” from any point in the petite set. Uniformly small is a somewhat
stronger concept that is defined similarly.) One concludes that X(-) is posi-
tive Harris recurrent when the condition petite is assumed and ergodic when
uniformly small is assumed. In the countable state space setting, the petite
and uniformly small conditions can be dropped, since the empty state will be
equally accessible from all points in the bounded set. Moreover, Theorem 4.1,
from Section 4.1, is not needed for the proof of the Multiplicative Foster’s
Criterion in the countable state space setting.

The other result from Section 4.2, that we will need later, is Proposition
4.7. Tt says that when the interarrival times of a queueing network satisfy cer-
tain conditions, bounded sets will be uniformly small, and hence also petite;
this enables us to employ the Multiplicative Foster’s Criterion. The proposi-
tion is not needed in the countable state space setting.

Section 4.3 introduces fluid models and fluid limits. The first part of the
section recalls the queueing network equations that were discussed briefly in
Section 1.3; we provide more detail here. Fluid model equations are the deter-
ministic analogs of the queueing network equations. They were also discussed
briefly in Section 1.3; we provide further detail in the second part of Section
4.3. There, emphasis is placed on the basic fluid model equations, which are
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the fluid model equations that do not depend on a specific discipline. Proposi-
tion 4.11, in the subsection, presents several elementary results on fluid models
that will be used later. Two examples are given that illustrate nonuniqueness
of fluid model solutions and instability when the system is subcritical.

Fluid limits are introduced in the last part of Section 4.3. They provide a
rigorous connection between the queueing network and fluid model equations,
with the latter being satisfied by limits of solutions of the former, under a
“law of large numbers” scaling. Variants of fluid limits have been present in
the literature at least since [Ne82] (see also [ChM91]).

The use of fluid limits, as in Proposition 4.12 of this section, makes the
relationship between queueing network and fluid model equations precise. The
connection between queueing network and fluid model equations will be impor-
tant in Section 4.4, where we use the stability of fluid models (and, indirectly,
of fluid limits) to show the stability of queueing networks. The approach taken
in this section remains essentially the same when employed in the countable
state space setting.

In Section 4.4, we demonstrate Theorem 4.16, which is the main result on
the stability of queueing networks. As assumptions, one needs bounded sets to
be petite and the fluid limits to be stable. Proposition 4.7, from Section 4.2,
gives sufficient conditions for the former property to hold. The Multiplicative
Foster’s Criterion will be used, in conjunction with Proposition 4.7 and the
bounds given in Section 4.4, to demonstrate Theorem 4.16. The work required
for this simplifies considerably in the countable state space setting.

After the theorem, we provide various commentary, such as on modifica-
tions of its assumptions. One such modification, substituting uniformly small
for petite, suffices for the stronger conclusion that the network is e-stable. The
result, Theorem 4.17, follows by applying Theorem 4.3 from Section 4.1, and
otherwise reasoning as in the proof of Theorem 4.16. As mentioned earlier,
in the continuous time, countable state space setting, stability and e-stability
are equivalent.

4.1 Some Markov Process Background

In this section, we first introduce the Markov processes that are associated
with HL queueing networks. We next consider these Markov processes in
an abstract setting, in which we define positive Harris recurrence. We then
present a useful alternative characterization of positive Harris recurrence
which will be applied to queueing networks in the following sections. Some of
the background for this material is relegated to Section 4.5, which serves as
an appendix to this section.

We note that in the countable state space setting, the material that is
needed from this section is minimal. The construction of the Markov process
simplifies, since sample paths are piecewise constant with finite jump rates.



4.1 Some Markov Process Background 85

Moreover, standard recurrence concepts from Markov chain theory apply, and
so the discussion of Harris recurrence that is given here is not needed. More
detail is given at the end of the section.

Definition of the Markov process

In this subsection, we give a careful construction of the Markov process
that is associated with a given HL queueing network. Readers are encouraged
to consider this material, but those who are not interested in the technical
details should feel free to skip ahead to the next subsection. If the reader does
so, he/she should keep in mind that we are defining continuous time Markov
processes, on an appropriate space and with dynamics that correspond to the
queueing networks of interest. One should note the “norm” |z| of a state z,
which is given in (4.3): it is the sum of components corresponding to the
queue lengths, and residual interarrival and service times of the state. It will
be employed later on in the chapter.

We begin by defining the state space (S, .#) of the Markov process. In order
to motivate the different components of states of the space, we will repeatedly
allude to the various queueing network quantities they will correspond to.

The state of the Markov process, at any time, will be given by a point
x = (y,r), where

ye(ZxR)™® xRAxRE and reRK, (4.1)

and the coordinates are subject to appropriate positivity restrictions. Recall
that A is the set of classes at which external arrivals are allowed. It is assumed
that only a finite number of the pairs of coordinates of (Z x R)*, indexed by
i, are nonzero. For such a pair, the first coordinate k;, k; = 1,..., K, is to
be interpreted as the current class of a job in the network, with the second
coordinate s;, s; > 0, measuring how long ago the job entered this class, where
s; is given in descending order. The job with the largest second coordinate,
among those with first coordinate k, is thus the first or “oldest” job of class k.
(For “ties” where two or more pairs have the same second coordinate, order
the job with the smaller & coordinate first.)

We denote by z = (z1,...,2xk) the number of jobs in each class, and set
|z| = Zle z. The vector r is assumed to have coordinates r € [0,1], k =
1,..., K, with r, = 0, for zx = 0, and which sum to 1 over each nonempty
station j. For each nonempty class k, the coordinate 7y is to be interpreted
as the service rate of the oldest job of this class, with other jobs receiving no
service. (This is the HL property.) The coordinates ug, ur > 0, of Rl are
to be interpreted as the residual interarrival times for classes k, with k € A.
(That is, uy is the remaining time before the next arrival at & of a job from
outside the network.) The coordinates vy of R¥, for the y component, are the
residual service times for the oldest job at each class k, k = 1,..., K, with
v > 0 except when z; = 0, in which case we set vy, = 0. We denote by v and
v the corresponding vectors, and set |u| = >, . 4 |ux| and |v] = Eszl |vg]-
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We denote by S the space given by (4.1) and the above restrictions on the
coordinates. We wish to specify a metric on S. For this, it is convenient to
denote by 7; the service rate assigned to the i*® job, i = 1, ..., |z|. The metric
is defined by adding up the contribution of each of the coordinates in (4.1),
after taking differences for individual terms. Specifically, for z, 2’ € S, with
corresponding coordinates as denoted above, we set

[e.e]
d(z,a’) =Y (ki = kj| + |si — si| + [ = #)) A 1) (42)
=1
K
) fuk = uh] + Y ok — v,
ke A k=1

For most purposes, we will not require the full metric, but just the associated
“norm” | - |, with
|z = [2] + |ul +[v]. (4.3)

(|z| can be interpreted as the distance from x to the “origin”, which is not in
the space, however.) Note that |z| is continuous as a function of x. We also
equip S with the standard Borel o-algebra inherited from the metric, which
we denote by 7.

Since only a finite number of the coordinate pairs in (Z x R)*® are nonzero,
it is not difficult to see that the metric d(-,-) is separable. It is also locally
compact; with a bit of work, one can show this by showing that an open
ball around a point x is homeomorphic to a finite product of intervals of the
form (0,1) and [0,1). (Half-closed intervals are needed when either s; = 0,
s; = sy for some i # ', or the coordinates ry of r corresponding to a given
station j are on the boundary of the simplex Ekec(j) rg = 1.) The metric
is not complete, since one can choose Cauchy sequences x,,, with u, — 0 or
vp, — 0 as n — o0, that have no limit in S. It is, however, homeomorphic to
the complete metric d'(-, ) obtained by replacing the term ),  , |ug — uj| in

(4.2) by
|
D (ke —upl + | — = = A1),
keA Uk Uk
and 22:1 lu, — vj| by the analogous term (where we set 1 — 1 = 0). We

prefer to work with the simpler metric d(-, ), since we will not require S to
be complete.

We now formally define the Markov process underlying an HL queueing
network as the stochastic process X (¢), t > 0, on S that undergoes the follow-
ing evolution. We continue to use the same suggestive queueing vocabulary
that was employed in motivating the construction of S.

We set X (t) = (Y (¢), R(t)), with Y (¢) and R(t) taking values y and r as
in (4.1). (The coordinates s; of y are allowed to exceed ¢, and so jobs may,
in effect, arrive before time 0.) The evolution of X (¢), in between arrivals
and departures of jobs at classes, is given by the service rates Ry (t), which
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are constant over such intervals. Upon an arrival or departure somewhere in
the network at time ¢, the stochastic process is continued by assigning new
service rates R(t) = f(Y (t)), where f is a measurable function. The choice of
f corresponds to the discipline of the corresponding HL queueing network.

In order to describe the transition of X (¢) upon the arrival or departure of
a job at a class, we introduce the sequences of positive i.i.d. random variables
k() k € A, and v, (i), k =1,..., K, with i = 1,2,3,..., which correspond to
the interarrival and service times of the queueing network. We will also need
the sequence of i.i.d. random vectors ¢*(i), i = 1,2,3,..., with ¢¥(i) = e,
for some ¢ = 1,..., K or ¢¥(i) = 0, which give the routing of a job upon
completion of its service at a class. (Here, ¢, € R¥ is the unit vector in
the positive ¢ direction.) We assume the sequences &, ~, and ¢ are mutually
independent. These sequences, together with the function f and the initial
state x, will determine the evolution of X (-) for all times along each sample
path.

The process X (t) can be constructed inductively as follows. At times ¢
between arrivals and departures, R(t) = r gives the rate of decrease of each
component of the residual service time vector V(t) = v. When Vi (t—) = 0
occurs for some k, service at k for the oldest job of that class is assumed to
be completed, with the job being routed to another class £, if ¢*(i) = ey,
and leaving the network, if ¢*(i) = 0, where ¢*(i — 1) is the previous routing
vector applied at k. When this occurs, one sets Vj,(t) = (i) if class k is then
nonempty, and sets Vi (t) = 0, if k is empty. Until a job leaves its class, its age
Si(t) = s; continues to increase at rate 1. (The label i of a job will typically
change as it moves from one class to another.)

The components of the residual interarrival time vector U(t) = u always
decrease at rate 1 until hitting 0. At the time ¢ for which this occurs at a
given k, one includes the pair (k,0) in the state Y (t) and sets U(t) = & (4),
where ¢ is the index of the first unused interarrival time at k at time ¢. If the
class k is empty at time t—, and hence V4 (t—) = 0, one sets Vi (t) = (i),
where ¢’ is the index of the first unused service time at time t¢.

In various cases, the state space S can be simplified for queueing networks
with specific HL disciplines, or specific interarrival and service time distribu-
tions. For instance, when the interarrival and service times are exponentially
distributed, one can drop the u and v coordinates from the description of the
state (unless 7 is chosen to depend on them).

Preemptive static buffer priority disciplines were introduced in Chapter 1.
Such networks are HL, with 7; = 1 automatically holding for the oldest job of
the highest ranked nonempty class at each station. One can therefore drop the
age of jobs from the state space descriptor. As mentioned above, the residual
interarrival and service times can also be dropped from the descriptor when
the corresponding variables are exponentially distributed. The state space can
then be reduced to points in Z* with nonnegative coordinates, if one implicitly
assumes the given priority scheme that orders classes at each station, since
one is able to drop the coordinate r that governs service.
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Networks with the FIFO discipline are also HL, since the oldest job at a
station is always served first. If one chooses, one can drop the age of jobs from
the state space descriptor, by instead ordering the ages at each station; one
can also drop the coordinate r. As before, coordinates can also be eliminated
when the interarrival and service times are exponentially distributed. The
resulting state space will then be countable.

The state space S is large enough to contain the information needed for
the queueing networks we will investigate. It can, however, be modified if one
has other applications in mind. For instance, a state space descriptor for how
long ago a job entered the network can be appended. This is needed for the
FISFO networks mentioned briefly in Section 1.2 (see, e.g., [Br01]). Also, one
can associate with each job in a class a residual service time, instead of with
just the class itself (see, e.g. [Wi98b]). The definitions (4.2) and (4.3) then
need to be modified accordingly.

Foundations and terminology

It is not difficult to see that the process X (-) just defined is time homoge-
neous and Markov, and that its sample paths are right continuous. Although
X (+) is not a jump process, it evolves in a simple manner, having only isolated
discontinuities and evolving deterministically in between. In particular, after
a jump, the state of X(-) is explicitly known until its next jump, with its
evolution being linear in its coordinates.

The process X () is an example of a piecewise-deterministic Markov pro-
cess (PDP). Such processes are discussed in [Da84] and [Da93] in detail; we
will rely on the latter in our discussion. In [Da93], PDPs are the more general
family of processes whose evolution in between jumps, rather than being lin-
ear, is determined by a locally Lipschitz continuous vector field. Also, “killing”
at a rate dependent on the position is allowed in [Da93]; after such killing, the
process jumps according to a given random rule. In our setting, there is no
such killing. Since, in between jumps, X (+) lives in a subset of .S which is home-
omorphic to an open ball in R?, for some d, one can append a “boundary” 95
to S, which X (-) hits at a time t— immediately before a jump. For the setting
in [Da93], this approach is useful in assigning the jump rule for the process,
and it also allows one to define the process on the space Dg = Dg[0, 00) of
right continuous paths on S with left limits. However, since the process jumps
instantly upon hitting 9.5, the introduction of 35 has its own inconveniences.
We avoid these complications and just stick with the space S, referring the
reader to Sections 24 and 25 of [Da93] for the technical details in the more
general setting.

So far, we have not defined the filtration for the process X (-). We let F,
denote the natural filtration

F) =o(X(s), 0<s<1) (4.4)

and let FO be the o-algebra generated by F,, for t > 0. Rather than employ-
ing 7Y and FY, directly, we will use appropriate completions. As in [Da93],
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for each initial probability measure px on S, one can define a measure P, on
the sample space corresponding to the process. Letting F{* be the completion
of F? obtained by including all P,-null sets of F2,, one sets

=7, (4.5)

and denotes by Fo, the o-algebra generated by F;, for ¢ > 0. We henceforth
employ {F;, t > 0} as the filtration for the process X(-), and use P, to
denote the corresponding probability measures. This setup is typical of general
Markov process theory.

In addition to being complete in the sense of (4.5), the family {F;, ¢ > 0}
is right continuous, that is,

.7'—t+dif n Fite (4.6)

e>0

Because X(-) is a PDP, this is not difficult to show. (See Theorem 25.3 in
[Da93].) The properties (4.5) and (4.6) will be needed shortly for the Debut
Theorem and the strong Markov property.

Fort >0,z € S, and A € .7, set

Pl(z, A) = P,(X(t) € A).

It is shown in [Da93] that P(-,-) is a probability transition kernel on (5,.7).
That is, for fixed t and A, P'(-, A) is .¥-measurable; for fixed ¢ and x, P*(z,-)
defines a probability measure on S; and P5tt = P% o P?, for s,t > 0, deﬁnes
a semigroup. However, X (-) need not be a Feller process. (Recall that X (-) is

a Feller process if, in addition, P' : C(S) — C(S), where C(S) denotes the
continuous bounded functions on S.) This may be the case even when X (-)
corresponds to a queueing network with a FIFO or SBP discipline, since even
a small change in the future arrival time of a job may cause it to be served
after another job instead of before. This can induce a major change in the
future evolution of X(-), which will imply that for f € C(S), P'f need not
be continuous. Nevertheless, as shown in [Da93], X (-) is strong Markov.

In the next subsection, we will summarize the recurrence theory for Markov
processes that we will use for queueing networks. Part of the appropriate
literature assumes that these processes are Borel right. The intent there is
to employ a well-studied general framework, but this comes at the cost of
implicitly assuming some familiarity with a technical theory. Such knowledge
will not be relevant for our applications, and so we relegate to Section 4.5 a
brief discussion of the material. We summarize it here, noting that for a Borel
right process, the o-algebras satisfy (4.5) and (4.6), the process X () is defined
on a “reasonable” state space, has a transition semigroup, is right continuous,
and the process (foX)(-) is right continuous when f is an a-excessive function.
The last assumption can be replaced by the strong Markov property.
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Harris recurrence of Markov processes

We discuss here basic criteria for positive recurrence of Markov processes
on general state spaces. Since little is a priori assumed about either the state
space or the process itself, one must provide some structure to be able to say
anything of interest. There is a developed theory for the corresponding discrete
time Markov processes that goes back to Doeblin (see [Do53] for an account),
was developed in [Hab6], and includes contributions by [Or71], [AtN78], and
[Nu78] among others. Standard references are [Nu84] and [MeT93d]. The ba-
sic approach in the discrete time setting is to formulate conditions that are
general, but nonetheless enable one to mimic the machinery for discrete time
Markov chains. With the aid of resolvents, problems in the continuous time
setting can be reformulated in discrete time, which is the approach we sum-
marize here.

Following [MeT93a-93c] and [KaM94], we will assume that the Markov
processes X () are Borel right processes on a locally compact and separa-
ble metric state space (5,.7), where . is the Borel o-algebra generated by
the metric. The process X (-) will have a transition semigroup P! acting on
bounded measurable functions, its paths will be right continuous, and the
process will be strong Markov. (These properties follow from the assumption
that the processes are Borel right.) When working with discrete time Markov
processes, we will assume the state space satisfies the same properties.

One wishes to formulate concepts that are the analogs of those for Markov
chains, although there will be aspects not present in the countable state space
theory. For A € .7, let

TA=inf{t >0:X(t) € A}, = /oo 1{X(t)€ Aydt. (47
0

By the Debut Theorem (see e.g., [Sh88]), 74 is a stopping time. A Markov
process is said to be @-irreducible, for a nontrivial o-finite measure ¢ on
(S,.7), if

©(A) >0 implies FEy[na] >0 forallxe S, (4.8)

@ is called an irreducibility measure.
If for some nontrivial o-finite measure ¢,

©(A) >0 implies Py(na =o00)=1 forallz e, (4.9)

then X (-) is Harris recurrent. (This definition goes back to [AzKR67].) It is
not difficult to show that it is equivalent to the condition that

©(A) >0 implies Py(r4a <o0)=1 forallzeS (4.10)

(see [KaM94] or [MeT93a]), although the choice of ¢ satisfying (4.10) need
not satisfy (4.9). (Consider, for example, the process X (¢) = e on the unit
circle, where ¢ is concentrated at a point.) Both formulations are useful in
practice.
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A o-finite measure 7 on (5,.7) satisfying

m(A) = nP!(A) d:ef/pt(x, A)yr(dz) for Ae ., t>0, (4.11)

is stationary (or invariant). (Note that the definition does not involve ¢.) It
was shown in [GeT9] that if X (-) is Harris recurrent, then there is a unique
stationary measure, up to a constant multiple. (We will discuss this result
in Section 4.5.) If the stationary measure 7 is finite, it may be normalized
to a probability measure. Harris recurrent processes with such w are positive
Harris recurrent.

The reader should be aware that Harris recurrence and positive Harris
recurrence have somewhat different implications than recurrence and positive
recurrence, in the countable state space setting. For instance, if ¢ is concen-
trated at a point z, then a Markov chain can have x as an absorbing point and
still be positive Harris recurrent. When all states communicate, the definitions
are equivalent.

For discrete time Markov processes, -irreducibility, Harris recurrence,
and positive Harris recurrence are defined by the analogs of (4.8), (4.9) and
(4.11). (In this setting, (4.9) and (4.10) are clearly equivalent by the strong
Markov property.) Since there is a wealth of theory available for such Markov
processes, it is fruitful to be able to translate continuous time problems into
the discrete time setting. This can be done by using the resolvent of the
continuous time Markov process,

R(z, A) déf/ e 'Pl(z,A)dt forzeS, Ac.?. (4.12)
0

The Markov process X (n), n=0,1,2,..., with one-step transition probabil-
ity given by R(-,-), is known as an R-chain. The R-chain X(-) can also be
constructed directly from X (-) by setting

X(n)=X(on), n=0,1,2,..., (4.13)

where the sequence o, 01,09, ... of random variables, with oy = 0, is inde-
pendent of X () and has i.i.d. mean-1 exponentially distributed increments.
(One enriches the sample space so as to include such a sequence.) It is easy to
check that X(-) is g-irreducible if and only if X (-) is. One can also show that
the same is true for Harris recurrence and positive Harris recurrence, and that
the same stationary measure is shared by both processes. The arguments are
fairly quick although not immediate; they are given in Section 4.5.

Although the irreducibility measure for a given process X (+) is not unique,
there exists a mazimal irreducibility measure 1, i.e., an irreducibility measure
for the process such that ¢ << 1 for any other irreducibility measure ¢, and
such that

Y({x: Py(na #0)>0})=0 (4.14)
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for ¥(A) = 0 and A € 7. (¢ << ¥ means that ¢ is absolutely continuous
with respect to 1.) The measure 1) is equivalent to

W' (A) d:ef/SR(x, A)g/(dx) forz €S, A€.Z, (4.15)

for any irreducibility measure ¢’. (That is, ¢ << v’ and ¢’ << 1).) Since the
existence of a stationary measure m does not depend on the choice of ¢, one
is free to assume that ¢ is maximal when addressing such questions.

Maximal irreducibility measures are frequently used in discrete time, where
(4.14) and (4.15) are replaced by

w({x: Py(ta < 00) >0}) =0 (4.16)

and
W' (A) d:‘*ZQ*WU/ Pz, A)¢(dx) forz e S, Ae.s.  (4.17)
n=0 S

The existence of such a measure ¢ and its equivalence to v’ in the latter
setting can be found on, e.g., page 88 of [MeT93d]. One can check that (4.14)
and (4.15) hold for the process X (-) for a given irreducibility measure v if
and only if (4.16) and (4.17) hold for its R-chain X (-), since the right side of
(4.17) is equivalent to 9" (A) = [ P(x, A)¢'(dz) in this case.

The above definitions of Harris recurrent and positive Harris recurrent,
while elegant, can be difficult to apply in practice. For applications, the fol-
lowing alternative formulation involving petite sets is very useful. A nonempty
set A € .7 is said to be petite if for some fixed probability measure a on (0, 00)
and some nontrivial measure v on (S,.7),

v(B) < /O P, Blaldt) (4.18)

for all x € A and all B € .¢; v is then called a petite measure. A petite set A
has the property that each set B is “equally accessible” from all points x € A
with respect to the measure v. Note that any nonempty measurable subset of
a petite set is also petite. When (4.18) holds, with a being concentrated at a
single point mq, A is said to be small, and v is called a small measure. Petite
and small sets are defined analogously in the discrete time setting.
Let
T4(0) =inf{t > 6 : X(t) € A}.

Theorem 4.1 below gives practical alternative characterizations of Harris re-
currence and positive Harris recurrence in terms of petite sets. Versions of
Theorem 4.1 are stated in [MeT93a-c|, with that in [MeT93a] being used
here. Discrete time analogs of the different parts of Theorem 4.1 are known.
(See, e.g., [Or71], [Nu84], and [MeT93d].)
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Theorem 4.1. (a) A Markov process X (-) is Harris recurrent if and only if
there exists a closed petite set A with

P,(ta <o0)=1 forallzelb. (4.19)

(b) Suppose the Markov process X (-) is Harris recurrent. Then, X (-) is positive
Harris recurrent if and only if there exists a closed petite set A such that for
some § > 0 (or, equivalently, for any § > 0),

sup E;[14(0)] < oo. (4.20)
€A

We next make some general comments about Theorem 4.1. We then in-
dicate how the theorem will be applied and discuss its proof. More detail on
the proof will be supplied in Section 4.5.

We note that the irreducibility measure ¢ in (4.8) and the measure v in
(4.18) employed in the definitions of Harris recurrence and petite sets are
different in general. In [MeT93a], petite sets rather than closed petite sets
are employed for Harris recurrence, although closed petite sets are needed for
positive Harris recurrence. We assume the sets are closed in both cases; this
simplifies the proof of one of the steps. We note that the more useful direction
(and the only one used in these lectures) is that Harris recurrence and positive
Harris recurrence follow from (4.19) and (4.20), respectively. If one wishes,
one can base the definition of Harris recurrence on (4.19), rather than on the
irreducibility measure as in (4.9); this is done, for instance, in [As03] (and in
[Dur96], in discrete time). This will simplify the work in showing the existence
of a stationary measure.

Theorem 4.1 will prove very useful in conjunction with Section 4.2. There,
we will show that for the underlying Markov process X (-) of a queueing net-
work,

A={z:|z| <k} isa closed small set for each k > 0, (4.21)

where |z| is given by (4.3), if appropriate conditions hold for the distributions
of the interarrival times for the queueing network. In Section 4.4, we will
show that the conditions (4.19) and (4.20) in the theorem will follow from the
stability of the associated fluid limits, which are introduced in Section 4.3.
We next briefly discuss the proof of Theorem 4.1. The demonstration that
X (+) is Harris recurrent if (4.19) holds is elementary, if one sets ¢ = v. We sum-
marize the argument here. Note that X (74) € A, since A is closed. Starting
from any = € S and applying the strong Markov property, one can therefore
show that by a large enough fixed time T' (depending on z), X (-) will, with
at least a given positive probability that depends on A, hit a specified set B
with v(B) > 0. Repetition of this reasoning, using appropriate random times
T,, which depend on X (T},_1), will imply that the probability B has not been
hit after n iterations decreases exponentially quickly in n. This implies (4.10),
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and hence that X (-) is Harris recurrent. ([MeT93a] gives a different argument
that does not assume A is closed.)

The other direction in Part (a), and both directions in Part (b) of Theo-
rem 4.1, require work. In Section 4.5, we will present a summary of the proofs.
We will state there a discrete time analog of Theorem 4.1 and indicate how
Theorem 4.1 can be shown using this, and the correspondence mentioned ear-
lier between Harris recurrence, positive Harris recurrence, and the stationary
measures for the Markov process and its R-chain. We will also provide a sum-
mary of the proof of the existence of a stationary measure for a discrete time
recurrent Markov process, since it helps illustrate the nature of the discrete
time theory.

Ergodicity

A continuous time Markov process X (+) is said to be ergodic if it possesses
a stationary probability measure « for which

tlim ||[P'(z,-) —m(-)|| =0 forallz e S. (4.22)
(Here, || || denotes the total variation norm.) We recall from Section 1.2 that,

when the underlying Markov process of a queueing network is ergodic, the
queueing network is said to be e-stable. It is not difficult to see that positive
Harris recurrence follows from ergodicity. Frequently, because of the following
results, ergodicity of the Markov process also follows from positive Harris
recurrence without much additional effort.

The first result is from Theorem 6.1 of [MeT93b].

Theorem 4.2. Suppose that a Markov process X (+) is positive Harris recur-
rent. Then, X (-) is ergodic if and only if some skeleton chain is p-irreducible
for some measure p.

By a skeleton chain, we mean the Markov process defined by restricting
X (-) to the times nA, n =0,1,2,..., for some A > 0. The necessity of irre-
ducibility on some skeleton chain is clear. To show that this is also sufficient,
one can employ the corresponding result for discrete time Markov processes
and the fact that the norm of the difference in (4.22) is decreasing in ¢; we do
not go into details here.

For our purposes, it will be more useful to have a sufficient condition for
ergodicity in terms of small sets. When a set A € .% is small with respect to
the same measure v at each mg € [s1, 2], for some 0 < 51 < $9, we will say
that A is uniformly small on [s1, s3], or, more briefly, uniformly small.

Theorem 4.3. Suppose that a Markov process X (+) is positive Harris recur-
rent, and that some closed set A satisfies (4.19) and is uniformly small on
[s1, 82], for some 0 < s1 < s2. Then, X(-) is ergodic.
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Theorem 4.3 follows from Theorem 4.2. One can show this by restart-
ing X (-) at 74 and applying the strong Markov property. Note that since A is
closed, X (74) € A. Theorem 4.3 is also proved in [As03] as Part (iii) of Propo-
sition 3.8 on page 203, although in a somewhat different setting. Theorem 4.3
will be employed in Section 4.2.

Countable state space setting

As mentioned at the beginning of the section, the material that is needed
from this section simplifies enormously in the countable state space setting.
Since the interarrival and service times are exponentially distributed, one can
drop the u and v coordinates from the description of the state of the process
in the first subsection. The underlying jump process X (:) of the queueing
network can be defined in the natural way. It will be constant in between
arrivals and departures of jobs at the different classes, with arrivals occurring
at rate oy and departures at rate Ry (t)puy at class k. As before, the service rate
vector R(-) remains constant until the next arrival or departure, at which time
the new value R(t) = f(X(¢)) is assigned, where the choice of f corresponds
to the discipline. (The service rate vector is not part of the state space here.)
In this setting, the norm in (4.3) is replaced by the simpler |z| = |z|, where z
is the queue length vector. The state space is assigned the discrete topology.

The second subsection will no longer be needed, since X (-) is now a Markov
chain, with bounded jump rates, and so standard Markov chain theory applies
(see, e.g. [Re92]). For consistency with the general case, we choose its filtration
to be {F, t > 0} as in (4.5), although (4.4) could also be used. In either case,
the filtration will be right continuous and X (-) will be strong Markov.

The subsection on Harris recurrence can also be omitted. In the countable
state space setting, Harris recurrence is equivalent to the existence of a re-
current state = that is accessible from all other states, i.e., Py(7, < 00) =1

for each y € S (where Txdéfr{z}). Positive Harris recurrence corresponds to
E,[:(8)] < oo, for some § > 0. So, standard Markov chain theory can be ap-
plied. The concepts petite and small are no longer needed. They will be used
later, in the general setting, only in the context of Proposition 4.6 for the sets
A ={z: |z] <k}, K > 0. These concepts are not needed in the countable
state space setting since the state 0 will be uniformly accessible from A. We
note that all points in a state space are small sets, and that Theorem 4.1 is
elementary in the countable state space setting (in addition to no longer being
needed).

In the countable state space, continuous time setting, it is routine to show
that positive Harris recurrence implies ergodicity. So, Theorems 4.2 and 4.3 are
no longer needed. (One can apply discrete time theory to any skeleton chain,
which will be aperiodic, and then apply the monotonicity of || Pt(x, ) — ()|
in t.)
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4.2 Results for Bounded Sets

Bounded sets will play an important role in Section 4.4 in showing the stability
of queueing networks. In Section 4.2, we show two results involving bounded
sets we will need there. Here and elsewhere in these lectures, a norm | - |
denotes a nonnegative function on a state space S. A set B C S is said to be
bounded if sup, ¢ g |z| < oo.

The first of these two results, Proposition 4.6, is a generalization of Foster’s
Criterion. As background, we first state Foster’s Criterion, along with its
proof. Both versions give useful criteria for positive Harris recurrence when
the Markov process under consideration has a uniformly negative drift off
of a bounded subset of the state space. In Proposition 4.6, we also give an
analogous condition for ergodicity of the Markov process.

The second result, Proposition 4.7, gives criteria under which the bounded
sets are uniformly small for the Markov process X underlying a queueing net-
work. This condition is used in conjunction with Theorem 4.3 and Proposition
4.6 to show the Markov process is ergodic.

Foster’s Criterion

Foster’s Criterion is a simple, but very useful, criterion for demonstrating
positive recurrence of Markov chains with a norm. We state it in the original
discrete time context.

Proposition 4.4 (Foster’s Criterion). Let X(n), n = 0,1,2,..., be a
Markov chain on which all states communicate. Suppose that

E | X(1)] <oo forallxe A, (4.23)

where A = {x : |x| <k} for some k >0, and |A| < co. Also, suppose that for
some € > 0,
E X)) <|z|—€¢ forallx ¢ A. (4.24)

Then, X (-) is positive recurrent.

Foster’s Criterion states, in essence, that if a Markov chain has a uniformly
negative drift off of a bounded set, and if its behavior on the bounded set is
not too bad, then the Markov chain will be positive recurrent. [Fo53] gave
a computational proof when the state space is the nonnegative integers with
the corresponding norm and x = 0. Foster’s Criterion is often employed in the
above slightly more general setting of Proposition 4.4.

Proof of Proposition 4.4. Since all states communicate and |A| < oo, in order
to show that X (-) is positive recurrent, we claim it suffices to show E,[T4] < 0o
for x € A. The claim is clear when A is a singleton. When A has more states,
one can show it by noting that, by the strong Markov property, the expected
number of returns to A grows linearly in n. The same is therefore true for at
least one state in A, which must be positive recurrent.
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To show that E,[r4] < oo for z € A, we set
M(n) =|X(n)|+en for all n. (4.25)

On account of (4.24), M(n A 74) is a nonnegative supermartingale on the
natural filtration of X (+). It follows by the Optional Sampling Theorem that

Ey [M(1a)] <|y| forally¢ A.

It follows from this and (4.25) that
1
Bylra] < —Ey[M(7a)] < yl/e fory ¢ A.

Together with (4.23), this implies that for z € A,

1
Eulral <14 p(a,p)Eylral <1+ -3 Jylp(z,y) < oo,
ygA yZA

where p(-,-) denotes the one-step transitional probabilities. So, E,[T4] < oo
for x € A, and X (-) is positive recurrent. |

In various cases, one might not know that (4.24) holds for a given Markov
chain or Markov process, but rather that |X ()| decreases linearly “on the
average”, over a much longer time interval. In our applications in Section 4.4,
this will occur over time intervals of the form [t,t + ¢| X (¢)|], for large | X (t)],
where ¢ > 0. To accommodate such a setting, we employ the following gener-
alization of Foster’s Criterion. Here, time is chosen to be continuous, although
time could also be chosen to be discrete, if one omits the conclusion on ergod-
icity. If time is continuous and the state space is general, then X (-) is assumed
to satisfy the regularity conditions for Markov processes given in Section 4.1,
in the second paragraph of the subsection on Harris recurrence. Versions of
Proposition 4.5 are given in [MaM81], [Fi89], [MeT94], and [FoK04].

Proposition 4.5 (Generalized Foster’s Criterion). Suppose that X (-) is
a continuous time Markov process, such that for some € > 0, k > 0, and
measurable function g : S — R with g(x) > § > 0,

E.|X(g(x))| < (Jz| VK) —€eg(z) for all x. (4.26)

Then,
Ep[ra(0)] <

A | =

(|z| V &)  for all x, (4.27)

where A = {z : |z| < k}. In particular, if A is a closed petite set, then X (-)
is positive Harris recurrent. If A is closed and is uniformly small on [s1, s2],
for some 0 < 51 < sa, then X (-) is ergodic.
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One can check that Proposition 4.4 is a special case of the discrete time
version of Proposition 4.5, with g = 1, since (4.23) and (4.24) follow from
(4.26) after a new choice of k, and since any finite set will be petite if all
states communicate.

In these lectures, we will employ the following case of Proposition 4.5.

Proposition 4.6 (Multiplicative Foster’s Criterion). Suppose that X (-)
is a continuous time Markov process, such that for some ¢ > 0, € > 0, and
Kk >0,

E | X(c(lz]VE)| <A —=e€)(z|VK) forallx. (4.28)
If A = {z : |z| < K} is a closed petite set, then X(-) is positive Harris
recurrent. If A is closed and is uniformly small on [s1, s2], for some 0 < s1 <
82, then X (-) is ergodic.

Setting g(x) = ¢(|z|Vk), Proposition 4.6 follows immediately from Proposi-
tion 4.5. The proof of Proposition 4.5 uses an elementary martingale argument
together with Theorems 4.1 and 4.3 of the previous section. (This is the only
place in these lectures where we will use Theorems 4.1 and 4.3.)

Proof of Proposition 4.5. Suppose that (4.27) holds. Then, clearly so does
(4.19) of Theorem 4.1. Also by (4.27),

sup FE.[14(0)] < k/e
€A

must hold, and therefore so does (4.20). If A is assumed to be closed and petite,
it therefore follows from both halves of Theorem 4.1 that X (-) is positive
Harris recurrent. If A is assumed to be closed and uniformly small on some
[s1,82],0 < s1 < 59, it follows from this and Theorem 4.3 that X (-) is ergodic.
So, it suffices to show that (4.27) holds.

Set g = 0, and let 01, 09, . . . denote the stopping times defined inductively
by

Opn =0p—1+ g(X(O—nfl))

By (4.26) and the strong Markov property,
E[|X (on)] | Flon-1)] < (X (on-1)| V&) — eg(X(0n-1))

for all x, where F(T) Lef Fr is the o-algebra corresponding to the stopping
time T. Set M (0) = |z| V k and

M(n) =|X(o,)| +€op forn>1. (4.29)
Also, set G,, = F(o0,) and note that o, € G,,—1. One can check that
E.[M(n)|Gn-1] < M(n—-1) forn <p,

where p is the first time n > 0 at which M(n) € A. So, M(n A p) is a
nonnegative supermartingale on G, .
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It follows by the Optional Sampling Theorem that
E.[M(p)] < [s] v ».
Note that 74(8) < o,. Therefore, by (4.29) and the above inequality,
Balra(8)] < Eo[M(p)] < Jo v 5,
which implies (4.27), as desired. |

Criteria for bounded sets to be petite or uniformly small

As mentioned earlier, we will employ Proposition 4.6 in Section 4.4 to
establish criteria for when the Markov process X(-) underlying a queueing
network is positive Harris recurrent or is ergodic. In order to cite Proposition
4.6, we need to be able to show bounded sets are petite or uniformly small.
These conditions will not automatically hold, since states need not “communi-
cate” in general. For instance, when the distributions of the interarrival times,
at two classes k1 and ko of a queueing network, are both integer valued, states
z and z’ for which the residual interarrival times satisfy

Uk, — Uk, 7é (u;cg - U’;ﬁ) mod 1

cannot both be visited along the same sample path.

In order to rule out such behavior, the following two conditions on the
distributions of the interarrival times (1), k € A, are often assumed. The
first is that £ (1) is unbounded, that is, for each k € A,

P(&(1) >t) >0 for all t. (4.30)

The second is that for some ¢, € Z, the ¢x-fold convolution of £ (1) and
Lebesgue measure are not mutually singular. That is, for £ € A and some
nonnegative gx(-) with [~ gx(t) dt > 0,

d
P&(1) +... + &(0) € [e,d]) > / au(t)dt (4.31)

for all ¢ < d. When arrivals in the network are permitted at only one class,
e.g., as in reentrant lines, it is enough to assume just (4.30) to show bounded
sets are petite.

It is annoying to need to assume either condition, especially the first,
since they rule out reasonable distributions for which one should expect the
underlying Markov process to be positive Harris recurrent. It appears diffi-
cult, however, to formulate simple criteria that are robust over networks with
general routing structures and disciplines. For interarrival times not satisfying
(4.30) and (4.31), one needs to show the existence of a petite or uniformly
small set directly.
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Proposition 4.7 is the main result in this subsection. It states that when
(4.30) and (4.31) are satisfied for the interarrival times of a queueing network,
then bounded sets will be uniformly small. It follows immediately from this
that bounded sets are also petite. (No requirements are made on the service
times.) A related result is given in Lemma 3.7 of [MeD94].

Proposition 4.7. Assume that the interarrival times of an HL queueing net-
work satisfy (4.30) and (4.31). Then, for each k > 0, the set A = {x : |z| < k}
is uniformly small on [s1, sa] for some 0 < 51 < sa.

When arrivals in the network are permitted at only one class, one can
instead use the following result to show bounded sets are petite.

Proposition 4.8. Assume that the interarrival times of an HL queueing net-
work, with |A| = 1, satisfy (4.30). Then, for each k > 0, the set A = {x :
|z] < K} is petite.

Since |z| is continuous in x, the above sets A are closed. Once (4.28) has
been verified, Proposition 4.8 can therefore be used in conjunction with Propo-
sition 4.6 to show that the underlying Markov process X (-) of the queueing
network is positive Harris recurrent, and hence that the queueing network is
stable. Similarly, Proposition 4.7 can be used with the proposition to show
X () is ergodic, and hence that the queueing network is e-stable.

We will prove Proposition 4.7, which requires some effort. The argument
for Proposition 4.8 is simpler, an outline of which goes as follows. Choose
t1 > 0 and € > 0, so that for all |x| < k, with & fixed, the probability is at least
€ that the queueing network will be empty over some interval [t(z) — 1,t(x))
but not remain empty over the entire interval [¢(x),¢1), where t(z) € [1,%1]. It
is possible to do this because of (4.30). One can then show that the bounded
set A will be petite, by choosing the probability measure a in (4.18) to be
uniform over (0,t1), and choosing the petite measure v to be uniform over
the empty states of the queueing network with residual interarrival times in
(0,1), so that its density is €/t; with respect to this set. Details are similar to
parts of the argument for the more complicated construction in the proof of
Proposition 4.7.

Before beginning the proof of Proposition 4.7, we provide a summary of
the argument and introduce some notation. Let Ly = maxge 4 £, where {f is
as in (4.31). Then, the distribution of =j(L¢) = Zfzol &1 (4) has an absolutely
continuous component for all k. If L is chosen large enough, then, for each k,
the distribution of =% (L) will uniformly cover some interval of length x+3, say
[ar — &, ar, + 3], where & is chosen as in the proposition. On account of (4.30),
&i(L+1) can take arbitrarily large values, which we specify to be in [by, by, +1]
for some by, with by > N for some large N. It follows that, for u;y < k, the
distribution of uy + k(L + 1) uniformly covers [ay + b + 1, ar + bx, + 3], with
no external arrivals at k occurring over the long time period [a, N), where uy,
is the initial residual interarrival time and @ = maxy{ax + 3}.
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For large enough IV, the network will be empty with positive probability
by time N/2, and hence remain empty until time N, with the probability not
depending on the initial state xz, for |z| < k. When a state y is empty, it is
specified by its residual interarrival time vector u. The state is empty, with
positive probability, at the times s € [N/2, N/2+ 1], and at these times, each
coordinate uy will have an absolutely continuous component covering

jk:[ak+bk+1—N/2,ak+bk+2—N/2].

These bounds do not depend on the initial state z, for || < k. The set
A ={z : |z| < k} will therefore be uniformly small on [N/2, N/2 + 1], with
the small measure v in (4.18) being uniformly distributed over the empty
states y with residual service times in the Cartesian product of Jj, for k € A.

We proceed to demonstrate Proposition 4.7 along the lines outlined in the
last two paragraphs. On account of (4.31) we may choose L large enough so
that for some e¢; > 0 and ag > k,

P(Ek(L) € [tl,tg]) > El(tg — f,l) for [tl,tg] - [ak — K,a + 3],

for all k € A. That is, = (L) has density at least ¢; at all times in the interval
[ar — K, a, + 3]. For |z| < k (and hence uy, < k), this implies

P(up + Ex(L) € [t1,t2]) > €1(ta —t1) for [t1,t2] C [ag,ar +3].  (4.32)
Also, by (4.30), for any N, there exist times by, > N so that
P(&x(L +1) € [br, b +1]) > €2 (4.33)

for some €5 > 0; we will specify N later. We introduce the following terminol-
ogy, setting

Gl,k = {w DU+ Ek;(L) S [akvak + 3]}7

Gog(tig,tor) = {w:uk + Zp(L+1) € [tk tak]}s

Gy = ﬂ Gig, Gao(ti,t2)= ﬂ Go i (t1k,t2.k),
ke A keA

G =G NGty t2),

where t; = (t; %, k € A). Also, set Zj, = [ar + b + 1, ar + by, + 3]

We break most of the work in proving Proposition 4.7 into two lemmas.
The first gives the following lower bound on P(G), for t; having coordinates
ti,k IS

Lemma 4.9. For given t;, i = 1,2, with t1 1 <toy and t; € Iy, for k € A,

P(G) > (ere2) ! T bk — t1n)- (4.34)
ke A
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Proof. One has

P(G) = P(G1 NGa(t1,t2)) = H P(G1,: NG i(t1,kst2,k))

- keA
> 11 / Plug + Z4(L) € [t — 5, tap — s])P(&(L + 1) € ds)
keA Y br
> (6162)|A‘ H (to.x —t1k)-

ke A

The second equality follows from the independence of the interarrival times
(1) for different k. The first inequality is gotten by writing =% (L + 1) as
a convolution of =3 (L) with &, (L + 1), and noting that for s € [bg, by + 1],
G1,i; occurs when uy + Z(L) is contained in [t1 5 — 8,25 — s]. The second
inequality follows from the bounds in (4.32) and (4.33). u

Let
o=inf{t >a: Z(t) =0},

where @ = maxg{ax + 3} and Zj(¢) is the number of jobs at class k at time t.
The next result says that, given the event GG, there is a uniform upper bound
on o that does not depend on the initial state x.

Lemma 4.10. For given L and k, and large enough N, there exists e3 > 0 so
that
Poo < N/2|G) > & (4.35)

for all |z] < kK, and t;, i =1,2, with t1 5 < toy andt; € L.

Proof. The reasoning behind (4.35) is not difficult. Since the notation that is
involved can become cumbersome, we avoid it as much as possible, and argue
in terms of basic queueing quantities.

We first note that for large enough M and small enough 6 > 0, for any
class k, (a) There exist classes k1, ka, ..., kn, with k1 =k, n < M, and

n—1
(1 - Zpk,lj) 1T Pewir = 0.
J4 i=1

That is, a job starting at any k has positive probability § of following a
designated route and leaving the network in at most M steps. (b) P(yx(1) <
M) > 1/2 for all k. That is, there is a uniform bound on the service time
distributions. Let ¢ be the total service time required by an arbitrary job that
is either initially in the network or later enters it. In the former case, we know
that its residual service time is at most k. Therefore, by (a) and (b), and the
independence of the corresponding events,

P <M?+k)>627M, (4.36)
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On the event G, (c) No jobs enter the network over (@, N). (d) At most
|A|L customers enter the network over (0, N), for a total of A jobs in the
network up to time N, with

A<|AL+ 2| < AL+ r ¥ L.

(c) and (d) follow from the definitions of G, bx, Zi, and Ga. Let (1,(2,...,(a
denote the total service times of these A jobs. By (4.36),

A
P, (Z Ce < L'(M? + n)) > (527 M) (4.37)

(=1

We now set
N =4(L'(M? +k)va) and e = (527M)L/.

Then, (N/4,N/2] C (a,N/2], and so under the event in (4.37) and (c), o0 <
N/2. Together with (4.37), this implies (4.35). |

Proposition 4.7 follows from Lemmas 4.9 and 4.10.

Proof of Proposition 4.7. The bounds in (4.34) and (4.35) imply that

Px(O' S N/Z; G) Z (6162)"’4‘63 H (tQ,k — th) (438)
ke A

for |z| < &k, and t;, ¢ = 1,2, chosen so that 1 < tor and ¢, € Zy. For
s € [N/2,N/2+ 1], it follows that

P,(Z(s) =0and Ug(s) € [t1.5 — S, t2x — 5|, k € A) (4.39)
> (ere2) ez T (to. e — t1,k),
ke A

since the event in (4.39) contains the event (4.38). To see this, note that if
the network is empty at time o < N/2, it will, on G, remain empty until at
least time N < mingea{ar + bi}. At the intermediate times s, the residual
interarrival times will be the shifts, by s, of the times at which the events
ug + =k (L + 1), given in Gy (t1,k, t2,1), Occur.

When a state y is empty, it is specified by its residual interarrival time
vector u = {uy, k € A}. This is the case at time s for the event on the left
side of (4.39). The inequality (4.39) states that, for |z| < &, the distribution
of the residual time U(s), for s € [N/2,N/2 + 1], has a component that
is absolutely continuous, with density ¢ = (e1ez)les, with respect to |.Al-
dimensional Lebesque measure A that is restricted to the rectangle

[T lar+be+1-N/2,ar+bp+2—=N/2] € [] lan+br+1—s,ar+be+3—s].
ke A ke A
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It follows that, for all s € [N/2, N/2 + 1], the set A is small with respect to
the measure v = €. u

Countable state space setting

The work required in this section simplifies considerably in the countable
state space setting. One still needs to demonstrate Proposition 4.5. The proof
of (4.27) proceeds as before. In this setting, one can conclude directly from
(4.27) that X (-) is ergodic (or is positive Harris recurrent), if |A| < oo, by
using

inf Py(ro < 1) > 0;
the expected number of returns to the empty state 0 therefore grows linearly
in ¢, which implies 0 is positive recurrent. (As before, A = {z : |z| < k}.)
So, neither petite nor uniformly small is needed as an assumption for the
proposition. Since Proposition 4.6 is a direct consequence of Proposition 4.5,
the same is also true there.

The concepts petite and uniformly small will be used later only in the
context of Proposition 4.6. This, in particular, makes Propositions 4.7 and 4.8
unnecessary. The propositions are easy to show, however, since

. —0 >
;relg P,(X(s)=0) > e(s)

for appropriate €(s) > 0, where €(s) is uniformly bounded away from 0 on

[s1, 82], for 0 < s1 < 2.

4.3 Fluid Models and Fluid Limits

In Section 1.3, we discussed fluid models and their connection with queueing
network equations. The purpose there was to give a preview of these concepts.
We return now to this material, this time giving a thorough presentation. The
section consists of three subsections, covering queueing network equations,
fluid models, and fluid limits, as well as a short comment on the countable
state space setting.

Fluid models and fluid limits are studied in [Da95]. Modifications are given
in [Ch95], [DaM95], [Br98a], and [Br98b] among other places. The approach
taken here is closest to [Br98a], but with some further modification in the
approach and in some of the definitions.

The fluid models of main interest to us will be subcritical. Fluid models
are also an important tool in the study of heavy traffic limits, where the fluid
models that are employed are critical; we will not discuss fluid models in the
latter context here. (See [Br98b], [Wi98], and [BrDO01] for background and
further references.)
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Queueing network equations

In the construction, in Section 4.1, of the Markov process X (-) underlying
an HL queueing network, we introduced sequences of positive i.i.d. random
variables & (i), k € A, and (i), k = 1,..., K, with ¢ = 1,2,3,..., which
correspond to the interarrival and service times of the queueing network. We
also introduced the sequence of i.i.d. random vectors ¢*(i), i = 1,2,3,...,
which give the routing of a job upon completion of its service at a class. The
corresponding sequences £, v, and ¢ were assumed to be mutually indepen-
dent. Here, we will find it convenient to also denote by &;(0) and ~(0) the
initial residual interarrival and service times of the queueing network; they
are included in the initial state X (0) = z.

We will employ the random quantities E(-), I'(-), and @(-), which are
defined in terms of the partial sums of £, 7, and ¢. The external arrival process
E(t) = {Ext), k=1,...,K}, t > 0, counts the number of arrivals at each
class from outside the network. That is, for k € A,

Ei(t) = max{n : Zx(n) < t},

where )
Zi(n) = Y &0)
i=0
The cumulative service time process I'(n) = {Ik(nk), k =1,..., K}, n =
(n1,...,nK) with n, =1,2,..., is given by

nkfl

Fk(nk) = Z ’}/k(’i).
i=0
The routing process ®(n) = {®*(n), k=1,...,K}, n=1,2,..., is given by
@ (n) =Y 6" (i).

As mentioned in Section 4.1, the sequences &,, and ¢, together with the
initial state & and the discipline rule, determine the evolution of the process
X(-) for all times along each sample path. The same is therefore true for
(E(-), I'(-),®(:)), which is referred to as the primitive triple of the queueing
network.

As in Section 1.2, we will employ the means aj my, and Py, that are
defined from &, v, and ¢. They are given by

ar =1/E[¢(1)] for ke A, my = E[w()] fork=1,... K,

Py = P(¢"(1) = ep),

with o = {ag, k = 1,..., K} being the external arrival rate, M being the
diagonal matrix having the mean service times my at its diagonal entries, and
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P ={Pyy, k,L=1,...,K} being the mean transition matriz (or mean routing
matriz). As before, up = 1/my is the service rate. Throughout these lectures,

we will implicitly assume that E[§,(1)] < oo for k € A and E[y(1)] < oo

for k=1,..., K, and so ag, mg, pur € (0,00). As in (1.2), Qd:ef (I - Pl =

>0 o(PT)™, which is finite since the network is open. Also, the total arrival
rate A = Qo and the traffic intensity p, with p; = Zkec(j) mg Ak, are defined
as in (1.5) and (1.7).

Queueing network equations tie together random vectors that describe the
evolution of a given queueing network. Examples of such equations, with the
vectors A(t), D(t), T(t), and Z(t), were given in Section 1.3. In the present
more general setting, it will be more convenient to employ the 6-tuple

X(t) = (A(t), D(t), T(t), W(t), Y (t), Z(t)). (4.40)

Here, the vector W (t) = (W(t),...,Wy(t)) is the immediate workload. That
is, W;(t) is the amount of time required to serve all jobs currently at station
Jjyj=1,...,J,if all jobs arriving after time ¢ are ignored. The vector Y (t) =
(Y1(¢),..., Y (t)) is the cumulative idle time, that is, the cumulative time that
each of the stations j = 1, ..., J is not working. Note that A(t), D(t),T(t), and
Z(t) are class-level vectors, whereas W (¢) and Y (¢) are station-level vectors.
From our perspective, X(-) contains all of the essential information on the
evolution of the queueing network; it will be used as the starting point for
our computations. With a slight abuse of notation, we will refer to X(-) as the
queueing network process.

We note that T'(-) and Y(-) are continuous and that A(-), D(-), W(-), and
Z(-) are right continuous with left limits. All of the variables are nonnegative
in each component, with A(-), D(-),T(:), and Y () being nondecreasing. By
assumption, one has

A(0)=D(0)=T(0)=0 and Y(0)=0. (4.41)

One can check that the components of X(-) satisfy the queueing network
equations

A) = B(H) + 3 ¢ (Du(1)), (4.42)
k

Z(t) = Z(0) + A(t) — D(2),

W(t) = CI'(A(t) + Z(0)) — CT'(¢),

CT(t)+Y(t) = et,

Y;(t) can only increase when W;(t) =0, j=1,...,J,

for all ¢ > 0. Here, C is the constituency matriz,

1 ifkecC(y),
CM:{ G)

0 otherwise,
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and e = (1,...,1)T.

The equations (4.42)-(4.46) are not difficult to verify. Equations (4.42) and
(4.43) are the same as (1.8) and (1.9), and hold for the same reasons as before.
The equality (4.44) states that the amount of current work at each station
is equal to the sum of the cumulative amount of work having arrived at all
of its classes less the sum of the cumulative service rendered at these classes.
Equation (4.45) can be taken as the defining relation for the idletime Y (¢). In
(4.46), we mean that Y;(t2) > Y;(¢1) implies W;(¢t) = 0 for some t € [t1, 2],
which reflects the nonidling property. Since Y () is continuous, it can also be
written as

/ W,(6)dY;(t) =0, j=1,...,J
0

The equations (4.42)-(4.46) hold for all disciplines. One can check that HL
queueing networks also satisfy

(D) < T(t) < I'(D{t) +e), (4.47)

where the inequalities are componentwise and e denotes the K-vector of all
1’s. (Whether e denotes a K-vector or J-vector will be clear from the context.)
The equations (4.42)-(4.47) will be referred to as the basic queueing network
equations.

Equations (4.42)-(4.47) do not specify the discipline of the queueing net-
work. For multiclass queueing networks, there is consequently not enough
information to solve for X(-). Later, when working with specific examples,
an additional equation (or equations) will be introduced that correspond to
the discipline. Such an equation will be referred to as an auxiliary queueing
network equation. For example, for FIFO networks, this additional equation
is

Dk(t—l—Wj(t)) = Zk(O)—l—Ak(t) fork=1,..., K. (448)

For SBP networks with preemption, the equation is
t — T, (t) can only increase when Z, () =0 fork=1,...,K.  (4.49)

Here, Z;" () denotes the sum of the queue lengths at the station j = s(k) of
classes having priority at least as great as k, and T,j (t) denotes the corre-
sponding sum of cumulative service times. The order of the priorities is given
by the specific SBP discipline.

As mentioned in Section 1.3, there is some flexibility in the choice of the
components of X(-) and the corresponding queueing network equations. For
specific disciplines, one typically eliminates one or more of these components.
For instance, for HL. queueing networks, it is generally not necessary to employ
both D(-) and T'(-). Since different variables will be more natural in different
settings, we employ the flexible formulation given above.

The discerning reader might note that in Section 1.3, we employed equation
(1.10) rather than (4.47) to relate D(t) and T'(¢). This has the advantage of
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leading to the formula in (1.11), but does not incorporate the HL property.
Both formats lead to the same fluid model equation (4.55) given below, if the
HL property is implicitly assumed in conjunction with (1.10).

Fluid models

Fluid model equations were discussed in Section 1.3. They are the deter-
ministic analog of queueing network equations, with the random quantities
E(-),I'(-), and &(-) being replaced by their respective means «, M, and P.
The fluid model equations corresponding to (4.42)-(4.46) are

A(t) = at + PTD(t), (4.50)
Z(t) = Z(0)+ A(t) — D(¢) (4.51)
W(t) = CM(A() + Z(0)) — CT(¢), (4.52)
CT(t)+Y(t) = et, (4.53)
Y;(t) can only increase when W;(t) =0, j=1,...,J, (4.54)

for all £ > 0. In the HL setting, one includes
T(t) = MD(t), (4.55)

which corresponds to (4.47). For a given choice of a, M, and P, the fluid model
equations (4.50)-(4.55) will be referred to as the basic fluid model equations.
Similarly, the fluid model consisting of the equations (4.50)-(4.55) will be
referred to as the basic fluid model.

Equations (4.50)-(4.55) do not specify the discipline of the corresponding
queueing network. So, as was the case for the queueing network equations, an
additional fluid model equation (or equations) still needs to be added. Such
an equation will be a deterministic expression involving A(-), D(-), T'(-), W (-),
Y (), and Z(-), and will be referred to as an auziliary fluid model equation. For
networks with FIFO and SBP disciplines, the auxiliary fluid model equations
are given by (4.48) and (4.49); two examples involving particular SBP net-
works will be given shortly. In these lectures, a fluid model will be a set of fluid
model equations that includes the basic fluid model equations (4.50)-(4.55).
Solutions of such equations are fluid model solutions. In Section 1.3, we were
a bit vague on what is meant by a fluid model corresponding to a queueing
network. We will make this precise in the next subsection where fluid limits
are introduced.

The same notation was used in equations (4.50)-(4.55) as in (4.42)-(4.47)
for the unknown variables A(-), D(-), T(:), W(-), Y (-), and Z(-). When con-
venient, we will employ the same vocabulary for the fluid model analogs of
queueing network quantities, such as the immediate workload W(-) and the
queue length Z(-). We will employ X(t), given in (4.40), for solutions of fluid
models of (4.50)-(4.55) and the auxiliary equations that may be added. The
use of the same notation for the queueing network and fluid model variables
is in general helpful; the one that is meant will be clear from the context.
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Equations such as (4.50)-(4.55) are also referred to as fluid model equations
without delay, since one is, in effect, setting w = v = 0 here, where u and
v are the residual interarrival and service times of the initial state x that
were introduced in Section 4.1. For general residual times, the corresponding
equations are referred to as fluid model equations with delay. In that setting,
one needs to modify (4.50), (4.52) and (4.55). The resulting equations are a bit
awkward to work with. We will not require these more general equations here,
and unless indicated to the contrary, the fluid model equations considered here
will always be assumed to be without delay.

We will assume that all of the components of X(-) are nonnegative, with
A(-), D(-), T(-), and Y (-) being nondecreasing. Using (4.50)-(4.53), one can
check that

A(0) =D(0)=T(0)=0 and Y(0)=0, (4.56)

which is the analog of (4.41). Employing (4.51), (4.52), and (4.55), one can
also show the useful relationship between the queue length and immediate

workload vectors,
W(t)=CMZ(t) for allt. (4.57)

Using the basic fluid model equations, it is not difficult to check that knowl-
edge of any of D(t), T(t), or Z(t), at a given ¢, and knowledge of Z(0) are
enough to determine all of the components of X(¢). Simple examples show this
is not true for either A(t), W (t), or Y (¢).

Starting first with 7°(-) and Y(-) in (4.53), it is easy to show that
A(),D(),T(-),W(-),Y(-), and Z(-) are all Lipschitz continuous. That is, for
some N > 0 (depending on the triple (o, M, P)),

|f(t2) — f(t1)| S N|t2 — t1| for all tl, tQ Z O7 (458)

if f(-) is any of the above functions. (Recall that, when dealing with vectors,
we always employ the sum norm, although this is a matter of convenience.)
Consequently, these functions are absolutely continuous, and so f’(¢) exists
a.e., with

b
f(b) — f(a) = / f(t)dt for all a,b. (4.59)

Times at which the derivative exists for all of the components of X(-) will be
referred to as regular points.

The representation in (4.59) will be quite useful later on. Assume, for
instance, that the dot product (Z'(t), w) < —e, for some fixed € > 0 and fixed
vector w with nonnegative coordinates, whenever Z(t) # 0 and ¢ is a regular
point. Then, it is not difficult to see, using (4.59), that

Z(t)=0 fort>(Z(0),w)/e. (4.60)

In analogy with queueing networks, one can envision the components of
X(-) for fluid models in terms of continuous “job mass” flowing through the
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system. Also in analogy with queueing networks, for the prescribed triple
(a, M, P), stations are defined as subcritical or critical, if p; < 1 or p; = 1,
where p; is given by (1.7), for Q and X defined as in (1.2) and (1.5). The fluid
model is labelled correspondingly if all stations are of the same type.

We recall from (1.18) that a fluid model is stable if there exists an N > 0, so
that for any solution of its fluid model equations, the Z(-) component satisfies

Z(t)=0 fort> N|Z(0)|. (4.61)

The main result in Section 4.4, Theorem 4.16, gives general criteria for the
stability of the corresponding queueing network. An important condition is
that its fluid model be stable. (Other conditions involve the interarrival time
distributions of the queueing network.) Ascertaining whether a fluid model is
stable is itself not an elementary problem in general, and will be discussed in
Chapter 5.

The following results are easy to derive using our present machinery, and
will be useful for showing analogous results for queueing networks. Parts (a),
(b), (c) and (d) of Proposition 4.11 will be used, respectively, for Example
1 of Section 4.4, Corollaries 1 and 2 of Proposition 4.12 of this section, and
Proposition 5.21 on Section 5.5. As usual, the inequalities in Part (b) are to
be interpreted componentwise.

Proposition 4.11. (a) Any fluid model with }_; p; <1 is stable. (b) For any

solution of a fluid model,

lminf Y(¢)/t > e — p.

t—o0

The rate of convergence is uniform over bounded |Z(0)| for these solutions.
When Z(0) =0, Y (t) > (e — p)t for all t. (c) Suppose that for some solution
of a fluid model, Z(t) < Zy(0) for somet and all k. Then, p < e. (d) Suppose
that for a fluid model, p; > 1 for some j. Then, for some ¢ > 0, |Z(t)| > et
for all t and all fluid model solutions.

Proof. By (4.50) and (4.51),
Z(t) — Z(0) = at — (I — PTYD(¢).
Multiplying both sides by CMQ gives
CMQ(Z(t) — Z(0)) = pt — CMD(t) = pt — CT(t). (4.62)

The first equality employs p = CM X = CMQa, which follows from (1.5) and
(1.7), and the second equality follows from (4.55). By (4.53), (4.62) can be
rewritten as

CMQ(Z(t) — Z(0)) = (p—e)t + Y (¥). (4.63)
Parts (¢) and (d) follow quickly from the resulting inequality
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CMQ(Z(t) — Z(0)) > (p — e)t. (4.64)

Under the assumption in (c), the left side of (4.64) is negative in each coor-
dinate for that ¢, and so p < e. (Note that Q > I.) Let p; > 1 for a given
j, as in (d). The j coordinate of the left side of (4.64) is bounded below by
(p;j — 1)t, and the matrix CMQ is constant. So, (d) holds for an appropriate
choice of € > 0.

The display in Part (b) follows from (4.63), after dividing both sides by ¢
and taking limits. Since CMQZ(0)/t — 0 as t — oo, the rate of convergence
for the lim inf in (b) is also uniform over bounded |Z(0)|. The case where
Z(0) =0 is an immediate consequence of (4.63).

For Part (a), multiplication of both sides of (4.62) by e’ and taking deriva-
tives gives

efOMQZ' (t) = e (p— CT'(t))
at all regular points. By (4.53), for each choice of j, this is

<D= > T ij L+ Y] (1),

keC(j)

By (4.54) and (4.57), Y/ (t) = 0 for at least one choice of j when Z(t) # 0.
Setting e =1 — 3., pj > 0, it follows that

e'CMQZ'(t) < —¢
at such points. By the bound in (4.60),
Z(t)=0 fort>elCMQZ(0)/e,

and so the fluid model is stable. [ |

Even though fluid model equations are simplifications of the corresponding
queueing network equations, we will need to exercise some caution in their
application. In particular, a fluid model need not have a unique solution for
given initial data. This is not surprising for the basic fluid model equations,
since the solutions may depend on the discipline, which is not included in
these equations. However, it is not difficult to show this is also sometimes the
case when either equation (4.48) (corresponding to the FIFO discipline) or
equation (4.49) (corresponding to an SBP discipline) is added to the basic
queueing network equations. So, nonuniqueness can persist even when the
discipline has been specified.

We conclude this subsection with two examples of fluid models which ex-
hibit this nonuniqueness. Both examples employ fluid models that correspond
to certain parameter values for the Rybko-Stolyar network that was intro-
duced in Section 3.1. The routes, which are given in Figure 3.2, each possess
two stations, which are each visited once along the route. The discipline is
preemptive SBP, with priority at each station given to the class of jobs that
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are about to leave the network. Classes are labelled by (i, k), where i = 1,2 de-
notes the route and k = 1, 2 denotes the sequential ordering of the class along
the route. The fluid model is assumed to consist of the basic fluid model equa-
tions (4.50)-(4.55) together with (4.49). The routing matrix P here is given
by the above routing. The external arrival rates are given by

a1 =ag1 =1, ay2=az2=0;
and the service times are assumed to satisfy

def def
my = mi1=mz21 >0, mg = mia=mg2 >0,

which will be further specified in the examples. The SBP equation (4.49) is
assumed to incorporate the above priority scheme.

Example 1. A fluid model with nonunique solutions. In this example, we
assume that m; < ms and assign the initial data

Z11(0) =Z51(0) =1, Z;12(0) = Z32(0) =0.

On account of the discipline, when either Z o(to) # 0 or Za2(to) # 0, this is
enough to uniquely determine the evolution of X(¢) for small times after t.
This is not the case for the given initial data since, as one can check, there
exist distinct solutions over t € [0,1/(1 — p1)], with

Zia(t) =1+ (1 —p)t, Zia(t) = ( — p2)t, (4.65)
Zi/71(t) =1+t, Zi/72(t) =0,

for either ¢ = 1 or ¢ = 2, where i’ denotes the other route. (As usual, p =
1/mk.)

One can interpret the above evolution of the fluid model as follows. The
initial job mass in route ¢ “gets an infinitesimal lead” over that in route 7',
with job mass starting to flow into the class k = 2 along the route before this
starts to occur along route ¢’. Once this flow begins, since uo < p1, there will
be mass at class (¢,2). The mass at (¢,2) has priority of service over that at
(¢,1). This prevents service at (i’,1), and so the class (i’,2) remains empty.
Mass from (¢, 1) continues to flow to (4,2) until at least time 1/(uq — 1), after
which class (i,1) is empty, and so the rate at which mass enters (4,2) slows
to a;1 = 1. Over these times, there will be mass at (i,2) and no service at
(7', 1).

In addition to the solutions of the fluid model with Z(t) given by (4.65),
there is the symmetric solution over ¢ € [0, (u1 + p2)/(p1p2 — p1 — pe)], with

Zin(t) =14+ (1 — papz/(p + p2))t,  Zio(t) =0, (4.66)

for ¢ = 1,2. Here, the fraction of effort allocated to the classes with & =1 is
pa/ (1 + pe), with the fraction allocated to k = 2 being u1 /(11 + p2). This
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allocation of effort keeps the high priority classes with k& = 2 empty, and so
allows continual service at both classes with & = 1.

The solution given by (4.66) is unstable in the sense that, at any time
to, there are other solutions emanating from it. This occurs when the classes
along one of the routes start to “monopolize” the service at their stations.
After time tg, these solutions evolve as in (4.65), except for the lag in time
and the different starting mass at the classes with k£ = 1. With a bit of effort,
one can check that all of the solutions of the fluid model in a neighborhood
of time 0 and with the assigned initial data are given by the above solutions.
That is, the solution in (4.66) is followed until some assigned time, after which
the solutions evolve as in (4.65).

We point out that for m; +mo < 1/2, one has p; + p2 < 1, and so the
assumptions of Part (a) of Proposition 4.11 are satisfied. Therefore, under this
additional condition, the above fluid model is stable. As mentioned above the
proposition, this is sufficient for the corresponding queueing networks to be
stable (under appropriate conditions on the interarrival time distributions).
So, the nonuniqueness of solutions for the fluid model is not connected with
the stability of either the fluid model or the corresponding queueing network.

We also point out that, although we have not bothered to construct the
above fluid model solutions for all time, these solutions can always be extended
past the times that are given. One way of doing this is to employ fluid limits,
which are introduced in the next section. |

Example 2. A fluid model that has a nonzero solution with Z(0) = 0. In
this example, we assume that m; < 1/3 and mge = 2/3. (We fix mg in order
to simplify the coefficients in our computations.) By Theorem 3.4, the corre-
sponding queueing network is unstable, if the interarrival and service times are
exponentially distributed. The fluid model exhibits similar behavior, which we
show for Z(0) = 0. We do this by constructing a self-similar solution, in the
spirit of the proof of Theorem 3.1. We give the values of T'(-) and Z(-); using
(4.50)-(4.55), the other components of X(-) can be calculated from these. (T'(-)
and Z(-) can also be calculated from each other.)

We proceed in two steps. We first construct a solution X(-) of the fluid
model on [0,2], with |Z(0)] = 1 and |Z(2)| = 2, where all the mass at t = 0
is at class (1,1) and that at ¢ = 2 is at class (2, 1). Because of the symmetry
of the network and the doubling of mass by ¢ = 2, the same reasoning allows
us to extend the solution up until ¢ = 6, when the total mass is 4 and all
the mass is again at class (1,1). We then piece together scaled versions of this
solution so that the resulting solution is defined over [0, 00), and grows linearly
starting at Z(0) = 0. We note that since p1,p2 < 1, Z(t) = 0 gives another
solution of the fluid model. So, this construction gives another example of the
nonuniqueness of fluid model solutions under an SBP discipline.

Set by = 1/(uy — 1) = my/(1 — m1). We construct T(t) and Z(t), with
t € [0,2], piecewise over the time intervals [0, b;] and [by,2]. We choose T"(t)
so that it is constant over each interval, with
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- 1 for t € (0,by)
T) (1) = e 4.67
110 {m1 for t € (b1,2), (4.67)

T{,(t)=1 forte (0,2
t € (0,2).

Integration then gives T'(t). The function Z(t) will be linear over these inter-
vals, with values at the endpoints given by

Z11(0) =1, Zi1(b1) = Z11(2) =0, (4.68)

Z12(0) =0, Zig(b1) =bi(m —3/2), Z12(2) =0,
Z21(0) =0, Z91(2) =2, Z2(0)=Zy2(2)=0.

Note that the value of uq, for u; > 3/2, does not affect the value of Z~(2)

The choice of T(-) and Z(-) as in (4.67)-(4.68) corresponds to the assign-
ment of all effort at both stations to the classes along the first route. This
is consistent with the discipline, because class (1,2) has priority over (2, 1),
and there is never any mass at (2,2) to impede service at (1,1). The time
interval is divided into two parts, with the latter beginning when class (1, 1)
first becomes empty. As claimed earlier, all of the 2 units of mass at ¢t = 2 is
at class (2,1). A repetition of this reasoning, this time over the interval [2, 6],
shows that at ¢ = 6, all of the mass is again at class (1, 1), with

Z11(6) = 4.

The second step consists of piecing together scaled versions of the above
construction. For ¢ € [347F1, 2472]  set

T(t)=44(TA4 "t —2)+U), Z(t)=4"Z(47t —2), (4.69)

where U is the constant vector with
Urp=m1, Us1=2mq, Uio=Uss=4/3,

and set T(0) = Z(0) = 0. It is straightforward to check that over [347+1, 147+2]
with ¢ € Z, T(-) and Z(-) give a solution of the fluid model, since the effect
of the scaling terms 4° and 4% cancel each other out and since the transla-
tion terms do not affect the evolution of solutions. (i = 0 corresponds to the
solution X(-), after a time shift.) By (4.68), Z(6) = 4Z(0); therefore, Z(-) is
consistently defined at the endpoints %4i. One can also check that the same
is true for T'(+). So, T(-) and Z(-) define a solution over (0, 00). Since
1t1f51 T(t) = 11511%1 Z(t) =0,

T(-) and Z(-) are continuous at 0, which implies that T'(-) and Z(-) define a
solution over [0, 00), as desired.
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It follows from |Z(2)| = |Z(0)| = 1 and (4.69), evaluated ¢ = 14 i€y,
that
limsup |Z(t)|/t > 1/2.
t—o0

One can, in fact, check with a little more work that lim, .o |Z(t)|/t = 1/2.
' [ |

Fluid limits

The basic fluid model equations (4.50)-(4.55) are obtained from the corre-
sponding queueing network equations (4.42)-(4.47) by substituting the means
a, M, and P for E, ', and ®. Auxiliary equations that specify the discipline,
such as (4.48) and (4.49), are obtained similarly from the corresponding queue-
ing network equations. In addition to being obtained by this formal substi-
tution, fluid model equations can be derived from a “law of large numbers”
scaling of the form X(st)/s as s — oco. This interpretation will be important
in Section 4.4 when we use the stability of fluid models to show the stabil-
ity of the corresponding queueing networks. Fluid limits make this limiting
procedure precise.

We first define the set G on which we will take fluid limits. Let G be the
set on which the strong law of large numbers holds for the external arrivals,
service times, and routing of a queueing network. That is, for w € G,

S ol
nlggoggﬁk(l)zl/aka nlgréoﬁ;%(z):mk’ (4.70)

lim L (8" (n))e = Pes,
n—oo N
where k € A in the first term and &k = 1,..., K elsewhere, and £ = 1,..., K
in the last term. One has P(G) = 1. (Other sets G', with P(G’) = 1 and
satisfying (4.70), can also be used.)
We define fluid limits as follows. Let (ay,, z,) be a sequence of pairs, with

lim a, = oo, limsup|z,|/a, < oo, (4.71)
n—00 n— 00

lim |u,|/an, = lim |v,|/a, = 0.
n—oo n—oo

Here, a,, € Ry and z,, € S, with z,,u,, and v, denoting the queue length,
residual interarrival time, and residual service time vectors, with |z, | = |z, |+
|tn |+ |vn| as in (4.3). (Throughout the remainder of this section and the next,
we will employ subscripts for terms in sequences as well as for coordinates of
vectors; which one is meant will be clear from the context.) A fluid limit of
the queueing network, with queueing network process X(+), is any limit

E() = lim X (ant), (4.72)

n—00 (A
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for any choice of w € G and any sequence (a,z,) satisfying (4.71). Con-
vergence is required to be uniform on compact sets (u.o.c.), and is to be in-
terpreted componentwise with respect to each of the six components of X(-).
Here and later on, the superscript gives the initial state of a process, e.g.,
X*(-) indicates that X*(0) = «.

We will say that the family of these fluid limits is associated with the
queueing network. Such a family will be stable if there exists an N > 0, so
that for any of its fluid limits, the Z(-) component satisfies

Z(t)=0 fort> N|Z(0)]. (4.73)

This definition of stability is the analog of that for fluid models in (4.61). (The
scaled sequences {X*"(ant)/an, n € Z1} that are obtained from a queueing
network process, and their limits are frequently referred to as a fluid limit
model. We do not use that terminology here.)

We next employ fluid limits to specify the relationship between queueing
networks and fluid models that we will use in the succeeding sections. Let M
be a fluid model, that is, a set of fluid model equations including the basic
fluid model equations (4.50)-(4.55). Then, M is associated with a queueing
network if, for w € G, each sequence (a,,x,) satisfying (4.71) possesses a
subsequence (a;,,%;, ) (depending on w), on which the components of the
scaled sequences X%in (a;,t)/a;, obtained from the queueing network process
converge u.0.c., and this limit satisfies the fluid model equations of M. Such
a limit will automatically satisfy (4.56) and the positivity and monotonicity
properties given immediately before (4.56).

We note that these limits are, by definition, fluid limits of the queueing
network. We are thus requiring here that each sequence possess a subsequence
with a fluid limit that satisfies the fluid model equations. It also follows from
this definition that every fluid limit must satisfy the fluid model equations.
(The definitions given here for fluid limits and associated fluid models differ
somewhat from those in the literature.)

Consider a fluid model whose triple (a, M, P) corresponds to the triple
(E(-), I'(:),®(:)) of a queueing network. (That is a, M, and P are the means
corresponding to E(-), I'(:), and &(-).) In Proposition 4.12, we will show that,
for HL queueing networks, a converging subsequence always exists that sat-
isfies the basic fluid model equations. So, this basic fluid model is always
associated with the queueing network. Consequently, in order to show that a
fluid model (with corresponding triple (a, M, P)) is associated with a given
queueing network, it suffices to show that its auxiliary fluid model equations
are also satisfied by all fluid limits.

The basic fluid model for a given queueing network is uniquely specified.
Typically, there will be a particular “canonical” fluid model that is associated
with the queueing network, which includes the basic fluid model equations,
together with an appropriate equation (or equations) that describe the dis-
cipline. The choice of these auxiliary equations is usually fairly natural. We
will, for example, employ (4.48) as the auxiliary fluid model equation for
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the canonical fluid model for FIFO queueing networks and (4.49) for SBP
queueing networks. Note that there exist other associated fluid models; for
instance, the basic fluid model for a queueing network is always associated
with it. We will also use associated in the opposite direction and say that
a queueing network is associated with a fluid model, although there will be
many such queueing networks for a given fluid model, since different choices
of the distributions of £(1) and (1), with the same means, are possible.
We now state Proposition 4.12, which was cited above.

Proposition 4.12. For each HL queueing network and w € G, every se-
quence of pairs (an,xy) satisfying (4.71) possesses a subsequence (a;, ,x;,)
on which the limit in (4.72) exists and is u.o.c. This limit satisfies the basic
fluid model equations (4.50)-(4.55) with the corresponding triple. Hence, each
HL queueing network is associated with its basic fluid model.

Proof. We need to show the existence of a limit X(-) that satisfies (4.50)-(4.55)
and is u.o.c. These properties will follow from the queueing network equations
(4.42)-(4.47) and (4.70). First note that for a given w € G, one can restrict
the sequence x,, to a subsequence z;,, so that for some T'(-),

1 _
—T%n(a;, t) — T(t) asn — oo, (4.74)
a;

n

on a dense set of ¢, say, the nonnegative rationals. On account of (4.45), the
terms on the left side of (4.74) are all Lipschitz continuous with coefficient 1,
and so the sequence is uniformly equicontinuous. The limit in (4.74) therefore
holds u.o.c. for all ¢, if T'(-) is replaced by its continuous extension to all of
R o. Applying (4.45) again, it follows that

1
Y(t)= lim —Y%n(a;,t)

n—oo a/’L.n

also exists, with convergence being u.o.c. Moreover, (4.53) is satisfied and both
T(-) and Y (-) are Lipschitz continuous.
To show (4.55), note that on account of (4.47),

D™ (ag, t)—1

—75(0) + " Y (7) < — I (ai,t) (4.75)
in n i=1 n
1 1 Dy (aint)
<—y(0)+— > (i),
in in oy

for given k,t, and n. Since w € G, it follows from (4.70) that, for given € > 0
and large n, the quantity to the right of the strict inequality is at most

1 s
(mi + D} (as, 1) +e.

in
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A similar lower bound, with € replaced by —e, holds for the quantity to the left
of the other inequality. Letting n — oo, it follows that my D}, (a;,t)/a;, con-
verges to the limit of 7, "™ (a;, t)/ai, , which is Ty (t). Since T'(-) is continuous
and D%in (-) is nondecreasing, this convergence is u.o.c. So,

1
D(t) = lim — D% (a;, t)

n—oo a/’L.n

also exists, with convergence being u.o.c. and (4.55) holding. Since T'(-) is
Lipschitz continuous, so is D(-).

We next show (4.50). Here, one uses the limits involving Y. ; (i) and
$(n) in (4.70), and |u,| in (4.71), as n — oo. Together with the above limit

D(-), they imply that

1

L )
a;, a

> B(Dy" (ai,t)) — PTD(t) (4.76)
k

n

for all t, as n — oo. Consequently, the limit A(t) exists and (4.50) holds. Since
E%in (-) and &*(-) are monotone and convergence to D(-) is u.o.c., convergence
to A(:) is also w.o.c. Since D(-) is Lipschitz continuous, so is A(-).

Equation (4.51) and convergence to Z(-) follow quickly from (4.43) and the
previous limits, on a further subsequence that is chosen so that Z(0) exists.
The derivation of (4.52) from (4.44) and convergence to W (:) are similar to
the previous steps.

We still need to show (4.54). Suppose that for some j and all ¢ € [tq, 2],
W;(t) > 0. Since W;(+) is continuous, it is bounded away from 0 on the inter-

val. Convergence to W(-) is u.o.c., and so for sufficiently large n, Wf"ﬁ (@i, t) >
0 on [t1,t2] as well. Because of (4.46), one must have Y;)C (t1) = Y;)C (ta).
Since the same equality also holds in the limit as n — oo, one obtains (4.54),
as desired. |

Proposition 4.12 will be applied to Theorem 4.16 in Section 4.4. We men-
tion here the following quick applications of the proposition and Part (b) of
Proposition 4.11. The first application says that for a queueing network, the
limiting proportion of time is positive that a given subcritical station j is
empty. We note that this, by itself, does not imply the queueing network is
stable. As the examples in Chapter 3 show, different stations can be empty
at nonoverlapping times, with |Z(t)] — oo as t — oo nevertheless holding.
The second application is a modification of the one just described, and will
be employed in Proposition 4.15 of Section 4.4.

Corollary 1. For each HL queueing network and any initial state x,
1itminf Y*(#t)/t>e—p onG. (4.77)

Moreover, for each € > 0, there exists a cy, so that
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1|ir|nian’”(c|a:|)/c|x| >(l—¢€e—p onG, (4.78)
xr|—0o0

for all ¢ > ¢y.

Proof. We demonstrate (4.77). Suppose that for some w € G, the above limit
is false. That is, along some sequence of times a,,, with a, — 0o as n — oo,

nli»ngo Y (an)/an <1—p; for some j. (4.79)
By Proposition 4.12, ~
X(t) = lim X%(a;,t)/a,
exists along some subsequence a;,, and satisfies the basic fluid model equa-
tions. Since Z(0) = 0, it follows from Part(b) of Proposition 4.11 that
Y (t) > (e — p)t for all t. Therefore,

linnligf Y%(a;,t)/a:, > (e — p)t, (4.80)
which contradicts (4.79).

The argument for (4.78) is almost the same. In (4.79), one replaces a,, by
tlx,| and 1 — p; by 1 — € — p;, for given € > 0. The fluid limit will now satisfy
|Z(0)] < 1. One obtains from Proposition 4.11 that Y (¢) > ((1 — €)e — p)t for
given € and ¢ > ¢, for large enough cq. Substitution of the limiting sequence
gives the analog of (4.80), which contradicts the analog of (4.79). |

We also note that Proposition 4.12 provides a means for showing the exis-
tence of fluid model solutions with given initial data X(0) = x. Suppose that
(Gn,xyn) satisfies (4.71) and that z,/a, — 2z as n — oo, where z denotes the
queue length vector for . Then, for w € G, any fluid limit X(-) will satisfy the
basic fluid model equations (4.50)-(4.55), with Z(0) = z. The same conclusion
will hold for more general fluid models that are associated with some queueing
network.

Similar reasoning, together with Part (c) of Proposition 4.11, leads to the
following elementary result, which will be used in the proof of Proposition
4.15.

Corollary 2. Suppose that the family of fluid limits associated with an HL
queueing network is stable. Then, the queueing network is subcritical.

Proof. Consider a sequence of pairs (a,,x,) satisfying (4.71), where for each
coordinate (z,)r of z,, liminf, .oo(2n)r/an > 0. For any fluid limit X(-)
of this sequence, Z(0) > 0. Also, since the family of fluid limits is stable,
Z(N|Z(0)]) = 0 for N chosen as in (4.73). By Proposition 4.12, such a fluid
limit will exist and will satisfy the basic fluid model equations. It therefore
follows from Part (c) of Proposition 4.11 that the fluid model is subcritical,

and hence so is the queueing network. |
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Countable state space setting

There are only minor simplifications in this section when the state space S
of a queueing network is countable. There are no changes in the approach to
queueing network equations and fluid models. The comment on fluid models
with delay is now vacuous, since the residual times v and v are no longer
part of the state space descriptor. A few statements in the subsection on fluid
limits simplify slightly. In (4.71), one omits the conditions on w,, and v,. Also,
in the proof of Proposition 4.12, the limits obtained from (4.75) and (4.76) no
longer depend on assumptions on the residual times.

4.4 Demonstration of Stability

In this chapter, we have stated a number of results for Markov processes
and queueing networks. Here, we employ these results to demonstrate the
stability and e-stability of queueing networks in Theorems 4.16 and 4.17.
Proposition 4.6 of Section 4.2 and Proposition 4.12 of Section 4.3 will be
the main ingredients for this. In addition, we will need two further results,
Propositions 4.14 and 4.15, which we provide in this section. Our approach
here is a modification of that in [Br98al, which is based on that in [Da95].

Bounds on |Z(t)|, |U(t)|, and |V (¢)|

Proposition 4.6 of Section 4.2 is the Multiplicative Foster’s Criterion; it
requires bounds on the expectation of E.|X (c¢(|z| V k))|, which are given in
(4.28). In order to obtain these bounds, we will need bounds on |Z(t)|, |U(t)],
and |V (¢)|, and their expectations. These bounds will be provided in Propo-
sitions 4.14 and 4.15. To obtain them, we will use the following lemma.

Lemma 4.13. Let 8(1), 5(2), 5(3), ... be i.i.d. positive random variables with

finite mean. Set By(t) = L max{n : 377" B(i) < t}. Then,
sup E[B1(t); B1(t) > M] — 0 as M — oc. (4.81)
t>1

Set Ba(t) = L max{B(n) : Y27 (i) < t}, and let G denote the set on which

~1
LS B(i) = m as n — oo. Then,

Bsy(t) =0 on Gg ast — oo, (4.82)

and
E[Bz(t)] = 0 ast— occ. (4.83)

Proof. We first show (4.81). For i =1,2,3, ..., set

= Jo for B(i) >4,
Bl = {o for B(i) < 6,
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where § € (0,1] is chosen small enough so that P(3(1) > d) > 0. Define
B (t) analogously to Bj(t), but with respect to ((i) instead of ((i). Since
Bi(t) > Bi(t), to show (4.81), it suffices to show the analogous limit for
By (2).

For £ =0,1,2,..., let ((£) denote the number of indices n, n =0,1,2,...,
for which "7, 8(i) = 6¢. Then, ¢(0),{(1),¢(2),... are i.i.d. random variables

with finite means and
[t/8]

~ 1
Bi(t) <5 D <(0) (4.84)
£=0
Using Markov’s Inequality, one can check that
1 e/ 3
P> ¢)=M| <-E[0)] =0 as M — . (4.85)
A P I

By (4.84) and the exchangeability of {(¢),

[t/6]
o 1
sup E[Bi(t); Bi(t) > M] < Sup%E €0y > C)y=M
£>1 t>1 0 [t

Because of (4.85), this — 0 as M — oo, which is the desired limit.
To show (4.82), note that on Gg,

| Len]
EZB(i)Hcm as n — oo,
i=1

where convergence is uniform on ¢ € [0,1]. Therefore, for given ¢ > 0 and
large enough n,

lein]
max i) < i) < (e — 1 + Vmn
i€[c1n,can) ﬂ( ) - Z 6( ) = ( 2 1 E)
i=[cin]
for all 0 < ¢1 < co < 1. Setting ca = ¢1 + € and n = |2t/m], one has, for large
enough ¢, that

1
Bso(t) < = sup max B(i) < 2emn/t < 4e.
t c1€[0,1] i€[e1n, (cr+€)n)

Since € > 0 is arbitrary, (4.82) follows.
We will show that

sup F[Ba(t); B2(t) > M] — 0 as M — oc. (4.86)
t>1

Together with (4.82), this will imply (4.83) since P(Gg) = 1. For this, we
again choose 0 € (0,1] small enough so P(5(1) > §) > 0, and let 5'(1),
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B8'(2), B'(3),... denote the subsequence obtained by restricting the original
sequence to terms with (i) > §. Clearly, Bz(t) < %maxlgig[t/(;] B'(i). Also,
by Markov’s Inequality,

1 1
Pl - Y>> M) < —F 4t
pP (G e #() >0 ) <sup k| e 50

2 /

which — 0 as M — oo, since /(1) has finite mean. It follows that the left
side of (4.86) is at most

2 1
- E\|3(1); = "G > M
5 5P [ﬁ( ); tlggr%a@aﬂﬁ(ﬂ_ ]

which — 0 as M — oo. This shows (4.86) and hence (4.83). |

By applying the first part of Lemma 4.13, it is easy to obtain uniform
bounds on the growth of the queue length Z*(t) of an HL queueing network.
(The result is not dependent on the HL property and so holds for more general
networks, once defined.) Recall that the set G is given in (4.70).

Proposition 4.14. For each HL queueing network, ¢ > 0, and w € G,

limsup | Z% (c|z|)|/]z| < c|a] + 1. (4.87)
|#| —o0
Moreover,
sup sup E[|Z%(¢)|/t; |Z%(t)| > Mt] =0 as M — oc; (4.88)
t>1 |z|<t
in particular,
sup sup E[|Z%(¢)]]/t < oc. (4.89)
t>1 |z|<t
Proof. At any time ¢,
|Z5(0)] < [E* ()] + |1, (4.90)

that is, the sum of the queue lengths is bounded by the number of external
arrivals plus the sum of the original queue lengths. Also, on G,

lim sup E (¢|z])/|x| < cay,

|#]—o0

for any k, since the number of external arrivals will only be reduced, at k € A,
as the initial residual interarrival time uy of x increases. Summation of the
components in this inequality and application of (4.90) implies (4.87), since
2] < Jol.
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To obtain the uniform integrability bound in (4.88), set (i) = &k (i) in
Lemma 4.13, where &4(1),£x(2), ... is the sequence of interarrival times at
k € A defined earlier in the chapter. Since

Ei()/t < Bu(t)
for all ¢ and =, it follows from (4.81) that

supsup E[Ef(t)/t; Ef(t) > Mt] -0 as M — cc.
t>1 =z

This limit holds trivially for k& ¢ A. Since the sum of uniformly integrable
random variables is uniformly integrable,

supsup E[|E“(¢)|/t; |E“(t)| > Mt] -0 as M — oc.
t>1

x

Together with (4.90), this implies (4.88). The limit in (4.89) is an immediate
consequence of (4.88). |

By applying the last two limits in Lemma 4.13, one can obtain the following
bounds on the growth of the residual times U*(t) and V*(¢), as |z| — oo.

Proposition 4.15. For each subcritical HL queueing network, there exists a
co > 1, so that for ¢ > ¢y,

1 1
m|U“’(c|x|)| — 0, m|V””(c|x|)| —0 onG as|z| — oo. (4.91)
Moreover,
1 T 1 x
sup sup —E|U*(t)| < oo, sup sup —E|V7(t)| < o0 (4.92)
t>1 |z|<t t t>1 |z|<t
and 1 1
mE|U’”(c|x|)| — 0, ;E|V”(c|x|)| —0 asl|z| — occ. (4.93)

In particular, (4.91)-(4.93) all hold when the family of fluid limits that is
associated with the queueing network is stable.

Proof. The last assertion is an immediate consequence of Corollary 2 to Propo-
sition 4.12, which asserts that the queueing network is subcritical when the
fluid limits are stable.

For the first half of (4.91), we set G(i) = & (i) in Lemma 4.13, for a given
k € A. Clearly, for all t > 0, x, and w,

1 1

For ¢ > 1 and t = c|z|, one has
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1
msz(Clxl) < ¢Ba(clz), (4.95)
since ug, < |z| < c|z|, and so the initial interarrival residual times have expired
by then. The first half of (4.91) follows from (4.82) and (4.95), since G C Gg.
Taking expectations in (4.94) implies

%E[U,f(t)] < E[Ba(t)] + %w«

Summing over k € A implies the first half of (4.92), since } ;. , ux = [u| <
x < t, for |z| < t, and sup,~, E[Bz(t)] < oo because of (4.83). The first half
of (4.93) follows from (4.83) and (4.95).

The argument for the second half of (4.91) is similar to that just given for
the first half, but with 8(¢) = v, (¢) in Lemma 4.13, for any k. For all z and
w’

1 1
;ka(t) < By(t) Vv Uk (4.96)
Setting ¢t = c|x|, for given ¢, this implies that

%V,f(cm) < cBs(clz]|) on of < clz|, (4.97)
where o} is the time at which the initial service residual time expires.

The time at which this occurs is not obvious, since the amount of service
that class k receives will depend on the discipline. Note, however, that for
large enough ¢ and |z| (where the latter depends on w), and for w € G, (4.78)
of the first corollary to Proposition 4.12 implies that the station j = s(k) is
idle, and hence empty, at some time before c|z|. Here, ¢ > 0 is chosen small
enough so that p; < 1 — ¢, which is possible since the network is subcritical.
So,

o <clz| for large enough |z,

for w € G. Consequently, (4.97) will eventually hold on G, without the restric-
tion that of < c|z|. The second half of (4.91) follows from this and (4.82),
since G C Gg.

The argument for the second half of (4.92) is the same as that for the
first half of (4.92), where one uses (4.96) instead of (4.94). We still need to
demonstrate the second half of (4.93). Taking expectations in (4.97), after
restricting to the set o} < c|z|, and applying (4.83) gives

T EVEClel)LoF < clal}] =0 as o] = .
On the other hand, Vi¥(c|z|) < vi < |z] on of > c|z|. So, by (4.91) and
bounded convergence, one also has

1
mE[V,f(del{a% >clz|}] — 0 as |z| — oo.
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Together, these limits imply that E[V*(c|z|)]/|z| — 0 as |x| — oo, which
implies (4.93). |

The main theorem

We now have the needed background to show the main result on stability
for queueing networks, Theorem 4.16. A similar result for e-stability will be
shown at the end of the section.

Theorem 4.16. For a given HL queueing network, suppose that A = {z :
|z| < K} is petite for each k > 0. If the family of fluid limits that is associated
with the queueing network is stable, then the queueing network is stable. In
particular, the queueing network is stable whenever an associated fluid model
is stable.

Before proving the theorem, we first provide some motivation for its as-
sumptions. After the proof, we discuss the theorem further and provide some
extensions.

Petite was defined in the last part of Section 4.1, and says, in essence,
that each set, after being weighted according to some measure v, is “equally
accessible” from all states in a petite set A. We require the above sets A = {x :
|z] < Kk} to be petite in order to be able to apply Proposition 4.6 in the proof of
the theorem. On account of Proposition 4.7, the assumptions (4.30) and (4.31)
on the distributions of the interarrival times suffice for these sets to be petite.
By Proposition 4.8, (4.30) suffices when |A| = 1. For the sake of concreteness,
results on the stability of queueing networks in the literature have often made
these assumptions, rather than assuming the sets A are petite. It is not clear
what broader conditions might replace them.

In the statement of the theorem, one also needs to assume that either
the associated fluid limits or associated fluid model is stable. Demonstration
of either of these conditions requires most of the effort, in practice, when
applying the theorem. The assumption on the stability of fluid limits is more
general than the corresponding assumption on fluid models.

The latter assumption is the more tractable version, and is the one typ-
ically used in applications. It reduces a random problem, the stability of a
queueing network, to a (presumably simpler) deterministic problem, the sta-
bility of a fluid model. This problem consists of analyzing the solutions of the
deterministic equations that constitute the fluid model. In the first three sec-
tions of Chapter 5, we will present several examples that illustrate the power
of this approach. In such applications, one also needs to show that a specific
fluid model is associated with a given queueing network. This is typically
routine, with the argument for justifying the auxiliary fluid model equations
proceeding along the same lines as the proof of Proposition 4.12.

Unfortunately, there is no satisfactory converse to Theorem 4.16, where
the stability of an appropriately chosen fluid model follows from the stability
of the queueing network. This will be discussed in Section 5.5.
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Proof of Theorem 4.16. We first note that the family of fluid limits that is
associated with a queueing network is a subset of the solutions of any asso-
ciated fluid model. This is an immediate consequence of the definition of an
associated fluid model. Stability of an associated fluid model therefore implies
stability of the associated fluid limits. So, the second claim in the statement
of the theorem follows from the first.

Recall that for any x in the state space, |z| = |z| + |u| 4+ |v|. Setting
t = ¢(|z|V1), with ¢ > 1, in (4.89) of Proposition 4.14 and (4.92) of Proposition
4.15, one has

E.| X (c(|z] v 1)| <be(|z] V1) (4.98)
for some b and any x. We will demonstrate here that for large enough ¢,
1
—FE, | X(c|zn])] — 0 asn — oo, (4.99)

20|

for any sequence x,, with z,, — oo as n — oo. This is equivalent to

%Ex|X(c|x|)| — 0 as|z| — . (4.100)
Together, (4.98) and (4.100) imply (4.28) for an appropriate choice of . This
is the basic assumption for the Multiplicative Foster’s Criterion (Proposition
4.6).

Since |z| is continuous in z, the set A = {z : |z] < Kk} is closed. By
assumption, A is petite. So, it will follow from (4.28) that the underlying
Markov process X (-) is positive Harris recurrent, and hence the queueing
network is stable. The remainder of the proof is devoted to the demonstration
of (4.99).

We break the demonstration of (4.99) into two main steps. Step 1 consists
of translating the condition (4.73), for fluid limit stability, into a related limit
(4.104) on the expected value of |Z(-)| for the queueing network. We restrict
our attention here to sequences of pairs (an, z,) as in (4.71), since this condi-
tion is assumed for fluid limits. In Step 2, we start the process at general x,,.
After restarting it at times c¢; |z, | where (4.71) is satisfied, we employ (4.104)
from Step 1 to get (4.110). Using Proposition 4.15, we finish the proof by
showing the corresponding limit, but with | X (-)| replacing |Z(-)|, which gives
us (4.99).

Step 1. Assume that the sequence of pairs (a,, x,) satisfies (4.71), and choose
£ so that 2 > limsup,,_, . |2n|/an. We first show that

1
—|Z**(NZza,)| =0 on G as n — oo, (4.101)
an
for appropriate N > 1 not depending on the sequence.
By Proposition 4.12, any subsequence X% (-) of X*»(-) has a fluid limit
X () along some further subsequence (ay, , s, ), as in (4.72). Since the family
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of fluid limits that is associated with the queueing network is assumed to be
stable and 2 > |Z(0)|, this implies

Z(t)=0 fort> N2 (4.102)

and appropriate N, where we can assume N > 1. Restating the limit in terms
of the original process, after setting ¢t = NZ, one obtains

1
—1|Z%n»(NZas,)| — 0 asn — oc. (4.103)
ag

n

Since a subsequence (ay, , x¢, ) satisfying (4.103) exists for every subsequence
(ai, ,x;,) of (an,Tn), the limit holds along the entire sequence as in (4.101).
We claim that

1
—E|Z**(NZay) — 0 asn— oco. (4.104)
an
On account of (4.101), it suffices to show that the sequence there is uniformly
integrable for large enough n. This follows from (4.88) of Proposition 4.14,
since limsup,,_, o |Zn|/an < NZ.

Step 2. We now allow x,, to be arbitrary, assuming only that |z,| — oo as
n — oco. We wish to restart the processes X#~(-) at times ¢1|x,,|, where ¢; > 1
is nonrandom, and at which the following three limits hold for w € G:

1
limsup — | Z7" (c1|xn|)| < e1]a] + 1, (4.105)

1

m“fﬁc" (ci|lzn]) = 0 asn — oo, (4.106)
1

WW”" (cilzn)] =0 asn — oo. (4.107)

The first limit follows from (4.87) of Proposition 4.14, with arbitrary ¢;, and
the last two limits follow from (4.91) of Proposition 4.15, with ¢; > ¢o, where
co is given in Proposition 4.15.

We set

a, = lznl, 2l = X (erlan]), 2, = Z7 (crlwnl),

Uy, = U (er|zn]), vj = V™ (erfan]).

On account of (4.105)-(4.107), the random sequence (a),,z,) satisfies (4.71)

n»rn
on the set G. For 2/ % c1]al+ 1, one has 2’ > limsup,,_, . |2,,|/a,, on all such
sequences. It follows from (4.104) that

1

—
|

Z(NZ'|z,])] =0 on G asn— oco. (4.108)

’
n
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(In (4.108), we write the initial state a] outside the expectation since z!, is
random; for nonrandom initial states as in (4.104), the two formulations are
of course equivalent.)

Set ¢ =c¢1+ N2 =1+ N(ci|a|+1). Since X(+) is Markov and P(G) =1,
it follows from (4.108) that

iEzn [Z(clzn|) | o(X (ci]zn]))] = 0 asn — oo (4.109)

|n]
holds a.s. It is not difficult to check that, because of (4.109),
1
|—|Z”(c|xn|)| —0 asn— o0
In

holds in probability. On account of (4.88) of Proposition 4.14, the sequence is
uniformly integrable. So, in fact,

1
—E|Z% (c|zn])| = 0 asn — oc. (4.110)
£

On the other hand, by (4.93) of Proposition 4.15,

1 1

mE|U%(C|$n|)| — 0, WEW’C" (clzn])] = 0 asn — oc. (4.111)

Together with (4.110), these two limits imply that

1
—FE| X" (c|lzn|)] = 0 asn — oo,
£
which is (4.99). This completes the proof of Theorem 4.16. |

The reader should note that, in the proof of Theorem 4.16, the only places
where the stability of the fluid limits is used are (a) in (4.102), and (b) where
Proposition 4.15 is applied. Stability is used in (b) only to conclude the queue-
ing network is subcritical. The latter use of stability can of course be avoided
by directly assuming the queueing network is subcritical. The condition in (a)
is the major “given” in the theorem, with verification of the stability of the
fluid limits, as needed in (4.102), being left to specific applications.

The definition of fluid limit, that is given in Section 4.3, differs somewhat
from that given in [Da95]. There, one sets a,, = |z,|, and, unlike (4.71), makes
no assumptions on u, and v,. This permits the limiting residual times % and
¥ to be different than 0. The argument for deriving (4.99) is then essentially
that given in Step 1 of the above proof together with the limits in (4.111),
except that one now requires the stability of the corresponding fluid limits
with delay (which will satisfy the corresponding fluid model equations with
delay). The approach used here and in [Br98a] allows one to avoid dealing
with fluid limits and fluid models with delay altogether. (An intermediate
approach for fluid models was given in [Ch95].)
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As noted at the end of the preceding sections, analyzing the Markov pro-
cess X (+) becomes easier when the state space is countable. We point out that
the same is true here, although in this context, the absence of coordinates
corresponding to the exponential residual times, rather than countability, is
what is important. In this simpler setting, the last two displays in Lemma
4.13 are not needed, nor is Proposition 4.15. The proof of Theorem 4.16 sim-
plifies, with Step 2 no longer being needed. In Step 1, one can instead set
apn, = |Tp| = |2n|- Then, (4.104) immediately implies (4.99), with ¢ = N.

The stability assumptions in Theorem 4.16 are sufficient for most applica-
tions. On occasion, somewhat greater flexibility in the definition of fluid limits
is helpful. One can, for instance, replace the assumption of fluid limit stability
with 1

a—|Z’”” (NZay)| — 0 in probability as n — oo, (4.112)
n

for all pairs of sequences (a,, x,) satisfying (4.71). This generalizes pointwise
convergence in (4.101), at the beginning of Step 1 in the proof of the theorem,
to convergence in probability. The conclusion (4.104), in Step 1, follows as
before from the uniform integrability condition on |Z(¢)| in (4.88). In [Br99],
the concept asymptotic stability is used; this is a weaker variant of fluid limit
stability that implies (4.112). As in the previous paragraph, matters simplify
in the exponential setting when employing (4.112).

Throughout this chapter, we have assumed that queueing networks are
head-of-the-line. If one wishes, one can replace this assumption by the as-
sumption that only a bounded number of jobs at any class and time have
already received some service there. The approach is then essentially the same
as before, with only the obvious modifications being made at certain points.
One needs to replace the residual service time vector, in the construction of
the state space and the Markov process in the first part of Section 4.1, by a
vector with correspondingly more components. Under the corresponding new
definition of the norm |z|, the same results leading up to Theorem 4.16 hold
as before. The basic fluid model equations (4.50)-(4.55) are still valid. (The
queueing network inequality (4.47) leading to (4.55) needs to be modified,
though.) Other results where the reasoning proceeds as before include Propo-
sition 4.12, where the fluid limits satisfy the basic fluid model equations, and
Proposition 4.15, where the bounds on |V*(-)| continue to hold.

This approach fails when the number of jobs that have received partial
service is allowed to become unbounded. In particular, the bounds on [V*(-)| in
Proposition 4.15 can fail, and |V*(c|z|)| can be of the same order of magnitude
as |z|. Changing the sum norm on |v| to the max norm does not help, since
the relationship between fluid limits and the basic fluid model equations in
Proposition 4.12 need not continue to hold.

e-stability

By strengthening the assumptions in Theorem 4.16 so that the sets A
there are uniformly small, one can show, in Theorem 4.17, that the queueing
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network is e-stable. Theorem 4.17 follows by using the same argument as in
Theorem 4.16, but instead applying the last part of Proposition 4.6 to it. A
similar result is given in [Du96].

Theorem 4.17. Assume that an HL queueing network satisfies the same con-
ditions as in Theorem 4.16, except that the condition that A = {x : |z| < Kk}
be petite is replaced by the condition that, for each k > 0, A be uniformly
small on an interval [s1, s2], with 0 < s1 < s3. Then, the queueing network is
e-stable.

Proof. Whenever a set is small, it is also petite. So, all of the assumptions
in the statement of Theorem 4.16 are satisfied. Consequently, all steps in the
proof remain valid, which include the bound and limit given in (4.98) and
(4.100). As before, they together imply the basic assumption (4.28) for the
Multiplicative Foster’s Criterion (Proposition 4.6), for some choice of .
Since |z| is continuous in x, the set A is closed. By assumption, it is uni-
formly small. Employing the last part of the Multiplicative Foster’s Criterion,
it follows that X () is ergodic. Hence the queueing network is e-stable. |

Under the assumptions (4.30) and (4.31) on the interarrival times, it fol-
lows from Proposition 4.7 that the sets A = {z : |z| < k}, k > 0, are uniformly
small. It therefore follows from Theorem 4.17 that, under (4.30) and (4.31), a
queueing network will be e-stable if either its associated fluid limits or asso-
ciated fluid model is stable.

In Chapter 5, we will employ Theorems 4.16 and 4.17 to demonstrate
the stability/e-stability for queueing networks with different disciplines. In
each case, the main part of the argument consists of showing the stability
of an associated fluid model. The amount of work involved depends on the
discipline. Here, as an elementary illustration of the procedure, we show the
following.

Example 1. Assume that (4.30)-(4.31) holds for an HL queueing network
with Zj pj < 1. Then, the queueing network is e-stable.

Proof. By Proposition 4.7 and Theorem 4.17, it suffices to show that an asso-
ciated fluid model is stable. We do this for the basic fluid model, which, by
Proposition 4.12, is always associated with the network. By Part (a) of Propo-
sition 4.11, this fluid model is stable. Consequently, the queueing network is
e-stable. |

The assumption » jpj <lis sufficiently strong so that the above example
can be proven directly, with a bit of work. For this, one can apply the Mul-
tiplicative Foster’s Criterion to the total workload of the queueing network.
(The total workload consists of all future work required of all jobs currently in
the network.) As one should expect, the assumption that the discipline be HL
is not necessary here, although one then needs to reformulate the definition
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of the underlying Markov process given in Section 4.1 and its accompany-
ing state space. For less elementary examples, a direct proof of stability or
e-stability will be quite tedious, if feasible.

4.5 Appendix

The purpose of this section is to serve as an appendix for Section 4.1 and to go
into more detail on background material that was omitted there. We cover here
four topics. We first discuss the connection between Borel right processes and
piecewise-deterministic Markov processes, which was only mentioned briefly
in Section 4.1. We then go into more detail on three topics connected with
recurrence that were mentioned in the subsection on Harris recurrence. In
Proposition 4.18, we show the equivalence of Harris recurrence and of positive
Harris recurrence for a Markov process X and its R-chain X, and that X
and X have the same stationary measures. We next summarize how one can
demonstrate Theorem 4.1 for a process X by employing its R-chain. We then
summarize the argument showing the existence of a stationary measure for
a discrete time Markov process with a petite set A that satisfies the discrete
time analog of (4.19).

Borel right processes and PDPs

We first state the definition of a Borel right process, and then show that the
class of PDPs that are associated with H L queueing networks are Borel right
processes. For the definition of Borel right, we follow Section 27 of [Da93].
Other references are [Ge79], [Kn84], and [Sh88]; [Da93] relies on the approach
given in [Sh88§].

We assume that the o-algebras associated with the continuous time
Markov process X satisfy the completeness and right continuity conditions
given in (4.5) and (4.6). The conditions on page 77 of [Da93] state that X (-)
is Borel right if, in addition:

(a) The state space S is a Lusin space.

(b) X has a semigroup P! that maps B(S) into B(S).

(¢) The sample paths ¢ — X (t) are a.s. right continuous.

(d) If f is an a-excessive function for P!, for some o > 0, then the sample
path ¢ — f(X(¢)) is a.s. right continuous.

We proceed to explain the terms that are employed above, and show that
these four conditions are satisfied for the Markov processes X underlying the
H L queueing networks we have introduced. The first three conditions are quite
general, and do not pose any serious constraints. Condition (d) is needed for
the regularity of the process. In our setting, none is difficult to show.

A topological space is called a Lusin space if it is homeomorphic to a
Borel subset of a compact metric space. As pointed out in [Sh88], a locally
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compact Hausdorff space with countable basis is a Lusin space, since its one
point compactification is compact and metrizable. The space S introduced in
Section 4.1 satisfies these properties, and so is a Lusin space. In (b), B(S)
denotes the bounded measurable functions on S. The property holds since P*
is a probability transition kernel. As mentioned in Section 4.1, this is showed
in [Da93]. The argument consists of writing P'f, f € B(S), as the limit of
the n-fold iterates of G*f, where G is the truncated operator obtained by
stopping X at the time of its first jump, and employing the measurability
of G'. In (c¢) and (d), “a.s.” means almost surely with respect to all initial
probability measures . Since the sample paths of X are right continuous by
construction, property (c) is automatic.

A function f is a-super-mean-valued, for some o > 0, if f(z) > 0 and
e Pt f(x) < f(z) forallt > 0and x € S. The function f is a-excessive if it is
a-super-mean-valued and e~ P! f(z) 1 f(x) as ¢ | 0. In our setting, it is easy
to see that (d) holds for the larger family of functions where P!f(z) — f(x)
as t | 0. To see this, let ¢t < s be close enough so that no jumps occur in (¢, s]
along a given sample path. Then, since X (-) is piecewise deterministic,

F(X(9) = f(PHX(X) = F(P*"(2)),

for z = X(t). As s | t, the last quantity converges to f(z) = f(X(t)), which
shows f(X(+)) is right continuous, and hence shows (d).

By (i) of Theorem 9.4 of [Ge79], under the conditions (a)-(c), the assump-
tion that X is strong Markov is equivalent to condition (d). So, (d) may be
replaced by

(d") The process X is strong Markov.

As mentioned in Section 4.1, PDPs are strong Markov, and therefore so are
our processes X that are associated with H L queueing networks. The demon-
stration of (d) is of course quicker than (d’) for such processes, but most
readers will presumably find the latter condition more familiar.

Recurrence for a Markov process and its R-chain

Let X(t), t > 0, be a Markov process and X(n), n = 0,1,2,..., be its
R-chain. The process X inherits certain properties from X, which we used in
Section 4.1. We demonstrate them now in Proposition 4.18. For this, we em-
ploy the following standard result from discrete time Markov process theory,
which can be found, for instance, in Chapter 10 of [MeT93d]: if a Markov pro-
cessY(n),n=0,1,2,...,is Harris recurrent, then it has a stationary measure,
and this measure is unique up to a constant multiple. (We will outline part of
the argument in the last subsection.) Much of the proof for the proposition is
from [MeT93a].

Proposition 4.18. The process X is Harris recurrent, respectively positive
Harris recurrent, if and only if X is. In either case, X and X have the
same stationary measures. Consequently, X has a stationary measure, which
s unique up to a constant multiple.
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Proof. The existence and uniqueness of a stationary measure for X follows im-
mediately from the preceding statement in Proposition 4.18, and the comment
before the proposition about discrete time Markov processes.

It is immediate from the characterization of recurrence in (4.10) that when
X is recurrent with respect to the measure ¢, then so is X. For the other
direction, it suffices to show that for p(A) > 0,

P,(T4 < 0) =1 forallz,

where 74 is the hitting time of A for X constructed as in (4.13). This follows
immediately from (4.9) and the formula

Py(fa < 00) = 1 — Eyle™ 4], (4.113)

which is given in Theorem 2.3 of [MeT93a]. Intuitively, (4.113) is not difficult
to see since, conditioning on the process X, the number of indices n, at which

X(n) = X(o,) € A, will be Poisson with mean 74, and so
P(fa=00|0o(X))=e"™ for all z.

Suppose now that a measure 7 is stationary for Pt. Then, 7P? = 7, and
integration against e~¢ on both sides gives 7R = 7. So, 7 is also stationary
for R.

It remains to show that if 7 is stationary for R, then it is also stationary

for P!. Assuming 7 is stationary for R, we first show that = ef 7Pt t >0,

is also stationary for R, that is,
' =7'R. (4.114)

Arguing as in Theorem 3.1 of [MeT93a], for A € .7, one has

TP'R(A) = / e SnP'P*(A)ds = / e StP*P'(A)ds
0 0
= tRP'(A) = nP'(A),

where the first and third equalities come from reversing the order of integra-
tion, and the fourth holds since 7 is stationary for R. So, (4.114) also holds.

Since the stationary measure for R is unique up to a constant multiple,
and both 7 and 7! are stationary for R, one has

nt =c(t)r fort >0,

for some measurable function ¢(t) > 0. Since mass is conserved, one must
have 7* = 7 when X is positive Harris recurrent (and hence 7(S) < 00).
So, in this case, 7 is stationary for P!. The same holds in general, because
Pstt = P o Pt and so c(s +t) = c¢(s)c(t), which implies ¢(t) = e“* for some
C. Therefore, for A € .&,
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m(A) = TR(A) = /OOO et (A)dt = 7(A) /OOO €Dty

which implies C' = 0, and so, in fact, 7% = 7, as desired. |

The following proposition is a variant of Proposition 4.18, and will be used
in the last subsection. It employs the resolvent

K(z,A)=) 27"P"(x,A) forzeS, Ac.?, (4.115)
n=1

for a discrete time Markov process Y. (Typically, summation is chosen to
start at n = 0, with the coefficients modified accordingly.) The corresponding
discrete time Markov process, with transition function K, will be referred to
as a K-chain. On account of Proposition 4.19, it will be easier to work with
the K-chain than with Y directly.

Proposition 4.19. Suppose that a discrete time Markov process Y has a
small set A that satisfies

P.(ta<o0)=1 foralxzelb. (4.116)

Then, A also satisfies (4.116) for the K-chain, with respect to which A will
be small with mg = 1. Moreover, Y and its K-chain have the same stationary
measures.

Proof. The argument that uses (4.113) can also be used to show (4.116) holds
for the K-chain. (The number of indices in A, after conditioning on Y, will
now be binomial instead of Poisson.) It is easy to see that A will also be small
for the K-chain: one can choose my = 1 and small measure v = 27™0 v/, where
V' is the small measure for Y and my is the time at which it is employed.

Suppose now that a measure 7 is stationary for P. Then, 7P = 7, and
summation against 27" on both sides gives 7K = 7, so 7 is also stationary
for K. For the other direction, assume that 7K = 7. One has the string of
equalities

TP =7nKP=2tR—-7nP =2r—nP.

Comparison of the first and last terms then implies 7P = 7, as desired. The
first and third equalities follow from the stationarity of m with respect to K,
and the second equality follows quickly from the definition of K. |

Proof of Theorem 4.1

We summarize here the proof of Theorem 4.1. Our approach will be to first
state a discrete time analog of Theorem 4.1, Theorem 4.20, and say a little
about how it is shown. We will then summarize how Theorem 4.1 follows from
a slight modification of Theorem 4.20 and Proposition 4.18. At various points,
this subsection relies on ideas from [MeT93a).
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Theorem 4.20 is similar to Theorem 4.1. Differences are that the set A is
no longer required to be closed and, in (4.118), 74(9) is replaced by 74. (These
simpler quantities suffice since Y (74) € A is automatic and 74(d) = 74 for
0 < 1.) In one direction of Part (a), the set A is chosen to be small (rather
than just petite), since this is needed in the next subsection. The state space
(S,.7) is not assumed to have a topological structure, although the o-algebra
& is assumed to be countably generated.

Theorem 4.20. (a) If a discrete time Markov process Y is Harris recurrent,
then there exists a small set A with

P.(ta <o0)=1 foralxzelb. (4.117)

Conwversely, if (4.117) holds for a petite set A, then'Y is Harris recurrent. (b)
Suppose the discrete time Markov process Y is Harris recurrent. Then, Y is
positive Harris recurrent if and only if there exists a petite set A for which

sup E[1a] < oo. (4.118)
T€A

We discuss briefly the reasoning for the different parts of Theorem 4.20. As
in the case of Theorem 4.1, the argument for the converse direction of Part (a)
is elementary. It consists of repeatedly restarting Y at an increasing sequence
of random times, between which Y has at least some probability ¢ > 0 of
hitting a specified set B, for which ¢(B) > 0, where ¢ is the irreducibility
measure. Here, in the discrete time setting, less theoretical justification is
required, since the strong Markov property and the measurability of hitting
times of sets are elementary.

The argument for the other direction of Theorem 4.20(a), namely the
construction of a small set satisfying (4.117), is longer, and requires cleverness.
It is sometimes referred to as Orey’s C-Set Theorem. For a proof, one can
consult pages 18-19 in [Nu84] or Theorem 5.2.1, on page 107 of [MeT93d]. The
construction involves setting v = ¢1{D}, where ¢ is a maximal irreducibility
measure for Y with total mass 1, and D is an appropriately defined “high
density” set. We note here that in the setting of Section 4.1, where % is
generated by a locally compact, separable metric, one can choose the set A so
that it is also closed. (By Proposition 5.2.4(iii) of [MeT93d], there is a small
set A’ with ¢(A’) > 0, for the maximal irreducibility measure 1, and therefore
a closed subset A of A’ for which ¥(A) > 0 as well.)

In Part (b) of Theorem 4.20, the argument that positive Harris recurrence
follows from the existence of a petite set A satisfying (4.118) is quite quick, if
one assumes the following formula in (4.119). It is of interest in its own right,
and says that the stationary measure 7 of a Harris recurrent discrete time
Markov process Y satisfies

ME:A&

TA—1

> 1{¥(n) € B}

n=0

mw(dx) for B € .7, (4.119)
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for any A € . with ¢(A4) > 0. Often, the indices in the sum are taken from
n = 1to 74 (as in Theorem 10.0.1 in [MeT93d]). Setting B = S, we will
employ the special case,

(S) = /A Euraln(dz). (4.120)

The formula (4.119) may be motivated by the following informal argument.
For x € S and A, B € ., with ¥(A) > 0, set

74(B) =7(ANB) and “P(z,B) = P(z, BN A°). (4.121)

Then, (4.119) may be rewritten as 7 =74 > oo, P". Assume that
(I —=AP)~1 =3 AP" exists. Then, this is equivalent to

n(I —4P) =74,

that is,
7TAP = T Ac,

which follows immediately from the definition in (4.121) and the stationarity
of m.

In order to employ (4.120), we first note that 7(A) < oo must hold if the
set A is petite with respect to any measure v. Otherwise, it is not difficult to
check that, from the definition of petite, 7(B) = co must hold for any B with
v(B) > 0. Since 7 is assumed to be o-finite, this is not possible. Applying
(4.118) to (4.120), one therefore obtains

m(S) < 7w(A) SIGIIZ E.[ra] < 0.

So, Y is positive Harris recurrent, as desired.

The argument for the other direction of Theorem 4.20(b), which involves
the construction of a petite set satisfying (4.118) is, not surprisingly, longer.
The result is stated in Theorem 11.0.1 of [MeT93d]. It involves the use of
reqular sets, with Theorem 11.1.4 providing the key decomposition of S. We
note here again that, in the topological setting of Section 4.1, one can choose
A so that it is also closed. (In Theorem 11.0.1, one can choose a regular set
A’ with ¢(A’) > 0, and therefore a closed regular subset A of A’ for which
¥(A) > 0; both A" and A will be petite.)

This completes our discussion of Theorem 4.20. We now summarize how
Theorem 4.1 follows from a slight modification of Theorem 4.20 and Propo-
sition 4.18. As in Theorem 4.20, there are two parts to show, each with two
directions. Recall that X denotes a continuous time Markov process as in
Section 4.1 and X denotes the corresponding R-chain.

The argument that the Harris recurrence of X follows from the existence
of a petite set satisfying (4.19) is elementary, and was summarized in Section
4.1. To show the other direction of Theorem 4.1(a), we first note that, by
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Proposition 4.18, if X is Harris recurrent, then so is X. By Theorem 4.20(a),
there exists a small set A for X, with corresponding time m, for which (4.117)
is satisfied. As mentioned in the outline of the proof of Theorem 4.20, A can
be chosen so that it is also closed. Choosing a in (4.18) to be the my-fold
convolution of the exponential distribution, it follows that A is petite for X.
Using (4.13), it is easy to see that since (4.117) holds for X its analog (4.19)
holds for X. So, A has the properties stated in Theorem 4.1(a).

In order to show Part (b) of Theorem 4.1, we again employ Theorem 4.20
and Proposition 4.18. We also need the following comparisons between the
bounds on the hitting times of petite sets A, in (4.20) and (4.118), for the
processes X and X. These comparisons are taken from Section 4 of [MeT93a).

Proposition 4.21. (a) Suppose that for the continuous time Markov process
X, (4.20) is satisfied for some closed petite set A. Then, there is a petite set
A’ for X, such that (4.118) is satisfied for the R-chain X. (b) Suppose that
for the R-chain X of X, (4.118) is satisfied for some petite set A of X. Then,
there is a closed petite set A’ for the process X which satisfies (4.20).

We note that, in [MeT93al, it is shown that the set A in Part (b) is regular
for X, with (A) > 0 for the maximal irreducibility measure . The existence
of a closed petite subset A’ satisfying (4.20) then follows. (This application of
regularity is analogous to that mentioned at the end of the discussion of the
proof of Theorem 4.20.)

Using Proposition 4.21, we now show Theorem 4.20(b). Suppose that (4.20)
is satisfied for some closed petite set A. Then, the petite set A’ in Part (a)
of the proposition must have m(A’) < oo, for the reasons mentioned in the
demonstration of Theorem 4.20(b). Here, 7 is the stationary measure for both
X and X. Since A’ satisfies (4.118), one may apply the formula (4.120), as in
the demonstration of Theorem 4.20(b), to conclude that 7(S) < co. Hence,
X is positive Harris recurrent, as desired.

For the other direction of Theorem 4.1(b), we assume that X is positive
Harris recurrent. By Proposition 4.18, X is also positive Harris recurrent, and
so by Theorem 4.20(b), there is a petite set A of X that satisfies (4.118).
Applying Proposition 4.21(b), it follows that there exists a closed petite set
A’ for the process X, which satisfies (4.20). This completes our discussion of
Theorem 4.1.

Ezistence and uniqueness of stationary measures

One of the fundamental properties of discrete time Harris recurrent Markov
processes is the existence of a stationary measure that is unique up to a
constant multiple. This is a standard result in discrete time Markov process
theory and can be found in a number of places, such as [Nu84| and [MeT93d].
A short account is given in [Dur96], which we follow here in summarizing the
ideas behind the proof. Because of Proposition 4.18, this result immediately
extends to continuous time Markov processes.
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On account of Part (a) of Theorem 4.20, in order to show the existence
of a stationary measure for a discrete time Harris recurrent Markov process,
it suffices to show the following result. We will discuss uniqueness of the
stationary measure afterwards.

Theorem 4.22. Suppose that Y is a discrete time Markov process with a
small set A satisfying (4.117). Then, there exists a stationary measure .

The reasoning for Theorem 4.22 can be broken into two main steps. The
first step consists of showing that the conclusion of the theorem holds when S
contains a recurrent atom « for the process Y. By this, we mean that P, (7, <

o0) = 1 for all y, where 7, def Ta}- (The use here of the term recurrent atom is
not standard.) The second step shows that there is an appropriate “lumping
together” of points (sometimes referred to as “splitting” in the literature)
that allows one to construct a process Y with such an atom and which has
the same recurrence behavior as Y.

Before beginning, we note that, because of Proposition 4.19, one can as-
sume without loss of generality that mg = 1 for the small set A. Also, by
scaling the corresponding small measure v by e = 1/v(5), one can replace the
inequality (4.18) by

v(B) <eP(y,B) forye A, Be.?%, (4.122)

where v is now a probability measure.
For the first step, we assume that S has a recurrent atom a. Then, P, (1, <
o0) = 1, and it is not difficult to show that the measure 7 defined by

Ta—1

Y 1{Y(n) € B}

n=0

7(B) = Eq (4.123)

is o-finite. (See Exercise 6.8 on page 331 of [Dur96].)

We claim that 7 is stationary for the process Y. The proof is essentially
the same as that for Markov chains, which is given for Theorem 4.3, on page
303 of [Dur96]. It can be motivated by using the “cycle trick”, noting that the
number of visits to any y € S over the time set {0,...,7, — 1} is always the
same as over {1,...,7,}, and taking expectations over both sides. It follows
from this that 7P = m. Formula (4.123) is a special case of (4.119), with
A = {a}. (Note that the representation of 7 in (4.119) is not explicit, whereas
the right side of (4.123) does not involve r.)

For the second step of the proof, one wishes to compare the given Markov
process Y with one having a recurrent atom. The small set A will be used to
construct the atom, and (4.117) will be used to show the atom is recurrent.
We begin by appending a point « to the state space S, thus creating a new
space S and a corresponding Borel o-algebra .7,

S=8Su{a} and ¥ ={B,BU{a}:B¢c .7}
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One can define a probability transition kernel P on (S,.#) by

e forye A,

Ply{a}) = {0 forye S—A

Py, B) = P(y,B)—ev(B) forye A, BeZ, (4.124)
P(y,B) foryeS— A, Be.?,

P(a, B) = /P( ,B)v(dy) for Be .7,

where v and € > 0 are chosen as in (4.122). We denote by Y the corresponding
Markov process.
We also find it convenient to introduce the probability transition kernel V'

on (S,.7), with
V(y,{y})=1 forye S, V(a,B)=v(B) for Be.”. (4.125)
Note that V(y,a) = 0 for all y € S. One can check that
VP=P and (PV)|s=P. (4.126)

Here, |s denotes the restriction to .S in both the domain and range. As usual,
we are employing the convention that the transition kernel on the left is the
first to be applied to a given initial measure. We will demonstrate a version
of (4.126) below (4.128).

The construction of P can be motivated as follows. One wishes to “lump
together” points in .S in some way so as to form an atom «, while not changing,
in essence, the transition rule P. If one is to lump together points according to
some weight v, transitions to and from «, by the new transition rule P, must
both be done in a manner consistent with this weight. Since A is assumed to
be small, with mo = 1 and with (4.122) holding, one can choose P(y,{a})
as on the top two lines of (4.124); the bottom line of (4.124) respects the
weight v. The third and fourth lines of (4.124) define P according to the old
transition rule P on the mass that has not been directed to a.

To develop some feel for (4.124), one can consider the case where S is
discrete. (In this case, there is of course no need to lump together points
to create an atom.) Denoting the transition densities by p(y,y’) and setting

q(y) = v({y}), (4.124) becomes

3y, o) = e forye A,
P e = 0 foryeS—A,

By, ) = {igy, z)—eq(z) forye A z€S (4.127)

Y, 2) forye S—A, z€ S,
Pl z) =Y Py, 2)q(y) for z € S.

i
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Here {y;} denotes an enumeration of the points in S. Similarly, one can define
v by
v(y,y) =1, v(a,y) = qy) foryes.

The equations in (4.126) become

(’Uﬁ)(yvz):ﬁ(yvz) and (ﬁv)(y,z)zp(y,z), (4'128)

with y,z € S in the first equation and ¥,z € S in the second. The first
equation follows from the invariance of v on y € S and

(vp)(a2) = 3 ploi 2alys) = e 2).
For the second equation, one has
(pv)(y, ) = Zﬁ(%yi)v(yu z) + by, a)o(a, 2),

=Dy, 2) + By, a)q(z)

for y,z € S. For both y € A and y € S — A, it follows from the definition of
P that the last line equals p(y, z), as desired. The equations in (4.126) can be
derived similarly.

We still need to show that the atom « is recurrent. For this, it suffices to

show
Z P"(z,{a}) =00 forallzeS. (4.129)

We employ the string of inequalities
> _P(a,{a}) =) V(PV)"'P(a,{a}) 2 ey V(PV)" ! (z,4)

> . = n—1 > : n—1 — .
>emin » (PV)" "z, A) > ¢ min zn:P (x,A) =0

n

The first equality follows from the first half of (4.126), the first inequality
follows from the first line of (4.124), and the second inequality follows from
(4.125). The last inequality is a consequence of the second half of (4.126),
since restricting the domain decreases the corresponding integrals. (Because
of (4.125), one actually has equality.) The equality at the end follows from
Borel-Cantelli and (4.117), since A will be hit infinitely often with probability
1. So, (4.129) holds.

We now tie together the two previous steps involving the creation and
manipulation of the atom «. If one assumes that the Markov process Y given
in Theorem 4.22 has a petite set A satisfying (4.117), it follows that the
process Y defined by (4.124) has a recurrent atom at o.. The measure 7 given in

(4.123) for Y is then stationary for Y. We claim that the measure dZEf(TTV) s,
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given by the restriction of 7V to S, is stationary for Y. Theorem 4.22 follows
immediately from this.
To show the claim, it suffices to verify the string of equalities

7P = (7V)|s P = (xPV)|s = (7V)|s = . (4.130)

Here, the third equality follows from the stationarity of 7 and the first and
fourth follow from the definition of . The second equality follows from

(7V)|s P=(7V)|s (PV)|s = (7VPV)|s = (7PV)]s, (4.131)

where one applies first the second half of (4.126) and last the first half of
(4.126). The middle equality in (4.131) holds since 7V (a) = 0, and so no
mass is lost by the restriction (7V')|s. This demonstrates (4.131), and hence
(4.130) and the stationarity of 7, as desired.

One can also show that the stationary measure of a discrete time Harris
recurrent Markov process is unique, up to a constant multiple. As before, on
account of Part (a) of Theorem 4.20, it suffices to show the following version.

Theorem 4.23. Suppose that Y is a discrete time Markov process with a
small set satisfying (4.117). Then, up to a constant multiple, the stationary
measure of Y is unique.

We note that some sort of condition, corresponding to (4.117), is of course
necessary. Without it, as in the countable state space setting, states may not
communicate and there may be many stationary measures.

We summarize here the argument for Theorem 4.23. As in the demonstra-
tion of the existence of a stationary measure, we can assume without loss of
generality that mo = 1 for the small set A, because of Proposition 4.19. The
following argument, for mg = 1, can be found in Theorem 6.7, on page 331 of
[Dur96].

As before, one employs the process Y corresponding to (4.124), which has
a recurrent atom. Let p be a o-finite measure on (S,.%), and denote by p° its
extension to (S,.7) given by

p°(B)=p(BNS) for BCS.

If p is stationary for Y, one can show that p = p°P is stationary for the
process Y. This is done in Lemma 6.6, on page 331 of [Dur96].

In the countable state space setting when all states communicate, it is not
difficult to show that p = p(a)7®, where 7 is the stationary measure for Y
defined in (4.123). This is done in Theorem 4.4, on page 305 of [Dur96], and
the argument in the general state space setting is essentially the same. Set

m = (7V)|s. One then has

(4.132)
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Here, the first equality follows from the stationarity of p, the fourth and sixth
equalities from the definitions of p and m, and the second equality from the
second half of (4.126). The third equality holds since p({a}) = 0. By (4.132),
p = p(a)m, which shows that p is a constant multiple of 7, as desired.
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Applications and Some Further Theory

Theorem 4.16, from Section 4.4, gives conditions under which an HL. queueing
network will be stable. Theorem 4.17, from the same section, gives similar
conditions under which a network will be e-stable. In the first three sections
of Chapter 5, we will demonstrate stability/e-stability for three families of
queueing networks by using these criteria. In Section 5.1, we do this for a
family of a networks that includes single class networks, and in Section 5.2,
we do this for two families of SBP reentrant lines, FBFS and LBF'S. In Section
5.3, we apply the same criteria to FIFO networks of Kelly type.

In Sections 5.4 and 5.5, we address other topics connected with stability.
Global stability is introduced in Section 5.4. The condition says that the net-
work is stable irrespective of the HL discipline that is employed. It will follow
directly from Theorem 4.16 that a sufficient condition for global stability is
the stability of the associated basic fluid model. For two stations, there is
a developed theory for these fluid models, which we summarize. Important
underlying concepts include virtual stations and the push start phenomenon.
We also discuss briefly rate stability and global rate stability for queueing
networks, and the corresponding concept of weak stability for fluid models.

In Section 5.5, we investigate the converse direction to Theorem 4.16.
Namely, does queueing network stability, under reasonable side conditions,
imply fluid model stability? In particular, are queueing network and fluid
model stability in some sense equivalent? Most of this section is spent on two
examples that show this is not always the case. Virtual stations and push
starts are again useful tools in this context.

Our approach in Sections 5.1-5.3 will be based on the following considera-
tions involving Theorems 4.16 and 4.17. The conditions in the theorems are of
two types, where (a) one needs the bounded sets A = {x : |z| < k}, K > 0, to
be either petite or uniformly small and (b) one needs the fluid limits or fluid
model, which is associated with the queueing network, to be stable. As noted
in Section 4.4, the latter of the two stability conditions is the more tractible
one, and is the one that is typically applied in practice. In the next three
sections, we will demonstrate the stability of fluid models that are associated
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with the queueing networks there; the desired results then follow by applying
Theorems 4.16 and 4.17. The first two cases are fairly quick, and the third
takes a bit longer to show.
In order to avoid repetition later on, we will, in each case, explicitly assume
that
A ={z:|z| < Kk} is petite for each k > 0. (5.1)

This condition suffices, in Theorem 4.16, for stability of the queueing network,
once the fluid model has been shown to be stable. In order to conclude that
the queueing network is e-stable, by using Theorem 4.17, one needs to replace
(5.1) here with the assumption that, for each x > 0,

A ={z :|z| < K} is uniformly small on [s1, s2], for some 0 < s; < s2. (5.2)

Whether the above sets A are either petite or uniformly small may depend on
the discipline of the queueing network. We recall that the conditions (4.30)
and (4.31) on the interarrival times are sufficient for both (5.1) and (5.2) under
all HL disciplines, and that (4.30) alone is sufficient for (5.1) when |A| = 1.
In this chapter, as was the case in Chapter 4, it will be implicitly assumed
that the interarrival and service times have finite means.

We recall that in Section 4.3, we defined regular points of a fluid model
solution X(-) to be those times ¢ at which the derivatives of all components
of X(-) exist. Since the components of X(-) are all Lipschitz continuous, the
derivatives at regular points determine X(-). In our computations in Sections
5.1-5.3, we will often restrict our attention to regular points, without always
explicitly saying so.

The material in this chapter relies on a number of papers. The material
in the first three sections is mostly from [Br98a], [DaWe96], and [Br96a]. The
material in Section 5.4 is mostly from [DaV00], and that in Section 5.5 is
mostly from [Da96], [Br99], [DaHV04], and [GaHO05].

5.1 Single Class Networks

In Section 2.5, we gave the explicit formula (2.44) for the stationary distri-
butions of subcritical single class HL queueing networks with exponentially
distributed interarrival and service times, which we referred to as Jackson net-
works. These networks are stable (in fact, e-stable). Does stability still hold
when the interarrival and service times are not exponential? This was consid-
ered a difficult question, and was answered in the affirmative in a number of
papers under various assumptions on the interarrival and service time distri-
butions ([Bo86], [Si90], [BaF94], [ChTK94], [MeD94]). Fluid models, together
with Theorem 4.16, provide a quick proof of stability for these networks.

To show stability of the associated fluid models, we employ the proof
given in [Br98a]; another argument was given in [Da95]. The proof relies on
the inequality
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Di(t) = A, +e (5.3)

for some € > 0 and all k, at all regular points of the fluid model solutions X(-)
where Zy(t) > 0. It follows from (4.53) and (4.55) that (5.3) is satisfied for all
subcritical single class fluid models.

Since the restriction to one class per station is otherwise not used in the
proof of stability of the fluid model, we will instead assume that the HL
queueing networks we consider here satisfy the related condition

Ri(t) > mi(A\x + €), (5.4)

for some € > 0 and all k, whenever the k" class is not empty. Recall that, as
in the first part of Section 4.1, R(t) is the proportion of service at station j
allocated to the first job in class k. For subcritical single class networks, (5.4)
holds for small enough e, since my A, < 1. We will show shortly that (5.3), for
fluid limits, follows from (5.4). Needless to say, (5.4) is a severe restriction, and
is not satisfied by the usual multiclass disciplines. (In [Br98a], the condition is
used to show that any HL queueing network can be “stabilized” by inserting
sufficiently quick single class stations between visits to classes.)
The following theorem is the main result in this section.

Theorem 5.1. Any HL queueing network satisfying (5.1) and (5.4) is stable.
Consequently, any subcritical single class HL queueing network satisfying (5.1)
is stable.

We will employ Theorem 4.16 to show Theorem 5.1. As the associated
fluid model in Theorem 4.16, we choose the fluid model consisting of the basic
fluid model equations (4.50)-(4.55), together with (5.3). We already know,
from Proposition 4.12, that (on the set G) every fluid limit of the queueing
network satisfies the basic fluid model equations. So, in order to show the fluid
model is associated with the queueing network in Theorem 5.1, we only need
to verify that (5.3) is satisfied by all fluid limits.

The reasoning for (5.3) is analogous to that in Proposition 4.12 for the
other fluid model equations. By (5.4), for given z,

Ty (t2) — Tp7 (t1) = mu(Ak + €)(t2 — t1)
for all k and t; < to, if Zx(t) > 0 on [t1, t2]. For the same reason,

Lo (ants) - aiT,jn (ant1) > (O + €)(ta — t1) (5.5)
n n

for any sequence of pairs (a,, z,) satisfying (4.71), if Z;"(t) > 0 on [ant1, anta].

On the other hand, for any fluid limit X(-), its component Z(-) is continuous.

So, if it is assumed that Zj(t) > 0 on an interval [t1,?s], then it is bounded

away from 0 on this interval. Convergence to Z(-) is w.o.c., and so for suffi-

ciently large n, Z;"(t) > 0 on [ant1, ants]. Together with (5.5), this implies

Ti(t2) — Tr(t1) > mp(Ag + €)(ta — t1).
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By (4.55), the inequality is equivalent to
Dy (t2) — Di(t1) > (M + €)(t2 — t1),

which is, of course, equivalent to (5.3).

Since the system of fluid model equations (4.50)-(4.55) together with (5.3)
is associated with the queueing network in Theorem 5.1, it suffices to demon-
strate the following result in order to show Theorem 5.1.

Theorem 5.2. Any fluid model satisfying (5.3) is stable.

We break the proof of Theorem 5.2 into two lemmas. The first lemma gives
a lower bound on the rate of departures from any class, empty or not.

Lemma 5.3. Assume that a fluid model satisfies (5.3). Then,
D(t2) — D(t1) = A(t2 — t1) (5.6)

fOTOStl StQ.

In order to show Lemma 5.3, we require some notation. At each time
t > 0, let KCo(t) denote those classes where Zj(t) = 0, let K4 (t) denote its
complement, and let |KCo(¢)| and |K4(¢)] be the number of elements in each
set. The subscripts 0 and + will denote the restrictions to Ko (t) and K4 (¢),
respectively, for vectors such as «, A, D'(t), and Z’(t). Similarly, Py and P;
will denote the |[Ko(t)| x [Ko(t)| and |4 (t)] x |Ko(t)| matrices obtained by
these restrictions.

Proof of Lemma 5.3. By (5.3),
D'(H)s > At (5.7)
In order to show (5.6), it therefore suffices to show
D'(t)o > Ao (5.8)
First note that Iy — Pl is invertible, with

Qo ¥ (Ip—PTy ' =Iy+ PT + (P2 + ...

having nonnegative entries. This is the analog of (1.2). Also, the analog of
(1.6) holds,
Ao = g + POT/\O + PI/\-H

which implies
Ao = QQ(O&Q + PI/\_;_) (59)

On the other hand, combining (4.50) and (4.51), and taking derivatives,
one gets
Z'(t) = a+ (PT —I)D'(t).
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Restriction of the coordinates to Ko(t) implies
Z'(t)o = ao + (P} — Io)D'(t)o + P D' (t) 4.
Multiplying by Qo and applying (5.9), one therefore gets
QoZ'(t)o = Xo — D'(t)o + QoPL (D' (t)+ — A4).
Since Z(t)o = 0, if ¢ is a regular point, one must have Z’(t)g = 0. Hence,
QoZ'(t)o = 0 there. Applying this to the left side of the above equality, and
(5.3) to the last term on the right side of the equality, implies (5.8), as desired.
: |
To show Theorem 5.2, we will employ the Lyapunov function

fit)y=e"Qz(t). (5.10)

The function f counts the “average” number of present and future visits within
the network, under the transition matrix P, for jobs already in the network
at time ¢. By combining (4.50) and (4.51), one has

Z(t) = Z(0) + at — (I — PT)D(1),
which, after multiplying both sides by @, gives
QZ(t) = QZ(0) + Xt — D(2).
Substitution into (5.10) shows that
ft) = f(0) +te" X —eTD(2). (5.11)

By applying Lemma 5.3 to f(t), we will obtain the following result, Lemma
5.4. Since f(t) and |Z(t)| are at most bounded multiples of one another,
Theorem 5.2 follows immediately from Lemma 5.4.

Lemma 5.4. Assume that (5.3) is satisfied. Then,
f@) <[f(0)—et]™ forallt>0. (5.12)

Proof. Lemma 5.3 implies that
el (D(tz) — D(t1)) > (t2 — t1)eT' )

for 0 < t1 < t3. So, by (5.11), f(¢) is nonincreasing. Consequently, if Z(ty) = 0
for a given tg, then f(t) =0 for all ¢ > t.
Consider now Z(t) for

t<to 2 inf{t: Z(t) = 0}.

By (5.3), D}.(t) > A + € for some k (which depends on t). Together with
Lemma 5.3, this implies that

eI'D(t) > t(e? X +¢€) fort < tg.

Plugging this into (5.11) implies (5.12) for ¢ < to as well. (One can instead, if
one wishes, give a somewhat different proof by using (4.60).) |
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5.2 FBFS and LBFS Reentrant Lines

The static buffer priority (SBP), first-buffer-first-served (FBFS), and last-
buffer-first-served (LBF'S) disciplines were introduced in Chapter 1. We review
their definitions here. For SBP disciplines, classes at each station are assigned
a strict ranking, with jobs of higher ranked (or priority) classes always being
served before jobs of lower ranked classes, irrespective of when they arrived at
the station. In this section, we assume the disciplines are preemptive, so that
arriving higher ranked jobs interrupt lower ranked jobs currently in service;
when the service of such higher ranked jobs has been completed, service of
the lower ranked jobs continues where it left off. The first job of each class
always receives all of the service allocated to the class, so the discipline is HL.

We focus here on two SBP disciplines for networks that are reentrant lines,
FBFS and LBFS. For the FBFS discipline, jobs at earlier classes along the
route have priority over later classes. For the LBFS discipline, the priority is
reversed, with jobs at later classes along the route having priority over earlier
classes. In both cases, we assign classes the values k = 1, ..., K according to
the order of their appearance along the route. With this ordering, classes with
smaller k£ have priority under FBFS and classes with larger k have priority
under LBFS.

In order to specify the evolution of an SBP network, one requires another
equation in addition to the basic queueing network equations (4.42)-(4.47).
This is given by

t —T;7(t) can only increase when Z, (t) =0 fork=1,...,K, (5.13)

for all ¢ > 0. Here, Z,j (t) denotes the sum of the queue lengths at the station
j = s(k) of classes having priority at least as great as k, and T,j (t) denotes
the corresponding sum of cumulative service times. It is easy to verify (5.13).
(Recall that the discipline is assumed to be preemptive.) Note that in this
setting, (4.46) is redundant, since it is equivalent to (5.13) when k is the
lowest ranked class at its station.

Arguing as in the last part of the proof of Proposition 4.12, it is not difficult
to show that (5.13) is satisfied for all fluid limits of SBP queueing networks.
We already know from Proposition 4.12 that the basic fluid model equations
(4.50)-(4.55) are satisfied by all fluid limits of the queueing network. So, the
fluid model given by the equations (4.50)-(4.55) and (5.13) is associated with
the SBP queueing network with corresponding parameters. We refer to these
equations as the SBP fluid model equations, and to the corresponding fluid
model as the SBP fluid model. When the priority scheme among the different
classes at each station corresponds to the FBFS or LBFS disciplines, we refer
to these equations as the FBFS fluid model equations or the LBES fluid model
equations, respectively. The respective fluid models are defined analogously.
We note that (5.13) is equivalent to

(T;7)(t) =1 when Z;7(t) >0 for k=1,...,K, (5.14)



5.2 FBFS and LBFS Reentrant Lines 149

at all regular points .

We saw in Chapter 3 that there exist subcritical SBP reentrant lines that
are not stable. This is not the case for FBFS and LBFS reentrant lines. Our
goal in this section is to show the following two results. Both are done in
[DaWe96], whose reasoning we follow. [LuK91] showed analogous results for
discrete deterministic systems.

Theorem 5.5. Any subcritical FBFS reentrant line satisfying (5.1) is stable.
Theorem 5.6. Any subcritical LBES reentrant line satisfying (5.1) is stable.

As in Section 5.1, we will use Theorem 4.16 to demonstrate stability for
the disciplines of interest. Since we have already shown that the FBFS and
LBFS fluid models are associated with the reentrant lines in Theorems 5.5
and 5.6, it suffices to demonstrate the following two results.

Theorem 5.7. Any subcritical FBFS fluid model is stable.
Theorem 5.8. Any subcritical LBFS fluid model is stable.

The remainder of the section will be devoted to demonstrating Theorems
5.7 and 5.8. We observe that, in both cases, it suffices to show stability, as
in (4.61), but for fluid model solutions that also satisfy |Z(0)] = 1. This

additional assumption will simplify the bookkeeping somewhat. As is typically

the case for fluid models, X(t) d:ef.’f(ct)/c, ¢ > 0, also satisfies the same fluid

model equations as X(¢). It follows from this that the conditions (4.61), with
and without |Z(0)| = 1, are equivalent.

For the proofs of both Theorem 5.7 and 5.8, we find it convenient to set
dip(t) = D} (t) for the departure rate from a class k in the fluid model. As
mentioned earlier, we only need to consider the behavior of solutions X(-) at
regular points t.

Proof of Theorem 5.7. We will use induction to prove that, for each k =
1,..., K, there exists a ty > 0 so that, for any fluid model solution with
1Z(0)] =1,

Zi(t) =0on [tg,00), forl=1,... k.

For the induction step, we assume that Zy(t) = 0 on [t;_1,00) for £ =
1,...,k — 1. It follows that for ¢ > t;_1,

dkfl(t) = dkfg(t) = ... = d1 (t) = Q7. (515)

Set Hy = {¢ < k:s(l) =s(k)}. If Zr(t) > 0, then by (4.55) and (5.14),

> mede(t) = (T,)) () = 1.

LeH Y,

So, for Zi(t) > 0 and t > t_1,
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di(t)=pr 1= D> me]. (5.16)
LeH\{k}

It follows from (5.15) and (5.16) that

Z];(t) de_l(t)—dk(t)zoq —pr | 1—ag Z my
LeH\{k}

Since aq Zﬁer my < 1 by assumption, it is not difficult to see that the right
side of this equation is strictly negative. Setting

Zi(tk—1)
Hk (1 - Zzam\{k} mk) -

it follows that Z(t) =0 for ¢t > t}.

Since |Z(0)| = 1 is assumed, one has Z;_1(t) < |Z(t)| < 1+ aqt for all ¢.
So, we can choose t;, > t;. independently of the particular fluid model solution
X(-), so that Zy(t) = 0 for ¢ > tj. Since, by induction, this holds for all %, it
follows that for any fluid model solution with |Z(0)] = 1, one has Z(t) = 0
for t > N and some fixed N. So, the fluid model is stable. |

th = th—1 +

)

We now demonstrate Theorem 5.8.

Proof of Theorem 5.8. We will show that for some N, one must have Zy(t) =0
for t > N and all k, for any fluid model solution with |Z(0)| = 1. To show this,
assume that at a given k and ¢, Zy(t) > 0, with Z,(t) =0for £ = k+1,..., K.
It follows that if ¢ is a regular point,

di(t) = dp1(t) = ... = dg (t). (5.17)
Set Hy, = {€ >k : s(¢) = s(k)}. Since Zi(t) > 0, it follows from (5.17), (4.55),

and (5.14), that
) Z my = Z medy(t) = (T]j)/(t) =1.
LeEH LeHy,

So, dr (t) = 1/ 34y, ™e- Because the system is subcritical,
o Z my <a1max Z my = maxp] = pmax<1
LEH ZEC

In particular, di (t) > a1/pmax > Q1.
Set f(t) = |Z(t)|. At regular points of f(t),

@) =a; —dg(t).

From the previous paragraph, we know this is at most a1(1 — 1/pmax) <
0 when Z(t) # 0. For |Z(0)| = 1, it follows that Z(t) = 0 for t > N, where

N =1/c1(1/pmax — 1).
So, the fluid model is stable. |
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5.3 FIFO Networks of Kelly Type

We saw, in Section 2.5, that the explicit formula (2.44) for the stationary
distribution of subcritical single class HL networks generalizes to the related
formula for subcritical FIFO networks of Kelly type in (2.4) and (2.9). In both
cases, the interarrival and service times of the network were assumed to be
exponentially distributed. We showed, in Section 5.1, that subcritical single
class queueing networks are stable under more general distributions by using
the machinery of fluid limits. Here, we do the same for FIFO networks of Kelly
type. At the end of the section, we briefly discuss similar behavior of HLPPS
queueing networks, which are an HL variant of PS networks.

In order to specify the evolution of such queueing networks, one requires
an equation corresponding to the FIFO discipline, in addition to the basic
queueing network equations (4.42)-(4.47). The equation we employ is

Dk(t—FWj(t)):Zk(O)—l-Ak(t), k=1,....K, (518)

for all ¢ > 0. To verify (5.18), note that ¢ + W;(t) is the time at which the
service of the last of the jobs currently at j will be completed, since jobs
arriving after time ¢ will have lower priority under the FIFO discipline.

Together, (4.42)-(4.47) and (5.18) form the FIFO queueing network equa-
tions; the corresponding 6-tuple X(-) is the FIFO queueing network process.
One can check that the triple (E(-), I'(-), ®(+)), together with

{Di(t) for t <W;(0), k=1,...,K}, (5.19)

determines X(-), for all ¢ > 0, if X(-) evolves according to the FIFO queueing
network equations. The information in (5.19) serves the role of the initial data
for solutions of these equations. This additional information is needed, since
Z(0) is by itself not enough to determine the order in which the original jobs
are served.

Arguing as in the proof of Proposition 4.12, it is not difficult to show
that (5.18) is satisfied for all fluid limits of FIFO queueing networks. (Recall
that the component D(-) of a fluid limit is continuous and nondecreasing.)
We already know from Proposition 4.12 that the basic fluid model equations
(4.50)-(4.55) are satisfied by all fluid limits of the queueing network. So, the
fluid model given by the equations (4.50)-(4.55) and (5.18) is associated with
the FIFO queueing network.

We refer to these equations as the FIFO fluid model equations, and to
the corresponding fluid model as the FIFO fluid model. Solutions of the fluid
model equations are denoted by the 6-tuple X(:). The initial data is again
given by (5.19). Using the basic fluid model equations, one can show that

> miDy(t) =t for t <W;(0) (5.20)
keC(y)
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must hold; (5.20) serves as a consistency condition on the initial data. In
keeping with the definition for queueing networks, we say that a FIFO fluid
model is of Kelly type, if my = my whenever k,¢ € C(j) for some j. We will
then write m; for my,.

We saw, in Chapter 3, that there exist subcritical FIFO queueing networks
that are not stable. On the other hand, subcritical FIFO queueing networks of
Kelly type that have exponentially distributed interarrival and service times
are stable, as was shown in Chapter 2. The following result from [Br96a] shows
that stability continues to hold for more general interarrival and service times.
We follow the presentation that is given there.

Theorem 5.9. Any subcritical FIFO queueing network of Kelly type satisfy-
ing (5.1) is stable.

As in the previous two sections, we will use Theorem 4.16 to demonstrate
this stability. Since we already know that FIFO fluid models are associated
with the FIFO queueing networks, it suffices to demonstrate the following
result.

Theorem 5.10. Any subcritical FIFO fluid model of Kelly type is stable.

Demonstration of Theorem 5.10

In order to demonstrate Theorem 5.10, we introduce a form of entropy.
Let
h(z) =xzlogz, x>0 (5.21)

and
hi(x) = Agh(z/ M) = xlog(x/Ak), = >0, (5.22)

for k=1,..., K. Note that h(z) and hi(x) are convex, with
h(0) = h(1) =0, hi(0)=he(Xx) =0, A'(1)=h,(\) =1 (5.23)

The basic tool for analyzing the asymptotic behavior of Z(t) will be the en-
tropy function H(t),

4+ W; (t)
H(t) = Z/ hi (D} (r)) dr, > 0. (5.24)
k t

Since D(-) and W(-) are Lipschitz continuous, it is not difficult to check that
H(-) is also Lipschitz continuous. We will analyze H'(¢) at regular points ¢.

One can think of H(¢) as measuring the “distance” at time ¢ from the
“equilibrium” Dj (1) = Ay, averaged over the above values of r. One can check
that, for p < e, such equilibria only occur when Z(r) = 0. (For p = e, there
are other solutions.) We will not need this fact here, although it motivates
our approach.

Since hy(-) is convex and p < e, the following lemma is not difficult to
show with the help of Jensen’s Inequality. We will use here the expression
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S /
m3 > Dj(t)=1 on {t: W;(t) # 0}, (5.25)
keC(j)
which follows from (4.53)-(4.55).

Lemma 5.11. Suppose X(-) is any FIFO fluid model solution of Kelly type,
with p; <1 for all j. Then, H(t) > 0 for all t.

Proof. Rewriting (5.24) gives

W (1)
HO= 37 [ Y eAIMDm A 62

JEF: keC(y)

where
Fy={j:W;(t) #0} and X' = ) X\
kec(j)

By Jensen’s Inequality, (5.26) is at least

W (1)
SN /t h{ > Dp(r)/A7 | dr.

JEF: keC(j)

On account of (5.25) and p; < 1, which holds for all j, the integrand

h{ Y Di)/A | =h(1/p;) =20 (5.27)
keC(j)

at regular points r € [t,t+ W;(¢)]. It follows from (5.26)-(5.27) that H(t) > 0
for all . |

If we knew that H'(t) < —c1, ¢ > 0, whenever H(t) > 0, it would follow
immediately that H(¢) = 0 for ¢ > H(0)/c;. We will instead show the weaker
inequality that, for appropriate co,c3 > 0,

H(t) — H(t + coWM (1)) > csWM(t) for all ¢, (5.28)
where W () = max; W;(t). From this, we will show that
H(t) =0 fort > cyH(0), (5.29)
and some ¢4 not depending on X(+). It will then follow quickly that
Z(t)=0 fort>cs5/Z(0)] (5.30)

and appropriate c5, which implies Theorem 5.10.

Proposition 5.12 is the most important step in deriving (5.28). The repre-
sentation for H'(t) given on the right side of (5.31) will enable us to compute
upper bounds on H’(t) without too much difficulty. As usual, statements on
H'(t) refer to regular points t.
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Proposition 5.12. For any FIFO fluid model of Kelly type,

H(t) =) [he(Ak () — (D)) = D %h(l +Wi(t). (5.31)

k j J
Proof. Differentiation of (5.24) gives

H(t) = Y [(1+ Wj(0) Dy, (¢ + Wy (1)) — hu(Di(1))]. (5.32)

k

By (5.18), this

=D [(L+ W) hu(A4(8) /(1 + W] (£))) = hi(Di(1))].
k

Using the definition of hy(-), one can check this

=D (A1) = (D) = D | D AL(t) | log(1+ Wj(#)). (5.33)
k

3 \keC()

If Y/(t) # 0 and W/(t) exists, it follows from (4.54) that Wi(t) = 0. For
each j, the summand on the right side of (5.33) is therefore equal to

( Z AL(t) + —Y’( )) log(1 + Wi(t)). (5.34)

keC(j) m;

On the other hand, combining (4.52), (4.53), and (4.55), one gets
EHWi(t) = Wi(0) +m5 D Ar(t) +Y5(t)
keC(3)

Plugging the derivative of the above quantity into the first factor in (5.34),
shows that (5.34) is equal to h(1 + W;(t))/m;. Consequently, (5.33) equals

PICHOIEYNOAGIEDS %h(l + Wi(t)).
k g
Together with (5.32), this implies (5.31). |

The following proposition provides bounds for the two terms on the right
side of (5.31), and hence for H'(t).

Proposition 5.13. For any FIFO fluid model of Kelly type, both

D [rr (AL (1) = hi (D} ()] < sz (5.35)

k
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and, for some cg > 0,

) %hﬂ +Wi(6) 2 Zi(t) + sy (Wj(t)*. (5.36)

J J k

Consequently,
H'(t) < —cg Z(Wj’(t))Q (5.37)
J

The proof of (5.36) is just a few lines. The proof of (5.35) is a bit longer.
It relies on the convexity of h(-) and on Jensen’s Inequality, as well as on the

general equality
Z(t) = Z(0) + (I — PT)(\t — D(t)), (5.38)

which follows from (4.51), (4.50), and (1.6). The inequality (5.35) reflects
the randomness present in the mean transition matrix P. For instance, for
reentrant lines that are closed (i.e., there are no arrivals to or departures from
the system), this randomness is absent and both sides of (5.35) are equal to
0. (The sum on the left side telescopes, with all terms cancelling.)

Proof of Proposition 5.13. The inequality (5.37) immediately follows from
Proposition 5.12 and (5.35)-(5.36). For (5.36), note that since h(1) = 0, h'(1) =
1, h"(z) = 1/x, and W/(t) is bounded,

h(1+W(t)) > W) + e (W](1))°
for some ¢7 > 0. Also, by (4.57),
Wity =m3 > Z ().
kec(y)

Combining these two expressions and summing over j shows (5.36).
To show (5.35), note that by (4.50),

hi (AL (1) = i (ak +y Pe,sz(t)> (5.39)

L

for each ¢, which can be rewritten as

Aih (Akl

By (1.6), A, '(ar + Xy MePei) = 1. So, by Jensen’s Inequality and h(1) = 0,
this is

o + Z(Aepe,k)(/\leé(t))] ) :

14

< owh(1) + D ANePosh(A7 D) =Y Prihe(Dj(t)). (5.40)
4 4



156 5 Applications and Some Further Theory

It follows from (5.39)-(5.40) that, for each k,

hi (AR (1) < Z Py he(Dy(t)).
¢

Summation over k shows that

D [ (A5() — (D) < =D (1 - ZPIM> hi(Dy (1) (5.41)

k k 4

Since hg(+) is convex with hy(A;) = 0 and b} (Ax) = 1, the right side of (5.41)

<-> (1 - ZPM> (DL(t) = M) =D Zi(t), (5.42)
i ¢ i

with the equality following from (5.38). The inequality (5.35) is an immediate
consequence of (5.41) and (5.42). |

Let 7;(t) denote the additional time, starting at ¢, until a station j is next
empty. We will need the following general bound for showing (5.28).

Lemma 5.14. For each subcritical fluid model,

7i(t) < caWM(t)  for all t (5.43)
and some constant cs.
Proof. On account of (4.57), (5.43) is equivalent to

7i(t) < cs|Z(t)], (5.44)
for appropriate cg. By the general equality (4.63),
CMQ(Z(t') = Z(t)) = (p—e)(t' =) + Y (') = V(1)

for ¢’ > t. Therefore, for each 7,

m; > Zult) < (CMQZM); + (p; = V' =) + Y, (¥) = Y;(0).
keC(4)

This implies (5.44), with cg = (CMQZ(t)),/(1 — p;). |

The bound in (5.28) follows from (5.37), Jensen’s Inequality, and (5.43).
Proof of (5.28). By (5.37) and Jensen’s Inequality,

(W;(t) = W; () (5.45)

H(t) —H({') > Cﬁ/t (Wj(r)*dr > t,cf ;



5.3 FIFO Networks of Kelly Type 157

for 0 <t < t' and any j. Suppose that W;(t) # 0 for given ¢ and j. Setting
t' =t +7;(t), it follows from (5.43) and (5.45) that

H(t) = H(t+7(t) = es(W;(t)* /W (1),

where c3 = cg/co. Choosing j so that W;(t) = WM (¢), it follows from the
monotonicity of H(-) that

H(t) = H(t + caW (1) > cs W (1),

which is (5.28). |
We now finish the demonstration of Theorem 5.10.

Proof of Theorem 5.10. We will iterate along the times t;11 = t; +caWM (t;),
1=0,1,2,..., where ty = 0. This gives

H(O) - H(tz) Z Cgti/CQ for all i,
by (5.28). Since H(¢;) > 0, it follows that

foo lim t; < co™H(0)/cs.

Consequently, by the continuity of W(t), W(ts) = 0. Moreover, because of
(5.24), H(ts) = 0, which implies that H(¢) = 0 for ¢ > ts. This is equivalent
to (5.29). It follows from this and (5.28) that

W(t) =0 fort>te.
Since D(t) is Lipschitz continuous, it is not difficult to see that
H(0) < coWM(0)
for appropriate cg. Together, the last three displays imply
W(t)=0 fort> clOWM(O),
with ¢19 = cacg/c3. It follows from this and (4.57) that
Z(t)=0 fort>cs5|Z(0),
for appropriate ¢5, which is (5.30). Theorem 5.10 follows. |

HLPPS queueing networks

The head-of-the-line proportional processor sharing (HLPPS) discipline is
a variant of processor sharing, which was discussed in Chapter 2. Under this
discipline, all nonempty classes present at a station are served simultaneously,
with the fraction of time spent serving a class being proportional to the num-
ber of jobs of the class currently there, and all of the service going into the
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first job of each class. The discipline is clearly HL. When the service times are
exponentially distributed, the queueing network process X(-) of an HLPPS
network coincides with that of the corresponding processor sharing network,
where all jobs of a class receive equal service instead of the first receiving all
of the service. The HLPPS discipline can be thought of as a simpler variant
of processor sharing that exhibits the HL property. It can be preferable to
processor sharing in certain situations when a penalty is attached to sharing
service among too many jobs.
The following result is shown in [Br96b].

Theorem 5.15. Any subcritical HLPPS queueing network satisfying (5.1) is
stable.

As in the previous examples, Theorem 4.16 can be employed to demon-
strate stability of these networks. In order to use the accompanying fluid
model machinery, we observe that the HLPPS property can be expressed as

t
() = / 2P (s) ds (5.46)
0
for all t > 0, where

_ Zk(s)/ZjZ(s) for Z]E(s) > 0,
Zi(s) = {0 for Z3(s) =0

)

and

Z7(s) = Y Z(s).

keC(5)

The HLPPS queueing network equations are then (4.42)-(4.47) together with
(5.46). The HLPPS fluid model equations are (4.50)-(4.55) together with

Ti(t) = Z{ (t) when Z7(t) >0, k=1,..., K. (5.47)

Arguing as in the proof of Proposition 4.12, it is not difficult to show that
(5.47) is satisfied for all fluid limits of HLPPS queueing networks. So, the
fluid model given by (4.50)-(4.55) and (5.47) is associated with the HLPPS
queueing network. In order to show Theorem 5.15, it therefore suffices to show
its fluid model analog.

Theorem 5.16. Any subcritical HLPPS fluid model is stable.

The demonstration of Theorem 5.16 exhibits similarities to that of The-
orem 5.10 for FIFO fluid models of Kelly type. The argument employs an
entropy function

H(t) =Y Zu(t) log(D(£) /), ¢ = 0.
k

This entropy function is equivalent to
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kaZf(t)hk(D;c(t))v t >0,
k

which is similar to that in (5.24).
As before, the goal is to show (5.29), from which (5.30) will follow. In the
present setting, one can show that

H () < —c11 <0

until H(¢) = 0, in place of (5.28). The individual steps of the argument differ
from those for Theorem 5.10. We note that Theorem 5.16 (and hence The-
orem 5.15) holds when my = my for s(k) = s(¢) is not assumed, unlike its
FIFO analog. This might be expected, because the stationary distribution for
processor sharing networks given by (2.7) and (2.9) also does not require this
condition.

5.4 Global Stability

In the last chapter and in the first three sections of this chapter, we have
addressed the question on when an HL. queueing network is stable. Our main
technique has been the employment of fluid models: when an associated fluid
model of a queueing network is stable, so is the queueing network. In this
section, we introduce a different notion of stability, global stability. As before,
fluid models will provide the main technique for demonstrating global stability.

We say that a queueing network is globally stable if it remains stable when
the discipline is replaced by any HL discipline. That is, under any HL discipline
(e.g., an SBP or FIFO discipline), the resulting network, with its given routing,
and interarrival and service distributions, is positive Harris recurrent.

Global stability is clearly a more restrictive requirement, in general, than
is stability. For example, the subcritical two-station reentrant lines, with route
given in Figure 3.1, may or may not be stable, depending on the discipline.
The FBFS discipline is stable, by Theorem 5.5 (provided (5.1) holds). On the
other hand, the Lu-Kumar network, which has the priority scheme (4,1) and
(2,3) at the two stations, is unstable for the range of mean service times given
in Theorem 3.2.

We recall that the basic fluid model equations (4.50)-(4.55) do not reflect
the discipline of a queueing network. By Proposition 4.12, each HL queue-
ing network is associated with its basic fluid model. The following result is
therefore a direct consequence of Theorem 4.16.

Proposition 5.17. Assume that a given HL queueing network satisfies (5.1)
and that its basic fluid model is stable. Then, the queueing network is globally
stable.

As we have seen earlier in this chapter, it is easier to study the stability of
fluid models rather than directly investigating the stability of the correspond-
ing queueing networks. We will take this approach here, and study the stability
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of the basic fluid model. A complete, explicit theory is given in [DaV00] when
the network has two stations and routing is deterministic. Most of this sec-
tion is devoted to providing a summary of these results. The remainder of
the section briefly presents related results on weak stability and global weak
stability.

We note that our terminology is somewhat different than that in [DaV00],
and in related work [Ha97] and [DaHV99]. There, the authors employ the term
“fluid networks” rather than “fluid models”, and employ the term “global sta-
bility” for when the fluid networks are stable. The latter definition corresponds
to stability for the basic fluid model here, although somewhat different fluid
model equations are used in those papers. Another difference arises from the
usage of the term “queueing network” in our lectures, which assumes that
a discipline has already been assigned; in the above references, this is not
assumed.

Virtual stations and push starts

An appealing theory for the stability of basic fluid models with two sta-
tions is developed in [DaV00] for networks with deterministic routing, with
necessary and sufficient conditions for stability being given. Key ingredients
include the concepts of wvirtual stations and push starts, in terms of which
stability can be phrased. The theory does not extend to networks with three
or more stations.

We will later give a systematic definition of virtual stations and push
starts, but the concepts are better illustrated by an example. We will employ
the example from [DaHVO04], which is a reentrant line with route given in
Figure 5.1.

Fig. 5.1. The five classes along the route are labelled in the order of their appear-
ance; the mean service time of each is given. The priority scheme is (1,3,4) at station
1 and (5,2) at station 2.

The queueing network has two stations, with three and two classes each,
as illustrated in the figure. The mean service times at the classes are



5.4 Global Stability 161
mi=m3z=ms =04 and mo=my =0.1, (5.48)

and jobs are assumed to enter the network at rate 1. The network is therefore
subcritical. The actual distributions of the interarrival and service times will
not be important to us. A preemptive SBP discipline is assigned, with priority
scheme (1,3,4) at station 1 and (5,2) at station 2. That is, the discipline is
FBFS at station 1 and LBFS at station 2. We will exhibit a virtual station
for this queueing network.

We also consider the fluid model obtained by adding the SBP equation
(5.13) to the basic fluid model equations, where the classes have the same
priorities as above. The SBP fluid model thus obtained is associated with
the above queueing network; this was shown in Section 5.2. Examination of
the basic fluid model suffices presently, although we will need the SBP fluid
model later when examining push starts. In order to exhibit a virtual station
for either fluid model, we will need to employ the fluid limits from the above
queueing network.

The interaction between classes 3 and 5 is important for understanding
the evolution of this queueing network. If one assumes that Z3(0) = 0 or
Z5(0) = 0, it then follows that

Z3(t) =0or Zs(t) =0 for eacht > 0. (5.49)

That is, if at least one of these two classes is initially empty, then this condition
persists for all time. The reason is that since class 3 has higher priority than
class 4, no job from the latter class can enter class 5 as long as class 3 is not
empty. Moreover, if class 5 is not empty, then no job can enter class 3, since
class 5 has higher priority than class 2. This behavior relies on the assumption
that the discipline is preemptive. (The corresponding behavior for classes 2
and 4 of the Lu-Kumar network was used in the proof of Theorem 3.2.)

It follows from (5.49) that, under such initial data, classes 3 and 5 can
never be served simultaneously. Consequently,

Tg(tg) — Tg(tl) + T5(t2) — T5(t1) <ty —1t (550)
whenever t; < t3, or equivalently,
Ty(t) +Ti(t) <1 (5.51)

wherever the derivative is defined. One can think of classes 3 and 5 as forming
a “virtual station”, with their service being constrained, as in (5.51), as if
they actually belonged to a single station.

Let X(-) be a fluid limit obtained from a sequence (a,,,z,) as in (4.71),
with Z5"(0) = a,, and ZZ"(0) = 0. Then, (5.50) holds for each term of the
sequence, and so the same is also true for 7(-). On the other hand, X() is a
solution of the SBP fluid model equations. So, classes 3 and 5 form a “virtual
station” for the SBP fluid model as well. Note that not all SBP fluid model

solutions need satisfy (5.50) or (5.51), since fluid mass can possibly be served
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and pass through a class k, with Zx(t) = 0 nonetheless holding over an entire
time interval. This contrasts with the behavior for the associated queueing
network.

For the SBP fluid model (and hence for the basic fluid model) to be stable,

ms+ms <1 (552)

needs to hold. The argument is similar to that for Part (c¢) of Proposition
4.11, and relies on (5.50). (One can employ the analogs of (4.62) and (4.63),
but with C, p, and Y augmented to include the virtual station.) For either
fluid model with the parameters given by (5.48), ms + ms = 0.8 < 1, which
does not preclude stability. However, if ms is replaced by mf = 0.7, then
ms +mf = 1.1 > 1, and so the resulting fluid model will not be stable even
though the network is still subcritical. One can then show, in fact, that some
solutions satisfy liminf: . Z(t)/t > 1/11. As we will see, both fluid models
with the original service rates are already not stable. For this, we will need to
use push starts.

The push start phenomenon relies on the presence of a virtual station, and
provides a stability condition which is an amplification of that provided by
the virtual station. It is caused by a higher priority class that shares a station
with one of the classes of the virtual station, and always receives at least a
fixed proportion of the service at that station. In contrast to virtual stations,
it is a fluid model phenomenon, rather than a queueing network phenomenon.

In the setting of the example in Figure 5.1, the stability condition (5.52)

can be replaced by
ms

1—m1

Ppush = +ms < 1, (5.53)
by using push starts. We first note that if one deletes class 1 from the reentrant
line in Figure 5.1, then the four-class reentrant line that remains is equivalent
to the Lu-Kumar network in Section 3.1. If one retains the labelling of the
original five-class reentrant line, then one can check that the bound (5.52) is
needed for the associated SBP fluid model to be stable, for the same reasons
as for the five-class fluid model.

Returning to the SBP fluid model for the five-class network in Figure 5.1,
we observe that class 1 has the highest priority at its station. Since fluid
enters the reentrant line at rate 1 and m; < 1, class 1 empties in finite time
and remains empty thereafter. In keeping class 1 empty, station 1 spends
proportion my = 0.4 of its effort in processing fluid at class 1. The remaining
proportion 1 — m; of its effort can be spent on fluid in classes 3 and 5. This
occurs for all solutions of the SBP fluid model.

Since class 1 remains empty, its sole effect on the remainder of the system
is to reduce the amount of effort available at station 1 for the other two classes.
Removing this class and expanding the service times at classes 3 and 4 by the
factor 1/(1 —mq) to compensate for this reduced effort, one can show with a
little work that the resulting SBP fluid model is identical to the four-station
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SBP fluid model mentioned above, but with the service times at classes 3 and
4 expanded by 1/(1 —my). The push start stability condition (5.53) therefore
replaces the condition (5.52), as desired. With the choice of service times given
in (5.48), ppush = % + % > 1, and so (5.53) is violated. Hence, the SBP fluid
model in Figure 5.1 is not stable. This also implies that the corresponding
basic fluid model is not stable.

Systematic presentation of virtual stations and push starts

We will provide an abridged version of the construction given in [DaV00],
referring sometimes to the virtual station and push start example given earlier
for motivation. In order to simplify matters somewhat, we will restrict con-
sideration to networks with just a single deterministic route, i.e., to reentrant
lines.

We employ the following terminology. An excursion is a maximal set of
consecutive classes along the route that belong to a single station. A last
class of an excursion is the last class visited there, and a first class denotes
all of the remaining classes; if the excursion contains only one class, then it
has no first class. A set S of excursions is strictly separating if it contains
no consecutive excursions and does not contain the first excursion. For each
such set S, the virtual station V(S) consists of the classes in the excursions
of S, together with the first classes of excursions for which the immediately
preceding excursion is not in S. Also, let k1, ks, ..., kr denote the last classes
visited for each of the L excursions, and let F'<(¢) denote all of the classes
along the route visited up to and including ky; then F<(¢) Lf ps< (0) — {ke}
is called a push start set. One sets V;(S), FjS (¢), and Fj< (0), j = 1,2, equal
to the corresponding classes restricted to the stations 1 and 2, respectively.

For the example in Figure 5.1, there are four excursions consisting of the
sets of classes, {1}, {2}, {3,4}, and {5}. The virtual stations are {2}, {2,5},
{3,4}, and {3,5}. The only one that is not a subset of a station, and is
therefore of interest, is V({5}) = {3,5}. For future reference, we record that

V({5}) = 1{3,5}, F=(2)={12}, F=(2)={1} (5.54)

We now state the main result in [DaV00], restricted to reentrant lines.
Here, we use the abbreviation m(A) =, - , my, for any set A of classes. The
rate at which fluid enters the first class is denoted by «;.

Theorem 5.18. A two-station basic fluid model is stable if and only if
p; <1 forj=1,2, (5.55)

and for each strictly separating set S and { =1,...,L,

anm(V;(S)\F(0))
D TR TIA(G) <1 (5.56)
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In [DaV00], it is also shown that if the left side of (5.56) is strictly greater
than 1 for some strictly separating set S and some ¢, then there exists a fluid
model solution whose fluid mass |Z(t)| — oo as t — co. (The authors actually
consider the limit for the “work in progress”, i.e., the total workload, which
is equivalent to this limit.)

We note that, in order to be of interest in (5.56), virtual stations need to
include classes from both stations. Otherwise, (5.56) follows from the subcrit-
icality of each station.

One can interpret the example in Figure 5.1 in terms of Theorem 5.18.
Substitution of (5.54) into (5.56) reduces the latter to the inequality in (5.53).
Since this is violated for the choice of m in the example, Theorem 5.18 implies
that the basic fluid model is not stable. There is, moreover, a fluid model
solution with |Z(t)| — oo as t — oo. We saw earlier that such a solution is
given by the SBP discipline with priorities (1,3,4) and (5,2) at the two stations.
For arbitrary two-station fluid models, the calculation of the left side of (5.56)
for all strictly separating sets S and all ¢ will in general be tedious.

There is, for arbitrary two-station reentrant lines, a strong connection be-
tween stability of the associated basic fluid model and stability of the corre-
sponding family of fluid models with SBP disciplines. Namely, when the basic
fluid model is not stable, there must also exist an SBP fluid model that is
not stable. Another way of phrasing this is the following. Let D C Rf denote
the set of service time vectors, with coordinates mj, on which the basic fluid
model is stable for a given route and choice of a;. (In [DaHV99] and [DaV00],
D is referred to as the global stability region.) Similarly, let Dg C Rf denote
the set on which all fluid models with SBP disciplines are stable. Clearly,
D C Dg. The above assertion is that, in fact,

D = Ds. (5.57)

This is shown in [DaV00], while demonstrating Theorem 5.18.

We also point out that, as a consequence of Theorem 5.18, the region D
is monotone. That is, reducing service times maintains stability. This follows
immediately from the conditions (5.55) and (5.56).

The proofs of the two directions of Theorem 5.18 are of different levels
of difficulty. The necessity of the conditions (5.55) and (5.56) is reasonably
straightforward. If (5.56) is violated for some value of ¢, one can make the same
basic type of argument we sketched for the SBP fluid model in Figure 5.1,
once an appropriate SBP discipline has been chosen. One wants a discipline
that (a) assigns the highest priority to classes in F'<(¢), with classes in F<(¢)
being ordered according to the FBFS discipline, (b) assigns a high priority
to the remaining classes in V(.5), and (c) assigns a low priority to the other
classes, including the class in F<(1)\F<(1). (The particular priority is not
important in each of (b) and (c).) Using Theorem 5.5, one can then show that
F<(¢) will be empty after large times, like the first class in Figure 5.1. By
applying the same type of argument we sketched for that network, one can
also show that once all of the classes in either V3 (S) or V2(S) are empty, this
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condition persists for all time. This argument heavily uses the structure of
V(S), which was defined with appropriate “gaps” between its classes so that
service at V4 (S) will prevent service at V5(.S) and vice versa, because of the
presence of low priority classes in between. More detail is given in [DaV00]
and in [Ha97], which looks at a related problem. (The reference [DaV96] cited
in [DaV00] never appeared due to an unrelated flaw in extending push starts
to the queueing network setting. This flaw also affects the example on page
756 in [Da96].)

The demonstration of the sufficiency of (5.55) and (5.56) is more involved
and requires most of the work in [DaV00]. The paper employs linear pro-
gramming techniques to construct a piecewise linear Lyapunov function, from
which the stability of the fluid model will follow. (Piecewise linear Lyapunov
functions have also been employed in [BoZ92], [DoM94], and [DaWe96].) The
duality between minimum flows and maximum cuts is used to obtain the
explicit formulation in (5.55) and (5.56). We will not go into details here.

It is natural to ask whether Theorem 5.18 extends to fluid models with
more than two stations. [DaHV99] shows this is not the case, in general, by
analyzing the fluid models whose routing is given by Figure 5.2. Not only is
there no analog of Theorem 5.18, but D # Dg and D is not monotone. There
is presently no developed theory for stability for more than two stations.

N ) )
< N o/ o/ J
j=1 j=2 =3

Fig. 5.2. The basic fluid model for this three-station reentrant line has irregular
behavior with regard to stability, when m and the discipline are varied. This behavior
is not present for two-station reentrant lines.

Rate and global stability

We conclude this section with two other types of stability. We will say
that an HL queueing network is rate stable (or pathwise stable) if for any
given initial state x,

tlggo Z*(t)/t=0 as. (5.58)

(Alternative definitions are often given. For instance, lim;_,, D*(t)/t = X a.s.
is equivalent to (5.58).) An HL queueing network will be globally rate stable
if (5.58) continues to hold irrespective of the discipline. Rate stability for
queueing networks differs from stability in that only the first order behavior



166 5 Applications and Some Further Theory

of Z*(t) enters into (5.58); an unstable queueing network might conceivably
be rate stable, with lim; o |Z7(t)| = oo a.s., but with |Z*(t)| = o(t).

As is the case for stability, fluid models and fluid limits may be employed
to demonstrate rate stability. A fluid model is weakly stable, if for each solution
of the fluid model equations with Z(0) = 0, one has Z(t) = 0 for all ¢ > 0.
Clearly, stability of a fluid model implies weak stability. Also, as was done
in the context of global stability, the basic fluid model may be employed to
demonstrate global rate stability. (In the literature, the term globally weakly
stable is used when the basic fluid model is weakly stable.)

For queueing networks, rate stability and global rate stability are less
satisfying properties than are stability and global stability, but they are easier
to show. One has the following analog of Theorem 4.16.

Theorem 5.19. Assume that an associated fluid model of a given HL queue-
ing network is weakly stable. Then, the queueing network is rate stable.

Proof. Suppose on the contrary that the queueing network is not rate stable.
Then,
limsup |Z*(t)|/t > 0
t—oo

for some w € G, where G is given in (4.70). Let a,, — oo, as n — oo, be a
sequence on which liminf;_, o |Z*(ay)|/an > 0. The sequence (a,, ) satisfies
(4.71). So, there is a subsequence (a;, , x) along which X*(a;,_t)/a;, has a limit
X(-) that satisfies the associated fluid model equations.

Since the initial state is constant, Z(0) = 0. Because the fluid model is
assumed to be weakly stable, it follows that Z(¢) = 0. In particular, Z(1) = 0.
Therefore,

lim |Z*(a;,)|/as, =0,
n—oo
which is a contradiction. So, the queueing network is, in fact, rate stable. W

By Proposition 4.12, the basic fluid model is associated with its queueing
network. The following corollary is therefore an immediate consequence of
Theorem 5.19. Both Theorem 5.19 and the corollary are related to Theorem
4.1 in [Ch95].

Corollary 1. Assume that the basic fluid model of a given HL queueing net-
work is weakly stable. Then, the queueing network is globally rate stable.

The following weak stability analog of Theorem 5.18 is given in [DaV00].
As before, we restrict the result to reentrant lines from queueing networks
with deterministic routing. We employ the same notation as before involving
strictly separating sets of excursions, virtual stations, and push start sets.
Note that the conditions (5.59) and (5.60) for weak stability are the same as
(5.55) and (5.56) in Theorem 5.18, except that strict inequalities in (5.55) and
(5.56) are replaced by inequalities.
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Theorem 5.20. A two-station basic fluid model is weakly stable if and only

if
p; <1 forj=1,2, (5.59)

and for each strictly separating set S and £ =1,...,L,

arm(V;(S)\F}(£)
; i—OWL(Ff(e)) <1 (5.60)

The proof of Theorem 5.20 is not spelled out there, but, according to
[DaV00], is analogous to that of Theorem 5.18.

5.5 Relationship Between QN and FM Stability

The material in the first four sections of this chapter has relied heavily on the
stability of fluid models that are associated with a given queueing network. In
the first three sections, stability of such fluid models enabled us to demonstrate
stability for a number of disciplines when the queueing network is subcritical.
In the last section, this approach was applied to global stability.

We have so far avoided the question in the opposite direction, of whether
stability of a queueing network implies the stability of its associated fluid
model. On account of Theorem 4.16, this would imply that the two con-
cepts of stability are equivalent, modulo certain side conditions. If the above
implication is not correct, how “close” are the two concepts? Besides being
aesthetically pleasing, a two-directional relationship would allow reduction of
questions involving the stability of queueing networks to the less complex set-
ting of fluid models. Results, such as Theorem 5.18 of the previous section,
would also take on added significance. Of course, for disciplines such as those
in the first three sections of the chapter, this equivalence is already clear, if
both the queueing networks and fluid models are stable whenever they are
subcritical.

The question should not be taken in its most naive form. For instance, the
basic fluid model for a queueing network (which has no equations specifying
the discipline) need not be stable even if the queueing network is. So, the fluid
model needs to include an appropriate equation (or equations) corresponding
to the discipline; we have already seen that there are often “canonical” equa-
tions that suggest themselves in this context. Also, one should exclude certain
“exotic” disciplines. For instance, if the priority rule favoring different classes
is allowed to change with the total queue length |Z|, such a discipline might
consist of priority rules that are decreasingly stable as |Z| — oo. The fluid
model would then correspond to the limiting rule, which is not stable, whereas
the queueing network itself could be stable.
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As we will see, even for certain “standard” disciplines, the above two forms
of stability are not equivalent: there exist stable queueing networks whose fluid
models are not stable. Moreover, there are no general results in this direction.
Nonetheless, one must work to produce such examples, which seem to be, in
some sense, “borderline”. So, at this point, one can claim that the reduction
to fluid models “works well in practice”. The same should hold for the basic
fluid model in the context of global stability. For global weak stability, there
is, in fact, a partial result, which we mention at the end of the section.

This section is divided into four parts. We first present an elementary con-
dition for the instability of a queueing network from [Da96]. We then present
examples of stable queueing networks with unstable fluid models from [Br99]
and [DaHVO04], which together constitute most of the section. We conclude
with the global weak stability result mentioned above, which is from [GaHO05].

An elementary condition for instability

Proposition 5.21 gives an elementary condition for the instability of a
queueing network in terms of its fluid limits. The result relies on Proposition
4.11 and is a variant of a result from [Da96]. Related results, with more in-
volved conditions, are given in [Me95] and [PuR00]. Similar reasoning also
shows that an HL queueing network with a supercritical station is unstable;
the result is included in Proposition 5.21.

Proposition 5.21. (a) Assume that for every fluid limit X(+) of a given HL
queueing network, with Z(0) = 0, that Z(0) # 0 for some fized § > 0. Then,
for every initial state x,

litminf |ZZ(t)|/t >0 onG. (5.61)

(b) Assume that for a given HL queueing network, p; > 1 at some j. Then,
for some € > 0 and every initial state x,

litminf |ZZ(@#)|/t =€ onG. (5.62)
—00

Proof. The argument for (5.61) is almost the same as that used in the proof
of Theorem 5.19. Suppose on the contrary that, for some w € G,

1itminf |Z*(6t)|/t =0,

where § > 0 is chosen as in the statement of the proposition. Let a,, — oo, as
n — 00, be a sequence on which this limit holds. Since the sequence (ay,,x)
satisfies (4.71), by Proposition 4.12, there is a subsequence (a;, , z) along which
X*(a;, t)/a;, has a limit X(-). Since the initial state is constant, Z(0) = 0,
and so, by assumption, Z(§) # 0. Therefore,

lim |Z”((5aiﬂ)|/ain > 0,
t—o0 ) :
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which is a contradiction. Consequently, (5.61) holds.

Suppose p; > 1 for some j. The basic fluid model is associated with the
queueing network. By Part (d) of Proposition 4.11, |Z(1)| > ¢ for some € > 0
and all solutions of the basic fluid model. Reasoning analogous to that for
(5.61) then implies (5.62). |

The assumption in Part (a) of Proposition 5.21, that Z(8) # 0 for all fluid
limits with Z(0) = 0, is unfortunately too strong for most applications, as is
the assumption, in Part (b), that p; > 1 for some j. One can, in fact, wonder
whether the proposition has any applications to subcritical networks. Note,
for instance that, under Z(0) = 0, the conditions Z(t) = 0 and D(t) = At
are equivalent for any fluid model. Since none of the stations, in this case, is
overloaded if the network is subcritical, these equations provide a solution for
fluid models such as the basic fluid model and the other fluid models that have
appeared in this chapter. So, the assumptions in Part (a) will not be satisfied
if one considers all fluid model solutions (rather than just fluid limits).

The situation is different if one considers only the fluid limits of the queue-
ing network. For instance, a subcritical queueing network might contain su-
percritical virtual stations, as in the previous section. In this setting, Z(5) = 0
will no longer be possible for any fluid limit. Hence, Part (a) of Proposition
5.21 will be applicable. Other situations where Z(§) # 0 for all fluid limits
will also occur.

An example of a stable queueing network with unstable fluid model

In this subsection and the next, we will present two examples of stable
queueing networks with unstable fluid models. In this subsection, the example
consists of a network with routing that is a modification of that given in Figure
5.3.

) ) )

k=1 k=2 k=3

k=6 k=5 k=4 >
- — -

j=1 j=2 j=3

Fig. 5.3. The six classes along the route are labelled in the order of their appearance;
the mean service times are given in (5.63). The priority scheme is (6,1), (5,2), and
(3,4) at the three stations.

The network portrayed in Figure 5.3 is a reentrant line with three stations,
each possessing two classes. The discipline is a preemptive SBP, with priority
scheme (6,1), (5,2), and (3,4) at the three stations. Interarrival and service
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times are assumed to be exponentially distributed, with the interarrival times
having mean 1 and the service times having means

mg =ms =mg=3/4, my=ms="r, m4:'y/L2, (5.63)

where v € (0,1/8) and L € Zy. (One can, for example, set v = 1/16.) The
queueing network is subcritical with

p1=p2=%+7<g and p3:%+%<g. (5.64)
The process Z(t) corresponding to the queueing network is Markov because
of the SBP discipline and the exponential interarrival and service times.

The modified queueing network we will employ is defined by “splitting”
the station 3 into L separate two-class stations, (3,1),...,(3, L), one of which
is randomly chosen along the route. That is, the higher priority class of each
of these stations is entered with probability 1/L, by a job leaving class 2.
After service at this class is completed, the job passes to the lower priority
class of this station, and then to class 5 of the original network; the queueing
network otherwise evolves as before (see Figure 5.4). The new service times
are exponentially distributed with means %L and /L. The modified network
is subcritical, with traffic intensity again given by (5.64). The process Z(t)
corresponding to the modified queueing network is again Markov. The original
network can be obtained by “collapsing” the stations (3,1),...,(3,L) into a
single station 3.

(Y (Y

EA—_
k=2 j=(3,0) k=5

Fig. 5.4. In the modified network, jobs leaving class 2 are randomly routed to one of
the L stations, (3,1). After service at the two classes at the station, jobs are routed
to class 5. In the figure, L = 3.

Both the original and modified queueing networks have preemptive SBP
disciplines. As in Section 5.2, the fluid models consisting of the basic fluid
equations, together with the SBP equation (5.13), are associated with these
queueing networks. In [Br99], the stability of the modified queueing network
and its fluid model are characterized as follows.
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Theorem 5.22. (a) For sufficiently large L, the modified queueing network
defined above is stable. (b) For any L, the associated fluid model is not stable.
In particular, there is a solution of the fluid model, with

liminf | Z(1)] /¢ = 1/3. (5.65)

Sketch of proof. The argument for Part (b) consists of explicitly constructing
a solution of the fluid model equations that satisfies (5.65). The construction
is similar to that for the simpler two-station, four-class network in Example 2
of the second part of Section 4.3. Rather than doing this here, we will instead
motivate the evolution of the solution. The interested reader can refer to page
825 of [Br99] for a precise treatment.

The above solution is constructed so as to take the same values at each
of the stations (3,¢),l = 1,..., L. The sum of the contributions of these sta-
tions therefore undergoes the same evolution as the corresponding solution for
the original network, which we henceforth consider. For the original network,
ms < mg. Since class 5 is the higher priority class at station 2, this implies
that the fluid mass there is always passed to class 6 at least as fast as it can
be served at class 6. Also, since my = mg, fluid mass for this solution is also
passed from class 2 to class 3 as fast as it can be served at class 3, provided no
mass is concurrently served at the higher priority class 5. Such will be the case
for this particular solution, as can easily be verified by checking its explicit
construction.

Using these two observations, one can see that this solution will become
a solution of the two-station network obtained by deleting station 2, if one
combines the mass at class 2 with that at class 3, and the mass at class 5
with that at class 6. The resulting network is just the Lu-Kumar network in
Figure 3.1, with priorities (6,1) and (3,4) at the remaining stations 1 and 3,
and service times

ms =me =3/4, mi=v, mg=ry/L> (5.66)

The classes 3 and 6 are the high priority classes at their stations. For the
same reasons as given between (5.49) and (5.52) for the fluid model considered
there, the classes 3 and 6 form a virtual station, with

Pvirtual = 3/2 > 1. (567)

So, the two-station fluid model is not stable. For our particular solution, fluid
mass will only be processed at this virtual station at 2/3 the rate at which it
arrives there, and so 1/3 will be a lower bound for the limit in (5.65). From
the actual construction of the solution, the limit in fact equals 1/3, as claimed
in Part (b) of the theorem.

The argument for Part (a) of Theorem 5.22 is more involved. The result
might also be true for the original queueing network, but one needs to employ
the modified queueing network, with large L, to obtain the bounds that are
used here.
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The basic reason for the different behavior in Parts (a) and (b) of the
theorem is the different behavior at the stations (3, £). For the unstable fluid
model solution that was just discussed, as in the examples of the unstable
queueing networks in Chapter 3, the flow of mass through the network is
“cyclic”, with, in particular, an increasingly large periodic buildup of mass
at the different stations. This includes the stations (3,¢), £ = 1,...,L. (Or
equivalently, the station 3 for the original network.)

At the stations (3,¢), £ = 1,..., L, the behavior of the queueing network is
different. One can show that, for large L, the effective service rate at class 2 is
slower than the combined service rate at the classes (3,¢), £ =1,..., L, when
the combined number of jobs at the classes (3,¢) is large. The basic idea is
that for large L, the probability is close to 1 that, relatively frequently, one of
the classes, say (3,£p), becomes empty. Once this occurs, service begins on the
jobs at the quick low priority class (4, ¢y) that follows (3, ¢y). The served jobs
from there continue to the high priority class 5, which interrupts service at
class 2. This interruption prevents jobs from entering any of the (3, ¢) classes
until class 5 empties, which only occurs after it stops receiving jobs from the
different (4, ¢) classes. As additional (3,¢) classes empty, this allows service
to begin at the corresponding (4, ¢) classes. Without this interference from
class 5, the service rate at class 2 is the same as the combined service rate of
all of the (3,¢) classes, which is 4/3. This interference, however, creates idle
periods for class 2, which causes it to have a slower effective service rate than
the combined service rate of the (3,¢) classes. This service rate is also slower
than the combined service rate of the (3, ¢) stations, since service at the (4, ¢)
classes is quick.

The above behavior creates a strong bias for the total number of jobs
Z3 (t) at all of the (3, ¢) stations to drift toward 0. Using this, one can show
that Z3 (t) typically remains close to 0 on the relevant time scale after it
first hits 0. It is therefore reasonable to guess that the presence of the (3,¢)
stations should have only a negligible effect on the evolution of the queueing
network on this time scale, and that the qualitative behavior of the network
should not change if these stations are omitted. This is, in fact, correct. By
using fluid limits, one can make this statement precise. (The fluid limits used
in [Br99] are slightly more general than those introduced in Section 4.3. They
are mentioned briefly in the discussion after Theorem 4.16.)

After a fixed time (depending on the initial state), all such fluid limits will
have no mass at station 3. They will satisfy the SBP fluid model consisting of
the remaining stations 1 and 2, whose classes have priorities (6,1) and (5,2),
and service times

mo =mg =3/4 and m; =m5="1. (5.68)

This SBP discipline is LBFS. Since p1 = p2 < 7/8 < 1, one knows from
Theorem 5.6 that this two-station fluid model is stable. It follows that the
fluid limits for the entire modified queueing network are stable. From this,
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it in turn follows that the modified queueing network is stable. So, Part (a)
holds. |

The queueing network in Theorem 5.22 is an example of a stable SBP
queueing network for which the associated fluid model consisting of the ba-
sic fluid model equations and (5.13) is not stable. The discipline here is an
SBP discipline and not an “exotic” discipline one would wish to exclude from
consideration. This example therefore casts doubt on a robust equivalence
between queueing network and fluid model stability.

Despite this example, one can still ask whether there is some general cor-
respondence between queueing network stability and some notion similar to
fluid model stability. This question is, of course, vague, and there are different
possible approaches. One approach is to focus on the stability of fluid limits
instead of fluid models. There is no known correspondence here either. More-
over, the set of fluid limits for a queueing network will be difficult to describe
in general.

Another approach is more philosophical. How does one know that the
fluid model employed in Theorem 5.22 is the “right one”? Perhaps fluid limits
of the queueing network automatically satisfy further “hidden” fluid model
equations, and under these additional equations, all fluid model solutions will
be stable. Maybe the same is true for queueing networks in general. It is
unclear how to disprove such a thesis. However, even if the thesis is correct,
one will still need a way of finding such hidden equations, in order for fluid
models to provide a general practical framework for reformulating queueing
network stability.

The literature on related work includes two papers, [FoK99] and [StR99],
that give examples of stable networks with unstable fluid limits for polling
models. The model in [FoK99] consists of two stations and two servers, which
switch back and forth between the stations when the work is exhausted; there
is also a switchover period. The paper also introduces a less restrictive criterion
of stability under which the fluid limits are stable.

An example where stability depends on the distributions of the queueing
network

At the end of the last subsection, we wondered how one could discount
the possibility that an unstable fluid model, which is associated with a stable
queueing network, merely lacks equations that are implicit in the evolution of
the queueing network. One convincing response to this would be to find two
queueing networks, one stable and the other not, that differ only in their inter-
arrival and service time distributions, but for which everything else, including
the interarrival and service time means, is the same. The queueing networks
would then have the same fluid model, which would show that stability of a
queueing network cannot always be determined at the fluid model level.

This approach is taken in [DaHVO04]. The queueing network that is ana-
lyzed is the two-station SBP reentrant line in Figure 5.1 of the previous sec-
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tion. It has priority scheme (1,3,4) and (5,2) at the two stations, interarrival
rate 1, and mean service times given by (5.48). One version of the queueing
network is assumed to have deterministic interarrival and service times. Hence,
there is no randomness in the evolution of the network. The other version of
the queueing network is assumed to have exponentially distributed interarrival
and service times. Both versions are assumed to be nonpreemptive.

In order to describe the evolution of the deterministic network, abbreviated
notation is employed in [DaHV04] to designate certain specific states. One uses
the 6-tuples, (z1,...,25;a), where zj is the number of jobs in class k and a
is the remaining interarrival time until the next job enters the network. Only
certain states occurring at the instant of a service completion are designated
this way, and they are viewed at the time ¢— just prior to the completion of
service. For example, by

(0,0,0,1,0:a), (5.69)

one means the “state” at a time t— if service of the class 4 customer is com-
pleted at time ¢. Strictly speaking, these are not states for the state space we
introduced in Section 4.1, but they suffice for describing the evolution of the
network from the specific “states” mentioned above. One can, in particular,
verify that the deterministic network starting from (5.69), with a € (0,0.1],
returns to this state exactly one unit of time later. Thus, such a trajectory
forms an orbit; for a given a € (0,0.1], this orbit is called an a orbit.

Employing this terminology, it is shown in [DaHV04] that the queueing
network with deterministic distributions has the following behavior.

Theorem 5.23. For any initial state of the monpreemptive deterministic
queueing network specified above, there exists a finite time at which the net-
work enters an a orbit, with a € (0,0.1].

On the other hand, in [DaHV04], it is also shown that the following result
holds for the queueing network with exponentially distributed interarrival and
service times.

Theorem 5.24. For any initial state of the nonpreemptive exponential queue-
ing network specified above,

|Z(t)] — 00 ast— oo, (5.70)

with probability 1.

The exponential queueing network in Theorem 5.24 is unstable. (This is
also true for the preemptive version of the discipline.) On the other hand, the
trajectories of the deterministic queueing network in Theorem 5.23 all even-
tually enter a fixed bounded set. Since not all states communicate with one
another, its underlying (deterministic) Markov process is not positive Harris
recurrent, and so the network is not stable in the sense we are using in these
lectures. Nevertheless, the two examples show distinctly different behavior
with regard to their “stability”, despite having interarrival and service time
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distributions with the same means, and therefore not being distinguishable at
the fluid model level.

In [DaHV04], it is also shown that the above deterministic queueing net-
work, but with preemptive rather than nonpreemptive discipline, is unstable,
with |Z(t)| — oo linearly as t — oo, for appropriate initial states. So, whether
or not a queueing network is preemptive can also influence its stability.

The natural question arises as to whether the behavior of the nonpre-
emptive deterministic network is an anomaly. Simulations in [DaHV04] seem
to indicate that when the deterministic interarrival and service times are re-
placed by those with uniform distributions having the same means as before,
the (nonpreemptive) network is stable when the width of the uniform distri-
butions is 0.001, but is not stable when the width is 0.1.

It is tricky to attempt to formulate rules as to which distributions should
be stable and which should not, for more general networks. On the basis of the
above examples, it is tempting to say that both a more deterministic distribu-
tion and a nonpreemptive discipline should be “good” with regard to stability,
whereas a more random distribution and a preemptive discipline should be
“bad”. But, the three-station example in Theorem 5.22 of the previous sub-
section consists of a stable preemptive queueing network with exponential
distributions and a fluid model that is not stable, which make this less clear.
In [DaHV04], it is suggested that exponential distributions should be “bad”
for a large family of two-station networks, based on the belief that the proof
of Theorem 5.24 should generalize.

Not surprisingly, the argument for Theorem 5.23 is primarily computa-
tional, on account of the system’s deterministic evolution. The reader is re-
ferred to [DaHVO04] for details. The argument for Theorem 5.24 is more in-
volved. In the remainder of this subsection, we will discuss some of the ideas
behind the proof of the theorem that relate to virtual stations and push starts.

Virtual stations and push starts were introduced in the previous section
in the context of the associated fluid model for the preemptive version of the
queueing network in Theorem 5.24. Since the push start condition (5.53) is
violated for the choice of service times in (5.48), one already knows from the
previous section that the fluid model is not stable. One would like to be able
to apply similar reasoning to show that the queueing network in Theorem 5.24
is unstable.

We recall that for the same queueing network, but where the discipline is
preemptive, the classes 3 and 5 form a virtual station. As explained in the
previous section, the virtual station owes its presence to the constraint in
(5.49), which does not allow simultaneous service at the two classes if either
is initially empty.

Unfortunately, for the nonpreemptive version of interest to us here, (5.49)
need not hold. For instance, a job at class 4 can complete service there and
continue to class 5 after another job has already arrived at class 3. However,
at most one job at class 5 can coexist with jobs at class 3; the same is true
for jobs at class 5 coexisting with those at class 3. For the nonpreemptive
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network, one can therefore replace (5.49) with
(Z3(t) —1)" =0o0r (Z5(t) — 1)t =0 for each t > 0, (5.71)

assuming (5.49) holds at ¢ = 0. In contrast to (5.49), (5.71) allows simultane-
ous service at classes 3 and 5. One might hope that there is not “too much”
such joint service, so that the classes together still behave like a virtual station,
up to a small error.

There are also difficulties in applying the push start condition in (5.53)
to the queueing network. The inequality applies to the fluid model, where it
relies on the proportion of effort devoted to class 1 being constant over time.
For the queueing network (either preemptive or nonpreemptive), there may
or may not be a job there receiving service at a given time. So, service at
class 1 may or may not interfere with service at class 3. The reasoning leading
up to (5.53) will therefore not hold in the strict sense. However, if there is
sufficient independence between the times of external arrivals to class 1 and
times when class 3 is not empty, one might expect the same behavior to hold
up to a small error. Since the arrivals to the network are Poisson, one might
expect that to be the case in the present setting. It is certainly not the case
for the deterministic network in Theorem 5.23.

Much of the work in [DaHV04] is devoted to carrying out the ideas that
are summarized in the last two paragraphs, in order to demonstrate Theorem
5.24. The queueing network itself must be analyzed, which involves deriving
estimates based on its random evolution. However, the virtual station and
push start behavior of the associated fluid model provide guidance for these
steps.

Global rate stability

The examples in the previous two subsections cast doubt on the equiva-
lence, under general conditions, of queueing network and fluid model stability.
This does not preclude analogous positive results in the context of global sta-
bility, though. In particular, the presence of a basic fluid model that is not
stable might imply the existence of an associated queueing network that is not
stable, under some discipline. This is an open question even for two-station
reentrant lines. If one knows this equivalence in the two-station reentrant line
setting, one can then apply Theorem 5.18 to obtain necessary and sufficient
conditions on the global stability of such reentrant lines.

At the end of Section 5.4, we introduced the concepts of rate stability,
global rate stability, and weak stability. As in the two previous subsections,
one can attempt to show the equivalence of rate stability for queueing networks
and weak stability for fluid models. One does not meet with greater success
here than with stability. The deterministic queueing network in Theorem 5.23,
for example, is rate stable, but its fluid model (with auxiliary equation (5.13))
is not.

The question of global rate stability is more approachable. We recall, from
the corollary to Theorem 5.19, that an HL. queueing network is globally rate
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stable if its basic fluid model is weakly stable. The following partial converse
is shown in [GaHO05] for a family of queueing networks. The family consists of
two-station networks with deterministic routing. The interarrival and service
distributions there are assumed to satisfy a large deviation condition.

Theorem 5.25. Assume that a two-station queueing network with the above
properties is globally rate stable. Then, its basic fluid model is weakly stable.

The proof of Theorem 5.25 is by contradiction. The basic idea is to show
the existence of a fluid model solution that diverges linearly to infinity, and
to construct a discipline for which the sample paths of the queueing network
almost surely “track” this solution. The large deviation condition is employed
in this construction.

The queueing networks in the theorem differ, in two ways, from the HL
queueing networks we defined in Section 4.1 and have been employing since.
Changes in service allocation are allowed between the arrival and departure
times of jobs at stations, in order to facilitate tracking. More seriously, the
discipline that was constructed need not be time homogeneous. It should be
possible to modify the construction so as to eliminate both of these differences.

Since the discipline of a queueing network is not reflected in the basic fluid
model equations, the corollary to Theorem 5.19 continues to hold in the setting
of the queueing networks in Theorem 5.25. Together with the theorem, this
implies the equivalence of global rate stability for these two-station queueing
networks and weak stability for their basic fluid models. As an immediate
consequence of this and Theorem 5.20, one obtains the following necessary
and sufficient conditions for the global rate stability of two-station queueing
networks. Since Theorem 5.20 was stated for reentrant lines, we make the
same restriction here. We also make the same assumptions on the networks
as were made in Theorem 5.25.

Theorem 5.26. A two-station reentrant line with the above properties is glob-
ally rate stable if and only if both (5.59) and (5.60) hold.
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