\qquad

Problem Set 10

Math 4281, Fall 2013
Due: Friday, November 15

Read Sections 3.3, 4.1, 5.1, and 5.2 in your textbook.

1. Let $\mathrm{GL}_{2}\left(\mathbb{Z}_{2}\right)$ be the group of invertible 2×2 matrices with entries in \mathbb{Z}_{2}. List its elements. What is the order of the group? Find all of its subgroups.
2. a. List all of the generators of \mathbb{Z}_{20}.
b. List the elements of the subgroups $\langle 3\rangle$ and $\langle 7\rangle$ in $U(20)=\mathbb{Z}_{20}^{\times}$.
c. Find all subgroups of \mathbb{Z}_{18} and $U(11)=\mathbb{Z}_{11}^{\times}$.
3. a. Let a be an element in a group. If $|a|=n$, show that $\left\langle a^{k}\right\rangle=\left\langle a^{\operatorname{gcd}(n, k)}\right\rangle$.
b. Let a be an element in a group. Suppose that $|a|=24$. Find a generator of $\left\langle a^{21}\right\rangle \cap\left\langle a^{10}\right\rangle$.
4. Given the permutations $\sigma=(124), \tau=(13)(24) \in S_{4}$, compute the following elements:
a. σ^{-1}
b. $\sigma \tau$
c. $\tau \sigma$
d. σ^{2}
e. $\sigma^{2} \tau$
f. $\sigma \tau \sigma^{-1}$
g. $\tau \sigma \tau^{-1}$
5. a. Prove that a k-cycle in S_{n} is an element of order k.
b. Prove that when we represent a permutation as a product of disjoint cycles, the order of the permutation is the least common multiple of the lengths of these cycles.
6. Determine if $\sigma=\left(\begin{array}{ll}12\end{array}\right)(134)(152), \tau=(1243)(3521) \in S_{5}$ are even or odd.
7. Prove that A_{n} contains an n-cycle if and only if n is odd.

Through the course of this assignment, I have followed the guidelines of the University of Minnesota Student Conduct Code.

Signed:

