\qquad

Problem Set 11

Math 4281, Fall 2013
Due: Friday, November 22

Read Sections 11.1 (skip Theorem 11.2) and 9.1 (up to Theorem 9.5) in your textbook.

1. Show that the Klein four-group \mathcal{V} is not isomorphic to \mathbb{Z}_{4}.
2. Prove that $\mathbb{Z}_{7}^{\times} \cong \mathbb{Z}_{6}$. (It is crucial to remember that we multiply in $\mathbb{Z}_{7}^{\times}=U(7)$ and add in \mathbb{Z}_{6}.)
3. a. Prove that $\mathbb{Z}_{12}^{\times} \cong \mathcal{V}$.
b. Prove that $\mathbb{Z}_{15}^{\times} \cong \mathbb{Z}_{16}^{\times} \cong \mathbb{Z}_{20}^{\times}$. What about \mathbb{Z}_{24}^{\times}?
4. Show that $\phi: \mathbb{R} \rightarrow \mathbb{C}^{\times}$given by $\phi(t)=\operatorname{cis}(2 \pi t)$ is a homomorphism. Then describe its kernel and image.
5. Let $a \in G$ be fixed, and define $\phi: G \rightarrow G$ by $\phi(x)=a x a^{-1}$. Prove that ϕ is a homomorphism. Under what circumstances is ϕ an isomorphism?
6. Let $\zeta=\operatorname{cis}\left(\frac{2 \pi}{n}\right)$. Prove that the dihedral group D_{n} is isomorphic to the subgroup of $\mathrm{G} L_{2}(\mathbb{C})$ obtained by taking all products of the two matrices $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $\left[\begin{array}{ll}\zeta & 0 \\ 0 & \bar{\zeta}\end{array}\right]$ and their inverses. (In other words, by taking the subgroup generated by these two matrix elements.)

Through the course of this assignment, I have followed the guidelines of the University of Minnesota Student Conduct Code.

Signed:

