Name: \qquad

Problem Set 6

Math 4281, Fall 2013
Due: Friday, October 18
Read Sections 21.1 (stop after Example 1), 21.2 (stop after Example 11), and 16.3, as well as Theorem 17.3 in your textbook.

1. Prove that $\mathbb{Q}(\sqrt{2}, i)=\mathbb{Q}(\sqrt{2}+i)$, but $\mathbb{Q}(\sqrt{2} i) \subsetneq \mathbb{Q}(\sqrt{2}, i)$.
2. Find the splitting field for the following polynomials in $\mathbb{Q}[x]$:
a. $f(x)=x^{6}-1$
b. $f(x)=x^{4}-10 x^{2}+1 \quad$ (Hint: $\sqrt{2}+\sqrt{3}$ is one root.)
3. Suppose that $\alpha \in \mathbb{C}$ is a root of $f(x) \in \mathbb{Q}[x]$. Find the multiplicative inverse of $\beta \in \mathbb{Q}(\alpha)$. (Hint: Use the Euclidean algorithm.)
a. $f(x)=x^{2}+3 x-3 \in \mathbb{Q}[x], \beta=\alpha-1$
b. $f(x)=x^{3}+x^{2}+2 x+1 \in \mathbb{Q}[x], \beta=\alpha^{2}+1$
4. Let R be a commutative ring with 1 .
a. Prove that if $I \subseteq R$ is an ideal and $1 \in I$, then $I=R$.
b. Prove that $a \in R$ is a unit if and only if $\langle a\rangle=R$.
c. Prove that the only ideals in R are $\langle 0\rangle$ and R if and only if R is a field.
5. Find all ideals in \mathbb{Z} and in \mathbb{Z}_{6}.
6. Prove that $\phi: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}, \phi(a)=a^{p}$, is a ring homomorphism.
7. Give the addition and multiplication tables of $\mathbb{Z}_{2}[x] /\left\langle x^{3}+x+1\right\rangle$.
8. Find all ring homomorphisms:
a. $\phi: \mathbb{Z}_{2} \rightarrow \mathbb{Z}$
b. $\phi: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{6}$
c. $\phi: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{2}$

Through the course of this assignment, I have followed the guidelines of the University of Minnesota Student Conduct Code.

Signed:

