Problem Set 7 Math 4281, Fall 2013 Due: Friday, October 25

Read Sections 16.3, 21.1 (thru Thm. 21.2), and 21.2 (thru Thm. 21.17), in your textbook.

- 1. Let R be a commutative ring with 1, and let $I, J \subset R$ be ideals. Define $I \cap J = \{a \in R \mid a \in I \text{ and } a \in J\}$ and $I + J = \{a + b \in R \mid a \in I, b \in J\}.$
 - a. Prove that $I \cap J$ and I + J are ideals.
 - b. Suppose $R = \mathbb{Z}$ or F[x] for a field F, $I = \langle a \rangle$, and $J = \langle b \rangle$. Identify $I \cap J$ and I + J in terms of a and b.
 - c. Let $a_1, \ldots, a_n \in R$. Prove that $\langle a_1, \ldots, a_n \rangle = \langle a_1 \rangle + \cdots + \langle a_n \rangle$.
- 2. a. Prove that the function $\phi \colon \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2})$ defined by $\phi(a + b\sqrt{2}) = a b\sqrt{2}$ is a ring isomorphism.
 - b. Define the function $\phi: \mathbb{Q}(\sqrt{3}) \to \mathbb{Q}(\sqrt{7})$ by $\phi(a + b\sqrt{3}) = a + b\sqrt{7}$. Is ϕ a ring isomorphism? Is there any isomorphism between these rings?
- 3. Establish the following isomorphisms by using the Fundamental Homomorphism Theorem:
 - a. $\mathbb{R}[x]/\langle x^2+6\rangle \cong \mathbb{C}$
 - b. $\mathbb{Q}[x]/\langle x^2 + x + 1 \rangle \cong \mathbb{Q}(\sqrt{3}i)$
 - c. $\mathbb{Z}_3 \times \mathbb{Z}_4 \cong \mathbb{Z}_{12}$
- 4. a. Prove that the composition of two ring isomorphisms is a ring isomorphism.
 - b. Suppose that $\phi: R \to S$ is a ring isomorphism. Prove that the inverse function $\phi^{-1}: S \to R$ is a ring homomorphism (and therefore also an isomorphism).
- 5. Let F be a field, $f(x) \in F[x]$, and K be a field extension of F containing the root α of f(x).
 - a. If $\sigma \colon K \to K$ is a ring isomorphism with the property that $\sigma(a) = a$ for all $a \in F$, show that $\sigma(\alpha)$ is likewise a root of f(x).
 - b. Apply (a) to show that the complex roots of a real polynomial occur in conjugate pairs.
 - c. Apply (a) to show that if $n \in \mathbb{N}$ is not a perfect square, and \sqrt{n} is a root of $f(x) \in \mathbb{Q}[x]$, then $-\sqrt{n}$ is a root as well.
- 6. Answer, giving proofs or disproofs.
 - a. Is $\mathbb{Z}_2[x]/\langle x^2 \rangle \cong \mathbb{Z}_4$, or is $\mathbb{Z}_2[x]/\langle x^2 \rangle \cong \mathbb{Z}_2 \times \mathbb{Z}_2$?
 - b. Is $\mathbb{Z}_3[x]/\langle x^2-1\rangle \cong \mathbb{Z}_3 \times \mathbb{Z}_3$?
 - c. Is $\mathbb{Q}[x]/\langle x^2-1\rangle \cong \mathbb{Q} \times \mathbb{Q}$?

Through the course of this assignment, I have followed the guidelines of the University of Minnesota Student Conduct Code.

Signed: _____