Problem Set 7

Math 4281, Fall 2013
Due: Friday, October 25
Read Sections 16.3, 21.1 (thru Thm. 21.2), and 21.2 (thru Thm. 21.17), in your textbook.

1. Let R be a commutative ring with 1 , and let $I, J \subset R$ be ideals. Define

$$
I \cap J=\{a \in R \mid a \in I \text { and } a \in J\} \quad \text { and } \quad I+J=\{a+b \in R \mid a \in I, b \in J\}
$$

a. Prove that $I \cap J$ and $I+J$ are ideals.
b. Suppose $R=\mathbb{Z}$ or $F[x]$ for a field $F, I=\langle a\rangle$, and $J=\langle b\rangle$. Identify $I \cap J$ and $I+J$ in terms of a and b.
c. Let $a_{1}, \ldots, a_{n} \in R$. Prove that $\left\langle a_{1}, \ldots, a_{n}\right\rangle=\left\langle a_{1}\right\rangle+\cdots+\left\langle a_{n}\right\rangle$.
2. a. Prove that the function $\phi: \mathbb{Q}(\sqrt{2}) \rightarrow \mathbb{Q}(\sqrt{2})$ defined by $\phi(a+b \sqrt{2})=a-b \sqrt{2}$ is a ring isomorphism.
b. Define the function $\phi: \mathbb{Q}(\sqrt{3}) \rightarrow \mathbb{Q}(\sqrt{7})$ by $\phi(a+b \sqrt{3})=a+b \sqrt{7}$. Is ϕ a ring isomorphism? Is there any isomorphism between these rings?
3. Establish the following isomorphisms by using the Fundamental Homomorphism Theorem:
a. $\mathbb{R}[x] /\left\langle x^{2}+6\right\rangle \cong \mathbb{C}$
b. $\mathbb{Q}[x] /\left\langle x^{2}+x+1\right\rangle \cong \mathbb{Q}(\sqrt{3} i)$
c. $\mathbb{Z}_{3} \times \mathbb{Z}_{4} \cong \mathbb{Z}_{12}$
4. a. Prove that the composition of two ring isomorphisms is a ring isomorphism.
b. Suppose that $\phi: R \rightarrow S$ is a ring isomorphism. Prove that the inverse function $\phi^{-1}: S \rightarrow$ R is a ring homomorphism (and therefore also an isomorphism).
5. Let F be a field, $f(x) \in F[x]$, and K be a field extension of F containing the root α of $f(x)$.
a. If $\sigma: K \rightarrow K$ is a ring isomorphism with the property that $\sigma(a)=a$ for all $a \in F$, show that $\sigma(\alpha)$ is likewise a root of $f(x)$.
b. Apply (a) to show that the complex roots of a real polynomial occur in conjugate pairs.
c. Apply (a) to show that if $n \in \mathbb{N}$ is not a perfect square, and \sqrt{n} is a root of $f(x) \in \mathbb{Q}[x]$, then $-\sqrt{n}$ is a root as well.
6. Answer, giving proofs or disproofs.
a. Is $\mathbb{Z}_{2}[x] /\left\langle x^{2}\right\rangle \cong \mathbb{Z}_{4}$, or is $\mathbb{Z}_{2}[x] /\left\langle x^{2}\right\rangle \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
b. Is $\mathbb{Z}_{3}[x] /\left\langle x^{2}-1\right\rangle \cong \mathbb{Z}_{3} \times \mathbb{Z}_{3}$?
c. Is $\mathbb{Q}[x] /\left\langle x^{2}-1\right\rangle \cong \mathbb{Q} \times \mathbb{Q}$.

Through the course of this assignment, I have followed the guidelines of the University of Minnesota Student Conduct Code.

Signed:

