\qquad

Problem Set 8
Math 4281, Fall 2013
Due: Friday, November 1

Read Sections 20.1, 20.2, 20.3, 21.1 (after Theorem 21.3 through Example 9), and 21.3 in your textbook.

1. Prove that the real numbers 1 and $\sqrt{3}$ are linearly independent over \mathbb{Q}. Do the same for $1, \sqrt{3}$, and $\sqrt{5}$.
2. Give a basis for each of the given vector spaces over the given field. What is the degree of each field extension?
a. $\mathbb{Q}(\sqrt{3}, i)$ over \mathbb{Q}
b. $\mathbb{Q}(\sqrt{3}, i)$ over $\mathbb{Q}(i \sqrt{3})$
c. $\mathbb{Z}_{2}[x] /\left\langle x^{3}+x+1\right\rangle$ over \mathbb{Z}_{2}
d. $\mathbb{Q}(\sqrt[5]{8})$ over \mathbb{Q}
3. Let F be a field. Suppose that K is a field extension of F of finite degree. Prove that if $\alpha \in K$, then there is an irreducible polynomial $f(x) \in F[x]$ having α as a root. (Hint: If $[K: F]=n$, consider $1, \alpha, \alpha^{2}, \ldots, \alpha^{n}$.)
4. Which of the following real numbers are constructible?
a. $\sqrt[4]{5+\sqrt{2}}$
b. $\sqrt[6]{2}$
c. $\frac{3}{4+\sqrt{13}}$
5. Prove that every constructible number is algebraic, i.e., is the root of some polynomial in $\mathbb{Q}[x]$.

Through the course of this assignment, I have followed the guidelines of the University of Minnesota Student Conduct Code.

Signed:

