Problem Set 8 Math 4281, Fall 2013 Due: Friday, November 1

Read Sections 20.1, 20.2, 20.3, 21.1 (after Theorem 21.3 through Example 9), and 21.3 in your textbook.

- 1. Prove that the real numbers 1 and $\sqrt{3}$ are linearly independent over \mathbb{Q} . Do the same for $1, \sqrt{3}$, and $\sqrt{5}$.
- 2. Give a basis for each of the given vector spaces over the given field. What is the degree of each field extension?
 - a. $\mathbb{Q}(\sqrt{3}, i)$ over \mathbb{Q}
 - b. $\mathbb{Q}(\sqrt{3}, i)$ over $\mathbb{Q}(i\sqrt{3})$
 - c. $\mathbb{Z}_2[x]/\langle x^3 + x + 1 \rangle$ over \mathbb{Z}_2
 - d. $\mathbb{Q}(\sqrt[5]{8})$ over \mathbb{Q}
- 3. Let F be a field. Suppose that K is a field extension of F of finite degree. Prove that if $\alpha \in K$, then there is an irreducible polynomial $f(x) \in F[x]$ having α as a root. (Hint: If [K : F] = n, consider $1, \alpha, \alpha^2, \ldots, \alpha^n$.)
- 4. Which of the following real numbers are constructible?
 - a. $\sqrt[4]{5 + \sqrt{2}}$ b. $\sqrt[6]{2}$ c. $\frac{3}{4 + \sqrt{13}}$
- 5. Prove that every constructible number is algebraic, i.e., is the root of some polynomial in $\mathbb{Q}[x]$.

Through the course of this assignment, I have followed the guidelines of the University of Minnesota Student Conduct Code.

Signed: _____