Problem Set 10 Math 4281, Spring 2014 Due: Wednesday, April 9

Groups

- 1. Which of the following are groups?
 - a. $\{0, 2, 4, 6\} \subseteq \mathbb{Z}_{10}$, with operation addition
 - b. $\{z \in \mathbb{C} \mid |z| = 1\}$, with operation multiplication
 - c. $\{x \in \mathbb{Q} \mid 0 < x \leq 1\}$, with operation multiplication
 - d. \mathbb{Z} with operation $a \bullet b = a + b + 1$
- 2. Give a counterexample to "if G is a group and $a, b, c \in G$ with ab = bc, then a = c."
- 3. Let G be a group with identity element e.
 - a. Prove that $(ab)^2 = a^2b^2$ for all $a, b \in G$ if and only if G is abelian.
 - b. Prove that if every element $a \in G$ is such that $a^2 = e$, then G is abelian.
- 4. Let G be a group and fix $a \in G$. Prove that $C_a = \{x \in G \mid ax = xa\}$ is itself a group, called the centralizer of a.

Cyclic groups

- 5. a. List all of the generators of \mathbb{Z}_{20} .
 - b. List the elements of the subgroups $\langle 3 \rangle$ and $\langle 7 \rangle$ in $U(20) = \mathbb{Z}_{20}^{\times}$.
 - c. Find all subgroups of \mathbb{Z}_{18} and $U(11) = \mathbb{Z}_{11}^{\times}$.
- 6. a. Let a be an element in a group. If |a| = n, show that $\langle a^k \rangle = \langle a^{\text{gcd}(n,k)} \rangle$.
 - b. Let a be an element in a group. Suppose that |a| = 24. Find a generator of $\langle a^{21} \rangle \cap \langle a^{10} \rangle$.

Throughout the course of this assignment, I have followed the guidelines of the University of Minnesota Student Conduct Code.

Signed: _____