Name: \qquad

Problem Set 11

Math 4281, Spring 2014
Due: Wednesday, April 16

Permutation groups

1. Given the permutations $\sigma=(124), \tau=(13)(24) \in S_{4}$, compute the following elements:
a. σ^{-1}
b. $\sigma \tau$
c. $\tau \sigma$
d. σ^{2}
e. $\sigma^{2} \tau$
f. $\sigma \tau \sigma^{-1}$
g. $\tau \sigma \tau^{-1}$
2. a. Prove that a k-cycle in S_{n} is an element of order k.
b. Prove that when we represent a permutation as a product of disjoint cycles, the order of the permutation is the least common multiple of the lengths of these cycles.
3. Determine if $\sigma=(12)(134)(152), \tau=(1243)(3521) \in S_{5}$ are even or odd.
4. Prove that A_{n} contains an n-cycle if and only if n is odd.

Group homomorphisms and isomorphisms

5. Show that $\phi: \mathbb{R} \rightarrow \mathbb{C}^{\times}$given by $\phi(t)=\operatorname{cis}(2 \pi t)$ is a homomorphism. Show that \mathbb{Z} is the kernel of ϕ and the unit circle in the complex plane is the image of ϕ.
6. Let $a \in G$ be fixed, and define $\phi: G \rightarrow G$ by $\phi(x)=a x a^{-1}$. Prove that ϕ is a homomorphism. Under what circumstances is ϕ an isomorphism?
7. Let $\zeta=\operatorname{cis}\left(\frac{2 \pi}{n}\right)$. Prove that the dihedral group D_{n} is isomorphic to the subgroup of $G L_{2}(\mathbb{C})$ obtained by taking all products of the two matrices $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $\left[\begin{array}{ll}\zeta & 0 \\ 0 & \frac{\zeta}{4}\end{array}\right]$ and their inverses. (In other words, by taking the subgroup generated by these two matrix elements.)

> Throughout the course of this assignment, I have followed the guidelines of the University of Minnesota Student Conduct Code.

Signed:

