Problem Set 11 Math 4281, Spring 2014 Due: Wednesday, April 16

Permutation groups

- 1. Given the permutations $\sigma = (1 \ 2 \ 4), \tau = (1 \ 3)(2 \ 4) \in S_4$, compute the following elements: a. σ^{-1} b. $\sigma\tau$ c. $\tau\sigma$ d. σ^2 e. $\sigma^2\tau$ f. $\sigma\tau\sigma^{-1}$ g. $\tau\sigma\tau^{-1}$
- 2. a. Prove that a k-cycle in S_n is an element of order k.
 - b. Prove that when we represent a permutation as a product of disjoint cycles, the order of the permutation is the least common multiple of the lengths of these cycles.
- 3. Determine if $\sigma = (1\ 2)(1\ 3\ 4)(1\ 5\ 2), \tau = (1\ 2\ 4\ 3)(3\ 5\ 2\ 1) \in S_5$ are even or odd.
- 4. Prove that A_n contains an *n*-cycle if and only if *n* is odd.

Group homomorphisms and isomorphisms

- 5. Show that $\phi \colon \mathbb{R} \to \mathbb{C}^{\times}$ given by $\phi(t) = \operatorname{cis}(2\pi t)$ is a homomorphism. Show that \mathbb{Z} is the kernel of ϕ and the unit circle in the complex plane is the image of ϕ .
- 6. Let $a \in G$ be fixed, and define $\phi \colon G \to G$ by $\phi(x) = axa^{-1}$. Prove that ϕ is a homomorphism. Under what circumstances is ϕ an isomorphism?
- 7. Let $\zeta = \operatorname{cis}\left(\frac{2\pi}{n}\right)$. Prove that the dihedral group D_n is isomorphic to the subgroup of $\operatorname{GL}_2(\mathbb{C})$ obtained by taking all products of the two matrices $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $\begin{bmatrix} \zeta & 0 \\ 0 & \zeta \end{bmatrix}$ and their inverses. (In other words, by taking the subgroup generated by these two matrix elements.)

Throughout the course of this assignment, I have followed the guidelines of the University of Minnesota Student Conduct Code.

Signed: _____