Name: \qquad

Problem Set 12

Math 4281, Spring 2014
Due: Wednesday, April 23

Cosets

1. Suppose $G=\langle c\rangle$ is a cyclic group of order 8 . List the cosets of $\left\langle c^{4}\right\rangle$.

Normal subgroups and quotient groups

2. Show that H is a normal subgroup of G, but K is not a normal subgroup of G, where

$$
\begin{aligned}
G & =\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{rr}
1 & 0 \\
-1 & -1
\end{array}\right],\left[\begin{array}{rr}
0 & 1 \\
-1 & -1
\end{array}\right],\left[\begin{array}{rr}
-1 & -1 \\
1 & 0
\end{array}\right],\left[\begin{array}{rr}
-1 & -1 \\
0 & 1
\end{array}\right]\right\}, \\
H & =\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 0 \\
-1 & 1 \\
-1
\end{array}\right],\left[\begin{array}{rr}
-1 & -1 \\
1 & 0
\end{array}\right]\right\}, \quad \text { and } \\
K & =\left\{\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\right\} .
\end{aligned}
$$

3. Prove that $Z=\{a \in G \mid a x=x a$ for all $x \in G\}$ is a normal subgroup of G. (This is called the center of G.)
4. Let G be a group with identity element e. Suppose that $H, K \subseteq G$ are subgroups of orders 5 and 8 , respectively. Prove that $H \cap K=\{e\}$.
5. a. Prove that a group G of even order has an element of order 2. (Hint: If $a \neq e$, then a has order 2 if and only if $a=a^{-1}$.)
b. Suppose m is odd, $|G|=2 m$, and G is abelian. Prove G has precisely one element of order 2. (Hint: If there were two, they would provide a Klein four-group.)
c. Prove that if G has exactly one element of order 2, then it must be in the center of G.

> Throughout the course of this assignment, I have followed the guidelines of the University of Minnesota Student Conduct Code.

Signed:

