Problem Set 13 Math 4281, Spring 2014 Due: Wednesday, May 7

1. In this exercise, you will prove *Cayley's Theorem*, which says that every group is isomorphic to a subgroup of a permutation group.

Let G be a finite group of order n. Let Perm(G) denote the group of permutations of G, i.e.,

 $Perm(G) = \{ \pi \colon G \to G \mid \pi \text{ is a one-to-one and onto map of sets} \}.$

- a. Show that Perm(G) is a group.
- b. For each $a \in G$, let $L_a \colon G \to G$ be defined by $L_a(g) = ag$. Prove that L_a is a permutation of G, i.e., $L_a \in \text{Perm}(G)$.
- c. Define $\phi: G \to \operatorname{Perm}(G)$ by $\phi(a) = L_a$. Prove that ϕ is a one-to-one group homomorphism.
- d. Use (b) to prove that G is isomorphic to a subgroup of S_n .

Galois theory

- 2. Determine the Galois group and the corresponding subgroups and intermediate fields for $f(x) = x^5 1 \in \mathbb{Q}[x]$. Check for normal subgroups and Galois extensions of \mathbb{Q} . (Hint: We can factor $f(x) = (x 1)(x^4 + x^3 + x^2 + x + 1)$.)
- 3. Determine the Galois group and the corresponding subgroups and intermediate fields for $f(x) = x^3 + 2 \in \mathbb{Q}[x]$. Check for normal subgroups and Galois extensions of \mathbb{Q} .

Throughout the course of this assignment, I have followed the guidelines of the University of Minnesota Student Conduct Code.

Signed: _____