Name:

Problem Set 3

Math 4281, Spring 2014
Due: Wednesday, February 12

Complete the following items, staple this page to the front of your work, and turn your assignment in class on Wednesday, February 12.

Division and Euclidean algorithms

1. You have at your disposal arbitrarily many 4 -cent stamps and 7 -cent stamps. What are the postages you can pay? Show in particular that you can pay all postages greater than 17 cents.

Modular arithmetic

2. Suppose p is prime and a and b are integers. Prove that if $a^{2} \equiv b^{2}(\bmod p)$, then $a \equiv b(\bmod p)$ or $a \equiv-b(\bmod p)$.
3. Determine the last digit of 3^{400}, then the last two digits. Determine the last digit of 7^{99}.
4. Prove that there are infinitely many primes of the form $4 n-1$.

Solving congruences

5. Prove that if $x^{2} \equiv n(\bmod 65)$ has a solution, then so does $x^{2} \equiv-n(\bmod 65)$.
6. Solve the following congruences:
a. $6 x+3 \equiv 1(\bmod 10)$
b. $15 x \equiv 25(\bmod 35)$
c. Simultaneously: $x \equiv 1(\bmod 4), x \equiv 7(\bmod 13)$
d. Simultaneously: $x \equiv 11(\bmod 142), x \equiv 25(\bmod 86)$

Throughout the course of this assignment, I have followed the guidelines of the University of Minnesota Student Conduct Code.

Signed:

