Name: \qquad

Problem Set 4

Math 4281, Spring 2014
Due: Wednesday, February 19

Equivalence relations

1. Define a relation on \mathbb{R} as follows: $x \sim y$ if and only if $x-y$ is an integer. Prove that \sim is an equivalence relation and describe the set of equivalence classes.
2. Given a function $f: S \rightarrow T$, consider the following relation on $S: \quad x \sim y \Leftrightarrow f(x)=f(y)$.
a. Prove that \sim is an equivalence relation.
b. Prove that if f maps onto T, then there is a one-to-one correspondence between the set of equivalence classes and T.

Rings, domains, and fields

3. Let $a, m \in \mathbb{Z}$ with $m>0$.
a. Prove that $\operatorname{gcd}(a, m)=1$ if and only if $[a]=\bar{a} \in \mathbb{Z}_{m}$ is a unit.
b. Prove that if $[a]=\bar{a} \in \mathbb{Z}_{m}$ is a zero divisor, then $\operatorname{gcd}(a, m)>1$, and conversely, provided $m \nmid a$.
4. Determine if the set $R=\{a+b \sqrt[3]{3} \mid a, b \in \mathbb{Q}\}$ is a ring with respect to the usual operations of addition and multiplication. If so, is it also a field?
5. Characterize the units in $M_{2}(\mathbb{Z})$. Then list the units in $M_{2}\left(\mathbb{Z}_{2}\right)$.
6. Show that $R=\{a+b \sqrt{3} i \mid a, b \in \mathbb{Z}\}$ is a ring.

The complex numbers

7. Prove the following properties of the modulus of a complex number. Let $z, w \in \mathbb{C}$.
a. $|z w|=|z||w|$
b. $|\bar{z}|=|z|$
c. $|z|^{2}=z \bar{z}$

> Throughout the course of this assignment, I have followed the guidelines of the University of Minnesota Student Conduct Code.

Signed:

