Name:

Problem Set 4 Math 4281, Spring 2014 Due: Wednesday, February 19

Equivalence relations

- 1. Define a relation on \mathbb{R} as follows: $x \sim y$ if and only if x y is an integer. Prove that \sim is an equivalence relation and describe the set of equivalence classes.
- 2. Given a function $f: S \to T$, consider the following relation on $S: x \sim y \Leftrightarrow f(x) = f(y)$.
 - a. Prove that \sim is an equivalence relation.
 - b. Prove that if f maps onto T, then there is a one-to-one correspondence between the set of equivalence classes and T.

Rings, domains, and fields

- 3. Let $a, m \in \mathbb{Z}$ with m > 0.
 - a. Prove that gcd(a, m) = 1 if and only if $[a] = \overline{a} \in \mathbb{Z}_m$ is a unit.
 - b. Prove that if $[a] = \overline{a} \in \mathbb{Z}_m$ is a zero divisor, then gcd(a,m) > 1, and conversely, provided $m \nmid a$.
- 4. Determine if the set $R = \{a + b\sqrt[3]{3} \mid a, b \in \mathbb{Q}\}$ is a ring with respect to the usual operations of addition and multiplication. If so, is it also a field?
- 5. Characterize the units in $M_2(\mathbb{Z})$. Then list the units in $M_2(\mathbb{Z}_2)$.
- 6. Show that $R = \{a + b\sqrt{3}i \mid a, b \in \mathbb{Z}\}$ is a ring.

The complex numbers

- 7. Prove the following properties of the modulus of a complex number. Let $z, w \in \mathbb{C}$.
 - a. |zw| = |z||w|b. $|\overline{z}| = |z|$ c. $|z|^2 = z\overline{z}$

Throughout the course of this assignment, I have followed the guidelines of the University of Minnesota Student Conduct Code.

Signed: _____