Name:

Problem Set 5

Math 4281, Spring 2014
Due: Wednesday, February 26

The complex numbers

1. a. Evaluate $(4-5 i)-\overline{(4 i-4)}$.
b. Convert 5 cis $\left(\frac{9 \pi}{4}\right)$ to the form $a+b i$.
c. Change $2+2 i$ to polar coordinates.
d. Calculate $(-i)^{10}$.
e. Calculate $\left(\frac{1-i}{2}\right)^{4}$.
2. Find the sixth roots of $-3 i$. Express your answers in the (exact) form $z=a+b i$ without trigonometric functions, and then plot them in the complex plane.

Euclidean algorithm for polynomials

3. Apply the division algorithm to the polynomials $f(x), g(x) \in \mathbb{Z}_{7}[x]$, where

$$
f(x)=x^{6}+\overline{3} x^{5}+\overline{4} x^{2}-\overline{3} x+\overline{2} \quad \text { and } \quad g(x)=x^{2}+\overline{2} x-\overline{3} .
$$

Clearly identify $q(x)$ and $r(x)$.
4. Find the greatest common divisor $d(x)$ for the polynomials $f(x), g(x) \in \mathbb{C}[x]$, where

$$
f(x)=x^{2}+1 \quad \text { and } \quad g(x)=x^{2}-i+2,
$$

and find $s(x), t(x) \in \mathbb{C}[x]$ to express $d(x)=s(x) f(x)+t(x) g(x)$.
5. Show by example that unique factorization fails in $R[x]$ when R is not an integral domain. For instance, consider $x^{2}+x+\overline{8} \in \mathbb{Z}_{10}[x]$.

Throughout the course of this assignment, I have followed the guidelines of the University of Minnesota Student Conduct Code.

Signed:

