Name:

Problem Set 6

Math 4281, Spring 2014
Due: Wednesday, March 5

Roots of polynomials

1. Prove that $\mathbb{Q}(\sqrt{2}, i)=\mathbb{Q}(\sqrt{2}+i)$, but $\mathbb{Q}(\sqrt{2} i) \subsetneq \mathbb{Q}(\sqrt{2}, i)$.
2. Find the splitting field for the following polynomials in $\mathbb{Q}[x]$:
a. $f(x)=x^{6}-1$
b. $f(x)=x^{4}-10 x^{2}+1 \quad$ (Hint: Show first that $\pm \sqrt{2} \pm \sqrt{3}$ are the roots.)
3. Suppose that $\alpha \in \mathbb{C}$ is a root of $f(x) \in \mathbb{Q}[x]$. Find the multiplicative inverse of $\beta \in \mathbb{Q}(\alpha)$. (Hint: Use the Euclidean algorithm.)
a. $f(x)=x^{2}+3 x-3 \in \mathbb{Q}[x], \beta=\alpha-1$
b. $f(x)=x^{3}+x^{2}+2 x+1 \in \mathbb{Q}[x], \beta=\alpha^{2}+1$

Irreducible polynomials over the integers

4. List the irreducible polynomials in $\mathbb{Z}_{2}[x]$ of degrees 2,3 , and 4 .
5. Decide which of the following polynomials are irreducible in $\mathbb{Q}[x]$.
a. $x^{3}+4 x^{2}-3 x+5$
b. $4 x^{3}-6 x^{2}+6 x-12$
c. $x^{4}-180$
d. $x^{4}+x^{3}-6$
6. The polynomial

$$
\Phi_{n}(x)=\frac{x^{n}-1}{x-1}=x^{n-1}+x^{n-2}+\cdots+x+1
$$

is called a cyclotomic polynomial. Show that $\Phi_{p}(x)$ is irreducible over \mathbb{Q} for any prime p. (Hint: Consider $\Phi_{p}(x+1)$.)

> Throughout the course of this assignment, I have followed the guidelines of the University of Minnesota Student Conduct Code.

Signed:

