Name:

Problem Set 7

Math 4281, Spring 2014
Due: Wednesday, March 12

Ring homomorphisms and ideals

1. Find all ring homomorphisms:
a. $\phi: \mathbb{Z}_{2} \rightarrow \mathbb{Z}$
b. $\phi: \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{6}$
c. $\phi: \mathbb{Z}_{6} \rightarrow \mathbb{Z}_{2}$
2. Prove that if p is prime and $\phi: \mathbb{Z}_{p} \rightarrow \mathbb{Z}_{p}, \phi(a)=a^{p}$, is a ring homomorphism.
3. Find all ideals in \mathbb{Z} and in \mathbb{Z}_{6}.
4. Let R be a commutative ring with 1 , and let $a_{1}, \ldots, a_{n} \in R$. Show that

$$
\left\langle a_{1}, \ldots, a_{n}\right\rangle:=\left\{r_{1} a_{1}+\cdots+r_{n} a_{n} \mid r_{i} \in R \text { for all } i\right\} \subseteq R
$$

is an ideal in R.
5. Let R be a commutative ring with 1 , and let $I, J \subset R$ be ideals. Define

$$
I \cap J=\{a \in R \mid a \in I \text { and } a \in J\} \quad \text { and } \quad I+J=\{a+b \in R \mid a \in I, b \in J\} .
$$

a. Prove that $I \cap J$ and $I+J$ are ideals.
b. Suppose $R=\mathbb{Z}$ or $F[x]$ for a field $F, I=\langle a\rangle$, and $J=\langle b\rangle$. Identify $I \cap J$ and $I+J$ in terms of a and b.
c. Let $a_{1}, \ldots, a_{n} \in R$. Prove that $\left\langle a_{1}, \ldots, a_{n}\right\rangle=\left\langle a_{1}\right\rangle+\cdots+\left\langle a_{n}\right\rangle$.
6. Let R be a commutative ring with 1 .
a. Prove that if $I \subseteq R$ is an ideal and $1 \in I$, then $I=R$.
b. Prove that $a \in R$ is a unit if and only if $\langle a\rangle=R$.
c. Prove that the only ideals in R are $\langle 0\rangle$ and R if and only if R is a field.

Throughout the course of this assignment, I have followed the guidelines of the University of Minnesota Student Conduct Code.

Signed:

