Problem Set 7 Math 4281, Spring 2014 Due: Wednesday, March 12

Ring homomorphisms and ideals

- 1. Find all ring homomorphisms:
 - a. $\phi \colon \mathbb{Z}_2 \to \mathbb{Z}$
 - b. $\phi \colon \mathbb{Z}_2 \to \mathbb{Z}_6$
 - c. $\phi \colon \mathbb{Z}_6 \to \mathbb{Z}_2$
- 2. Prove that if p is prime and $\phi \colon \mathbb{Z}_p \to \mathbb{Z}_p$, $\phi(a) = a^p$, is a ring homomorphism.
- 3. Find all ideals in \mathbb{Z} and in \mathbb{Z}_6 .
- 4. Let R be a commutative ring with 1, and let $a_1, \ldots, a_n \in R$. Show that

$$\langle a_1, \dots, a_n \rangle := \{ r_1 a_1 + \dots + r_n a_n \mid r_i \in R \text{ for all } i \} \subseteq R$$

is an ideal in R.

5. Let R be a commutative ring with 1, and let $I, J \subset R$ be ideals. Define

 $I \cap J = \{a \in R \mid a \in I \text{ and } a \in J\} \text{ and } I + J = \{a + b \in R \mid a \in I, b \in J\}.$

- a. Prove that $I \cap J$ and I + J are ideals.
- b. Suppose $R = \mathbb{Z}$ or F[x] for a field F, $I = \langle a \rangle$, and $J = \langle b \rangle$. Identify $I \cap J$ and I + J in terms of a and b.
- c. Let $a_1, \ldots, a_n \in R$. Prove that $\langle a_1, \ldots, a_n \rangle = \langle a_1 \rangle + \cdots + \langle a_n \rangle$.
- 6. Let R be a commutative ring with 1.
 - a. Prove that if $I \subseteq R$ is an ideal and $1 \in I$, then I = R.
 - b. Prove that $a \in R$ is a unit if and only if $\langle a \rangle = R$.
 - c. Prove that the only ideals in R are $\langle 0 \rangle$ and R if and only if R is a field.

Throughout the course of this assignment, I have followed the guidelines of the University of Minnesota Student Conduct Code.

Signed: _____