Name: \qquad

Problem Set 8

Math 4281, Spring 2014
Due: Wednesday, March 26

Quotient rings

1. Prove that if F is a field and $f(x) \in F[x]$ is not irreducible, then $F[x] /\langle f(x)\rangle$ contains zero divisors.
2. Give the addition and multiplication tables of $\mathbb{Z}_{2}[x] /\left\langle x^{3}+x+1\right\rangle$.
3. Let R and S be commutative rings with 1 .
a. Given an ideal $J \subseteq S$, define $\phi^{-1}(J):=\{a \in R \mid \phi(a) \in J\} \subseteq R$. Prove that this is an ideal in R.
b. Given an ideal $I \subseteq R$, define $\phi(I):=\{\phi(a) \mid a \in I\} \subseteq S$. Prove that $\phi(I)$ is an ideal in S, provided that ϕ maps onto S.
c. Given an ideal $I \subseteq R$, show that there is a one-to-one correspondence between \{ideals of R / I \} and $\{$ ideal of R containing $I\}$.
4. An element a of a commutative ring R with 1 is called nilpotent if $a^{n}=0$ for some positive integer n.
a. Find the nilpotent elements in \mathbb{Z}_{8}.
b. Find the nilpotent elements in $\mathbb{Z}_{2}[x] /\left\langle x^{3}\right\rangle$.
c. Show that the collection N of all nilpotent elements in R is an ideal.
d. Show that the quotient ring R / N has no nonzero nilpotent elements.

Ring isomorphisms

5. a. Prove that the function $\phi: \mathbb{Q}(\sqrt{2}) \rightarrow \mathbb{Q}(\sqrt{2})$ defined by $\phi(a+b \sqrt{2})=a-b \sqrt{2}$ is a ring isomorphism.
b. Define the function $\phi: \mathbb{Q}(\sqrt{3}) \rightarrow \mathbb{Q}(\sqrt{7})$ by $\phi(a+b \sqrt{3})=a+b \sqrt{7}$. Is ϕ a ring isomorphism? Is there any isomorphism between these rings?

> Throughout the course of this assignment, I have followed the guidelines of the University of Minnesota Student Conduct Code.

Signed:

