Problem Set 8 Math 4281, Spring 2014 Due: Wednesday, March 26

Quotient rings

- 1. Prove that if F is a field and $f(x) \in F[x]$ is not irreducible, then $F[x]/\langle f(x) \rangle$ contains zero divisors.
- 2. Give the addition and multiplication tables of $\mathbb{Z}_2[x]/\langle x^3 + x + 1 \rangle$.
- 3. Let R and S be commutative rings with 1.
 - a. Given an ideal $J \subseteq S$, define $\phi^{-1}(J) := \{a \in R \mid \phi(a) \in J\} \subseteq R$. Prove that this is an ideal in R.
 - b. Given an ideal $I \subseteq R$, define $\phi(I) := \{\phi(a) \mid a \in I\} \subseteq S$. Prove that $\phi(I)$ is an ideal in S, provided that ϕ maps onto S.
 - c. Given an ideal $I \subseteq R$, show that there is a one-to-one correspondence between {ideals of R/I} and {ideal of R containing I}.
- 4. An element a of a commutative ring R with 1 is called *nilpotent* if $a^n = 0$ for some positive integer n.
 - a. Find the nilpotent elements in \mathbb{Z}_8 .
 - b. Find the nilpotent elements in $\mathbb{Z}_2[x]/\langle x^3 \rangle$.
 - c. Show that the collection N of all nilpotent elements in R is an ideal.
 - d. Show that the quotient ring R/N has no nonzero nilpotent elements.

Ring isomorphisms

- 5. a. Prove that the function $\phi : \mathbb{Q}(\sqrt{2}) \to \mathbb{Q}(\sqrt{2})$ defined by $\phi(a + b\sqrt{2}) = a b\sqrt{2}$ is a ring isomorphism.
 - b. Define the function $\phi: \mathbb{Q}(\sqrt{3}) \to \mathbb{Q}(\sqrt{7})$ by $\phi(a + b\sqrt{3}) = a + b\sqrt{7}$. Is ϕ a ring isomorphism? Is there any isomorphism between these rings?

Throughout the course of this assignment, I have followed the guidelines of the University of Minnesota Student Conduct Code.

Signed: _____