Problem Set 9 Math 4281, Spring 2014 Due: Wednesday, April 2

Ring isomorphisms

- 1. Establish the following isomorphisms by using the Fundamental Homomorphism Theorem:
 - a. $\mathbb{R}[x]/\langle x^2+6\rangle \cong \mathbb{C}$
 - **b.** $\mathbb{Q}[x]/\langle x^2 + x + 1 \rangle \cong \mathbb{Q}(\sqrt{3}i)$
 - c. $\mathbb{Z}_3 \times \mathbb{Z}_4 \cong \mathbb{Z}_{12}$
- 2. Let F be a field, $f(x) \in F[x]$, and K be a field extension of F containing the root α of f(x).
 - a. If $\sigma: K \to K$ is a ring isomorphism with the property that $\sigma(a) = a$ for all $a \in F$, show that $\sigma(\alpha)$ is likewise a root of f(x).
 - b. Apply (a) to show that the complex roots of a real polynomial occur in conjugate pairs.
 - c. Apply (a) to show that if $n \in \mathbb{N}$ is not a perfect square, and \sqrt{n} is a root of $f(x) \in \mathbb{Q}[x]$, then $-\sqrt{n}$ is a root as well.

Vector spaces and field extensions

- 3. Prove that the real numbers 1 and $\sqrt{3}$ are linearly independent over \mathbb{Q} . Do the same for $1, \sqrt{3}$, and $\sqrt{5}$.
- 4. Give a basis for each of the given vector spaces over the given field. What is the degree of each field extension?
 - a. $\mathbb{Q}(\sqrt{3}, i)$ over \mathbb{Q}
 - b. $\mathbb{Q}(\sqrt{3}, i)$ over $\mathbb{Q}(i\sqrt{3})$
 - c. $\mathbb{Z}_2[x]/\langle x^3 + x + 1 \rangle$ over \mathbb{Z}_2
 - d. $\mathbb{Q}(\sqrt[5]{8})$ over \mathbb{Q}
- 5. Let F be a field. Suppose that K is a field extension of F of finite degree. Prove that if $\alpha \in K$, then there is an irreducible polynomial $f(x) \in F[x]$ having α as a root. (Hint: If [K : F] = n, consider $1, \alpha, \alpha^2, \ldots, \alpha^n$.)

Throughout the course of this assignment, I have followed the guidelines of the University of Minnesota Student Conduct Code.

Signed: _____