Name:

Problem Set 9

Math 4281, Spring 2014
Due: Wednesday, April 2

Ring isomorphisms

1. Establish the following isomorphisms by using the Fundamental Homomorphism Theorem:
a. $\mathbb{R}[x] /\left\langle x^{2}+6\right\rangle \cong \mathbb{C}$
b. $\mathbb{Q}[x] /\left\langle x^{2}+x+1\right\rangle \cong \mathbb{Q}(\sqrt{3} i)$
c. $\mathbb{Z}_{3} \times \mathbb{Z}_{4} \cong \mathbb{Z}_{12}$
2. Let F be a field, $f(x) \in F[x]$, and K be a field extension of F containing the root α of $f(x)$.
a. If $\sigma: K \rightarrow K$ is a ring isomorphism with the property that $\sigma(a)=a$ for all $a \in F$, show that $\sigma(\alpha)$ is likewise a root of $f(x)$.
b. Apply (a) to show that the complex roots of a real polynomial occur in conjugate pairs.
c. Apply (a) to show that if $n \in \mathbb{N}$ is not a perfect square, and \sqrt{n} is a root of $f(x) \in \mathbb{Q}[x]$, then $-\sqrt{n}$ is a root as well.

Vector spaces and field extensions

3. Prove that the real numbers 1 and $\sqrt{3}$ are linearly independent over \mathbb{Q}. Do the same for $1, \sqrt{3}$, and $\sqrt{5}$.
4. Give a basis for each of the given vector spaces over the given field. What is the degree of each field extension?
a. $\mathbb{Q}(\sqrt{3}, i)$ over \mathbb{Q}
b. $\mathbb{Q}(\sqrt{3}, i)$ over $\mathbb{Q}(i \sqrt{3})$
c. $\mathbb{Z}_{2}[x] /\left\langle x^{3}+x+1\right\rangle$ over \mathbb{Z}_{2}
d. $\mathbb{Q}(\sqrt[5]{8})$ over \mathbb{Q}
5. Let F be a field. Suppose that K is a field extension of F of finite degree. Prove that if $\alpha \in K$, then there is an irreducible polynomial $f(x) \in F[x]$ having α as a root. (Hint: If $[K: F]=n$, consider $1, \alpha, \alpha^{2}, \ldots, \alpha^{n}$.)

Throughout the course of this assignment, I have followed the guidelines of the University of Minnesota Student Conduct Code.

Signed:

