Math 5385 - Spring 2018 Problem Set 1

Submit solutions to **four** of the following problems.

- 1. This exercise from the textbook: [IVA] $\S1.1 \#2$ (p. 5)
- 2. Let $p \in \mathbb{N}$ be a prime and let \mathbb{F}_p be a finite field with p elements. Prove that $x^p x$ is a nonzero polynomial in $\mathbb{F}_p[x]$ which vanishes at every point of \mathbb{F}_p .
- 3. Use MathSciNet (through a UMN proxy), the arXiv, and MathOverflow to answer the following questions:
 - (a) Estimate the number of journal articles published with the words "Gröbner basis" in their title.
 - (b) How many algebraic geometry preprints were added to the e-print archives in November 2017?
 - (c) Estimate the number of research level math questions tagged with ag.algebraic-geometry.
- 4. (a) Show that the polynomial

$$\binom{x}{d} := \frac{x(x-1)\cdots(x-d+1)}{d!}$$

takes integer values for all integers x.

- (b) Show that every polynomial of degree d which takes integer values for all integers can be written as a unique integer linear combination of $\binom{x}{d}, \binom{x}{d-1}, \ldots, \binom{x}{0}$.
- 5. Given a sequence $a_n, a_n 1, \ldots, a_m$ of real numbers with n > m and $a_n \neq 0$, the number of sign changes is defined as follows: count one sign change if $a_i a_k < 0$ with k = i 1 or k < i 1 and $a_j = 0$ for every j satisfying k < j < i.
 - (a) Prove Descarte's rule of signs: If f(x) = a_nxⁿ + a_{n-1}xⁿ⁻¹ + ··· + a_mx^m ∈ ℝ[x] with a_na_m ≠ 0, then the number of positive roots of f is less than or equal to the number of sign changes in the sequence of coefficients a_n, a_n 1, ..., a_m. Hint. Proceed by induction, consider the derivative, and use Rolle's Theorem.
 - (b) Verify that $x^{11} + x^8 3x^5 + x^4 + x^3 2x^2 + x 2$ has at most 5 positive and 2 negative roots. Deduce that it has at least 4 nonreal roots.