Math 5385-Spring 2018
 Problem Set 1

Submit solutions to four of the following problems.

1. This exercise from the textbook: [IVA] §1.1 \#2 (p. 5)
2. Let $p \in \mathbb{N}$ be a prime and let \mathbb{F}_{p} be a finite field with p elements. Prove that $x^{p}-x$ is a nonzero polynomial in $\mathbb{F}_{p}[x]$ which vanishes at every point of \mathbb{F}_{p}.
3. Use MathSciNet (through a UMN proxy), the arXiv, and MathOverflow to answer the following questions:
(a) Estimate the number of journal articles published with the words "Gröbner basis" in their title.
(b) How many algebraic geometry preprints were added to the e-print archives in November 2017?
(c) Estimate the number of research level math questions tagged with ag.algebraic-geometry.
4. (a) Show that the polynomial

$$
\binom{x}{d}:=\frac{x(x-1) \cdots(x-d+1)}{d!}
$$

takes integer values for all integers x.
(b) Show that every polynomial of degree d which takes integer values for all integers can be written as a unique integer linear combination of $\binom{x}{d},\binom{x}{d-1}, \ldots,\binom{x}{0}$.
5. Given a sequence $a_{n}, a_{n}-1, \ldots, a_{m}$ of real numbers with $n>m$ and $a_{n} \neq 0$, the number of sign changes is defined as follows: count one sign change if $a_{i} a_{k}<0$ with $k=i-1$ or $k<i-1$ and $a_{j}=0$ for every j satisfying $k<j<i$.
(a) Prove Descarte's rule of signs: If $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\cdots+a_{m} x^{m} \in \mathbb{R}[x]$ with $a_{n} a_{m} \neq 0$, then the number of positive roots of f is less than or equal to the number of sign changes in the sequence of coefficients $a_{n}, a_{n}-1, \ldots, a_{m}$.
Hint. Proceed by induction, consider the derivative, and use Rolle's Theorem.
(b) Verify that $x^{11}+x^{8}-3 x^{5}+x^{4}+x^{3}-2 x^{2}+x-2$ has at most 5 positive and 2 negative roots. Deduce that it has at least 4 nonreal roots.

