Math 5385-Spring 2018

Problem Set 11

Submit solutions to three of the following problems.

1. Consider the ideal $I:=\left\langle x^{2}, x y\right\rangle$ in $\mathbb{C}[x, y]$. For any $c \in \mathbb{C}$, prove that $I=\langle x\rangle \cap\left\langle x^{2}, y-c x\right\rangle$ is an irredundant primary decomposition of I.
2. Let I be a monomial ideal in $S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$.
(a) Suppose that x^{u} is a minimal generator of I such that $x^{u}=x^{v_{1}} x^{v_{2}}$, where the monomials $x^{v_{1}}$ and $x^{v_{2}}$ are relatively prime. Show that

$$
I=\left(I+\left\langle x^{v_{1}}\right\rangle\right) \cap\left(I+\left\langle x^{v_{2}}\right\rangle\right) .
$$

(b) Find an irredundant primary decomposition of $\left\langle x^{3} y, x^{3} z, x y^{3}, y^{3} z, x z^{3}, y z^{3}\right\rangle$.
3. A homogeneous polynomial $f \in \mathbb{k}\left[x_{0}, \ldots, x_{n}\right]$ can also be used to define the affine variety $C=V_{a}(f) \subset \mathbb{A}^{n+1}(\mathbb{k})=\mathbb{k}^{n+1}$. We call C the affine cone over the projective variety $X=V(f) \subset \mathbb{P}^{n}$.
(a) Show that if C contains the point $\left(a_{0}, \ldots, a_{n}\right) \neq(0, \ldots, 0)$, then C contains the whole line through the origin in $\mathbb{A}^{n+1}(\mathbb{k})$ spanned by $\left(a_{0}, \ldots, a_{n}\right)$.
(b) Consider the point $\left[a_{0}: \cdots: a_{n}\right] \in \mathbb{P}^{n}$ with homogeneous coordinates $\left(a_{0}, \ldots, a_{n}\right)$. Show that $\left[a_{0}: \cdots: a_{n}\right]$ is in the projective variety X if and only if the line through the origin determined by $\left(a_{0}, \ldots, a_{n}\right)$ is contained in C.
(c) Deduce that C is the union of the collection of lines through the origin in $\mathbb{A}^{n+1}(\mathbb{k})$ corresponding to the points in X.
4. In this problem, we study how lines in \mathbb{R}^{n} relate to points in $\mathbb{P}^{n}(\mathbb{R})=\mathbb{R}^{n} \cup \mathbb{P}^{n-1}(\mathbb{R})$. Given a line L in \mathbb{R}^{n}, we can parametrize L by the formula $a+b t$, where $a \in L$ and b is a nonzero vector parallel to L. In coordinates, we write this parametrization as $\left(a_{1}+b_{1} t, \cdots, a_{n}+b_{n} t\right)$.
(a) Regard L as lying in $\mathbb{P}^{n}(\mathbb{R})$ via the homogeneous coordinates

$$
\left[1: a_{1}+b_{1} t: \cdots: a_{n}+b_{n} t\right] .
$$

To find out what happens as $t \rightarrow \pm \infty$, divide by t to obtain

$$
\left[\frac{1}{t}: \frac{a_{1}}{t}+b_{1}: \cdots: \frac{a_{n}}{t}+b_{n}\right] .
$$

What are the coordinates for the point $L \cap \mathbb{P}^{n-1}(\mathbb{R})$ in $H=\mathbb{P}^{n-1}(\mathbb{R})$?
(b) The line L has many parametrizations. Show $L \cap \mathbb{P}^{n-1}(\mathbb{R})$ is the same for all parametrizations of L. Hint. Two nonzero vectors are parallel if and only if they are scalar multiples of each other.
(c) Parts (a) and (b) show that a line L in \mathbb{R}^{n} has a well-defined point at infinity in $H=\mathbb{P}^{n-1}(\mathbb{R})$. Show that two lines in \mathbb{R}^{n} are parallel if and only if they have the same point at infinity in $\mathbb{P}^{n}(\mathbb{R})$.

