Math 5385-Spring 2018

Problem Set 13

Submit solutions to three of the following problems.

1. Consider the homogeneous ideal $J=\left\langle x_{0}^{2} x_{1}, x_{1}^{3}, x_{1} x_{2}\right\rangle$ in $\mathbb{C}\left[x_{0}, x_{1}, x_{2}\right]$.
(a) Let I_{i} for $0 \leq i \leq 2$ be the dehomogenization of J with respect to x_{i}. Compute each I_{i}.
(b) Let J_{i} be the homogenization of I_{i} with respect to x_{i}. Compute each J_{i}.
(c) Compute the intersection $J^{\prime}:=J_{0} \cap J_{1} \cap J_{2}$. Show that J is a proper subset of J^{\prime}.
(d) Show that $\left(J:\left\langle x_{0}, x_{1}, x_{2}\right\rangle^{\infty}\right) \neq J$.
2. When we have a curve parameterized by $t \in \mathbb{A}^{1}$, there are many situations when we want to let $t \rightarrow \infty$. Since $\mathbb{P}^{1}=\mathbb{A}^{1} \cup\{\infty\}$, this suggests that we should let our parameter space be \mathbb{P}^{1}. Here are two examples of how this works.
(a) Consider the parametrization $(x, y)=\left(\frac{1+t^{2}}{1-t^{2}}, \frac{2 t}{1-t^{2}}\right)$ of $x^{2}-y^{2}=1$ in $\mathbb{A}^{2}(\mathbb{R})$. To make this projective, we first work in \mathbb{P}^{2}. Identifying \mathbb{A}^{2} with $U_{3} \subset \mathbb{P}^{2}$, we have

$$
\left(\frac{1+t^{2}}{1-t^{2}}, \frac{2 t}{1-t^{2}}\right)=\left[\frac{1+t^{2}}{1-t^{2}}: \frac{2 t}{1-t^{2}}: 1\right]=\left[1+t^{2}: 2 t: 1-t^{2}\right]
$$

The next step is to make t projective. Given $[a: b] \in \mathbb{P}^{1}$, we can write it as $[1: t]=[1: b / a]$, provided $a \neq 0$. Now substitute $t=b / a$ into the right side and clear denominators. Explain why this gives a well-defined map $\mathbb{P}^{1} \rightarrow \mathbb{P}^{2}$.
(b) The twisted cubic in \mathbb{A}^{3} is parametrized by $\left(t, t^{2}, t^{3}\right)$. Apply the method of part (a) to obtain a projective parametrization of $\mathbb{P}^{1} \rightarrow \mathbb{P}^{3}$ and show that the image of this map is precisely $X=V\left(x_{2}^{2}-x_{1} x_{3}, x_{1} x_{2}-x_{0} x_{3}, x_{1}^{2}-x_{0} x_{2}\right)$.
3. Consider the ideal $J=\left\langle x_{0} y_{0}+x_{1} y_{1}, x_{0} y_{1}-x_{1} y_{0}\right\rangle \subset \mathbb{C}\left[x_{0}, x_{1}, y_{0}, y_{1}\right]$.
(a) Compute the intersection $J \cap \mathbb{C}\left[y_{0}, y_{1}\right]$.
(b) Compute the image $\pi_{2}(V(J))$, where $V(J) \subset \mathbb{P}^{1} \times \mathbb{A}^{2}$ and $\pi_{2}: \mathbb{P}^{1} \times \mathbb{A}^{2} \rightarrow \mathbb{A}^{2}$.
(c) Since J is bihomogeneous, it determines $X=V(J) \subset \mathbb{P}^{1} \times \mathbb{P}^{1}$. Describe X.
4. Sketch the following curves in $\mathbb{A}^{2}(\mathbb{R})$ and analyze the multiplicity of all lines meeting these curves at the origin.
(a) $x^{2}=x^{4}+y^{4}$
(b) $x y=x^{6}+y^{6}$
(c) $x^{3}=y^{2}+x^{4}+y^{4}$
(d) $x^{2} y+x y^{2}=x^{4}+y^{4}$

