Math 5385-Spring 2018
 Problem Set 2

Submit solutions to four of the following problems.

1. (a) Show that $X=\{(x, x) \mid x \in \mathbb{R}, x \neq 1\} \subset \mathbb{R}^{2}$ is not an affine variety.

Hint. If $f \in \mathbb{R}[x, y]$ vanishes on X, then prove that $f(1,1)=0$. Consider $g(t):=$ $f(t, t)$.
(b) Show that $Y=\left\{(x, y) \in \mathbb{R}^{2} \mid y>0\right\} \subset \mathbb{R}^{2}$ is not an affine variety.
2. Consider the set $U(1):=\{z \in \mathbb{C} \mid z \bar{z}=1\}$.
(a) If we identify \mathbb{C} with \mathbb{R}^{2}, then show that $U(1)$ is an affine subvariety of \mathbb{R}^{2}.
(b) Prove that $U(1)$ is not an affine subvariety of \mathbb{C}^{1}.
3. Consider the map $\sigma: \mathbb{A}^{3}(\mathbb{k}) \rightarrow \mathbb{A}^{6}(\mathbb{k})$ defined by $(x, y, z) \mapsto\left(x^{2}, x y, x z, y^{2}, y z, z^{2}\right)$. Let a, b, c, d, e, f denote the corresponding coordinates on $\mathbb{A}^{6}(\mathbb{k})$.
(a) Show that the image of σ satisfies the equations given by the 2-minors of the symmetric matrix

$$
\Omega=\left[\begin{array}{lll}
a & b & c \\
b & d & e \\
c & e & f
\end{array}\right]
$$

(b) Compute the dimension of the vector space V in $S=\mathbb{k}[a, b, c, d, e, f]$ spanned by these 2-minors.
(c) Show that every homogeneous polynomial of degree 2 in S vanishing on the image of σ is contained in V.
4. Consider the curve, called a strophoid, with the trigonometric parametrization given by

$$
x=a \sin (t) \quad y=a \tan (t)(1+\sin (t))
$$

where a is a constant.
(a) Find the implicit equation in x and y that describes the strophoid.
(b) Find a rational parametrization of the strophoid.
5. (a) Prove the equality of the ideals $\left\langle x+x y, y+x y, x^{2}, y^{2}\right\rangle=\langle x, y\rangle$.
(b) Prove that $V\left(x+x y, y+x y, x^{2}, y^{2}\right)=V(x, y)$.
6. An ideal $I \subseteq k\left[x_{1}, \ldots, x_{n}\right]$ is said to be radical if for any $f \in k\left[x_{1}, \ldots, x_{n}\right]$, whenever $f^{m} \in I$, then also $f \in I$.
(a) Prove that for an affine variety $V \subseteq k^{n}, I(V)$ is always a radical ideal.
(b) Prove that $\left\langle x^{2}, y^{2}\right\rangle$ is not a radical ideal. This implies that $\left\langle x^{2}, y^{2}\right\rangle \neq I(V)$ for any variety $V \subseteq k^{2}$.

