Math 5385 - Spring 2018 Problem Set 2

Submit solutions to **four** of the following problems.

- 1. (a) Show that $X = \{(x, x) \mid x \in \mathbb{R}, x \neq 1\} \subset \mathbb{R}^2$ is not an affine variety. **Hint.** If $f \in \mathbb{R}[x, y]$ vanishes on X, then prove that f(1, 1) = 0. Consider g(t) := f(t, t).
 - (b) Show that $Y = \{(x, y) \in \mathbb{R}^2 \mid y > 0\} \subset \mathbb{R}^2$ is not an affine variety.
- 2. Consider the set $U(1) := \{z \in \mathbb{C} \mid z\overline{z} = 1\}.$
 - (a) If we identify \mathbb{C} with \mathbb{R}^2 , then show that U(1) is an affine subvariety of \mathbb{R}^2 .
 - (b) Prove that U(1) is not an affine subvariety of \mathbb{C}^1 .
- 3. Consider the map $\sigma \colon \mathbb{A}^3(\mathbb{k}) \to \mathbb{A}^6(\mathbb{k})$ defined by $(x, y, z) \mapsto (x^2, xy, xz, y^2, yz, z^2)$. Let a, b, c, d, e, f denote the corresponding coordinates on $\mathbb{A}^6(\mathbb{k})$.
 - (a) Show that the image of σ satisfies the equations given by the 2-minors of the symmetric matrix

$$\Omega = \begin{bmatrix} a & b & c \\ b & d & e \\ c & e & f \end{bmatrix}.$$

- (b) Compute the dimension of the vector space V in $S = \mathbb{k}[a, b, c, d, e, f]$ spanned by these 2-minors.
- (c) Show that every homogeneous polynomial of degree 2 in S vanishing on the image of σ is contained in V.
- 4. Consider the curve, called a *strophoid*, with the trigonometric parametrization given by

$$x = a\sin(t) \qquad y = a\tan(t)\left(1 + \sin(t)\right),$$

where a is a constant.

- (a) Find the implicit equation in x and y that describes the strophoid.
- (b) Find a rational parametrization of the strophoid.
- 5. (a) Prove the equality of the ideals $\langle x + xy, y + xy, x^2, y^2 \rangle = \langle x, y \rangle$. (b) Prove that $V(x + xy, y + xy, x^2, y^2) = V(x, y)$.
- 6. An ideal $I \subseteq k[x_1, \ldots, x_n]$ is said to be *radical* if for any $f \in k[x_1, \ldots, x_n]$, whenever $f^m \in I$, then also $f \in I$.
 - (a) Prove that for an affine variety $V \subseteq k^n$, I(V) is always a radical ideal.
 - (b) Prove that $\langle x^2, y^2 \rangle$ is not a radical ideal. This implies that $\langle x^2, y^2 \rangle \neq I(V)$ for any variety $V \subseteq k^2$.