Math 5385-Spring 2018
 Problem Set 3

Submit solutions to three of the following problems.

1. Here we study the consistency problem from $\S 1.2$ in the one-variable case. Given $f_{1}, \ldots, f_{s} \in \mathbb{k}[x]$, this asks if there is an algorithm to decide if $V\left(f_{1}, \ldots, f_{s}\right)$ is nonempty. You will show that the answer is yes when $\mathbb{k}=\mathbb{C}$.
(a) Let $f \in \mathbb{C}[x]$ be a nonzero polynomial. Use Theorem 1.1.7 to show that $V(f)=\varnothing$ if and only if f is constant.
(b) If $f_{1}, \ldots, f_{s} \in \mathbb{C}[x]$, prove $V\left(f_{1}, \ldots, f_{s}\right)=\varnothing$ if and only if $\operatorname{gcd}\left(f_{1}, \ldots, f_{s}\right)=1$.
(c) Describe (in words, not pseudocode) an algorithm for determining whether or not $V\left(f_{1}, \ldots, f_{s}\right) \subseteq \mathbb{A}^{n}(\mathbb{C})$ is nonempty.
When $\mathbb{k}=\mathbb{R}$, the consistency problem is much more difficult. It requires giving an algorithm that tells whether a polynomial $f \in \mathbb{R}[x]$ has a real root.
2. Suppose that \mathbb{k} is an infinite field. Let $X \subset \mathbb{A}^{3}(\mathbb{k})$ be the set $X=\left\{\left(t, t^{2}, t^{3}\right) \mid t \in \mathbb{A}^{1}(\mathbb{k})\right\}$.
(a) Use the parametrization of X to show that $z^{2}-x^{4} y$ vanishes at every point.
(b) Find a representation $z^{2}-x^{4} y=h_{1}\left(y-x^{2}\right)+h_{2}\left(z-x^{3}\right)$, where $h_{1}, h_{2} \in \mathbb{k}[x, y, z]$.
(c) Use the division algorithm to show that $I(X)=\left\langle y-x^{2}, z-x^{3}\right\rangle$.
3. Let $I=\left\langle x^{u_{1}}, \ldots, x^{u_{p}}\right\rangle$ and $J=\left\langle x^{v_{1}}, \ldots, x^{v_{q}}\right\rangle$ be two monomial ideals in $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$.
(a) If x^{w} is a monomial in S, then prove that the ideal $\left(I: x^{w}\right):=\left\{f \in S \mid f x^{w} \in I\right\}$ is generated by the monomials of $x^{u_{i}} / \operatorname{gcd}\left(x^{u_{i}}, x^{w}\right)$ for $1 \leq i \leq p$.
(b) Show that $I \cap J$ is generated by monomials $\operatorname{lcm}\left(x^{u_{i}}, x^{v_{j}}\right)$ for $1 \leq i \leq p$ and $1 \leq j \leq q$.
4. Assume that $x_{1}>x_{2}>\cdots>x_{n}$. Show that the following properties characterize the monomial orders $>_{\text {lex }}$ and $>_{\text {grevlex }}$ among all monomial orders on $S=\mathbb{k}\left[x_{1}, \cdots, x_{n}\right]$.
(a) If $\operatorname{LT}_{\text {lex }}(f) \in \mathbb{k}\left[x_{i}, \ldots, x_{n}\right]$ for some $1 \leq i \leq n$, then $f \in \mathbb{k}\left[x_{i}, \ldots, x_{n}\right]$.
(b) The monomial order $>_{\text {grevlex }}$ refines the partial order given by total degree and, for homogeneous f, the condition $\operatorname{LT}_{\text {grevlex }}(f) \in\left\langle x_{i}, \ldots, x_{n}\right\rangle$ for some $1 \leq i \leq n$ implies that $f \in\left\langle x_{i}, \ldots, x_{n}\right\rangle$.
5. Let M be an $(m \times n)$-matrix with nonnegative real entries and let r_{1}, \ldots, r_{m} denote the rows of M. Assume that $\operatorname{ker}(M) \cap \mathbb{Z}^{n}=\{0\}$. Define a binary relation $>_{M}$ on the monomials in $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ as follows: $x^{u}>_{M} x^{v}$ if there is a $\ell \leq m$ such that $u \cdot r_{i}=v \cdot r_{i}$ for all $1 \leq i \leq \ell-1$ and $u \cdot r_{\ell}>v \cdot r_{\ell}$.
(a) Show that $>_{M}$ is a monomial order on $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$.
(b) If $M=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 0 \\ 1 & 0 & 0\end{array}\right]$, then $>_{M}$ equals $>_{\text {grevlex }}$ on $\mathbb{k}[x, y, z]$.
(c) If I is the $(n \times n)$-identity matrix, then show that $>_{\text {lex }}$ equals $>_{I}$.
