Math 5385 - Spring 2018
 Problem Set 4

Submit solutions to three of the following problems.

1. A ring R satisfies the descending chain condition if any descending sequence of ideals in R stabilizes, i.e. $I_{1} \supset I_{2} \supset I_{3} \supset \cdots$ implies $I_{j}=I_{j+1}$ for $j \gg 0$. Such a ring is Artinian.
(a) Show that $\mathbb{Z} / n \mathbb{Z}$ and $k[x] /\left\langle x^{n}\right\rangle$ are Artinian.
(b) Show that \mathbb{Z} and $k[x]$ are not Artinian.
(c) Show that every prime ideal in an Artinian ring is maximal.

Hint. If $J \supset I$, then consider $J \supset J^{2} \supset J^{3} \supset \cdots \supset I$.
2. Let $I:=\left\langle w y-x^{2}, w z-x y, x z-y^{2}\right\rangle \subset \mathbb{Q}[x, y, z, w]$.
(a) Find the reduced Gröbner basis of I with respect to the graded reverse lexicographic order and $x>y>z>w$.
(b) Find the reduced Gröbner basis of I with respect to the lexicographic order and $x>y>z>w$.
(c) (Bonus) The ideal I has eight distinct leading term ideals; can you list these eight monomial ideals?
3. Fix the lexicographic order order on $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ with $x_{1}>\cdots>x_{n}$. Let $A=\left[a_{i, j}\right]$ be an $m \times n$ matrix with entries in \mathbb{k} and let $f_{i}=a_{i, 1} x_{1}+\cdots+a_{i, n} x_{n}$ be the linear polynomials in S determined by the rows of A. Suppose that $B=\left[b_{i, j}\right]$ is the rowreduced echelon matrix determined by A and let g_{1}, \ldots, g_{r} be the linear polynomials determined by the nonzero rows in B.
(a) Prove that $\left\langle f_{1}, \ldots, f_{m}\right\rangle=\left\langle g_{1}, \ldots, g_{r}\right\rangle$.
(b) Show that g_{1}, \ldots, g_{r} form a Gröbner basis of $\left\langle f_{1}, \ldots, f_{m}\right\rangle$. (See hint on p.96.)
(c) Explain why g_{1}, \ldots, g_{r} is the reduced Gröbner basis.
4. Suppose we have n points $V=\left\{\left(a_{1}, b_{1}\right), \ldots,\left(a_{n}, b_{n}\right)\right\} \subseteq \mathbb{k}^{2}$, where a_{1}, \ldots, a_{n} are distinct. The Lagrange interpolation polynomial for these points is

$$
h(x):=\sum_{i=1}^{n} b_{i} \sum_{j \neq i} \frac{x_{j}-a_{j}}{a_{i}-a_{j}} \in \mathbb{k}[x] .
$$

(a) Show that $h\left(a_{i}\right)=b_{i}$ for $i=1, \ldots, n$ and explain why h has degree $\leq n-1$.
(b) Prove that $h(x)$ is the unique polynomial of degree $\leq n-1$ satisfying $h\left(a_{i}\right)=b_{i}$ for $i=1, \ldots, n$.
(c) Prove that $I(V)=\langle f(x), y-h(x)\rangle \subseteq \mathbb{k}[x, y]$, where $f(x):=\prod_{i=1}^{n}\left(x-a_{i}\right)$.

Hint. Divide $g \in I(V)$ by $f(x), y-h(x)$ using lex order with $y>x$.
(d) Prove that $\{f(x), y-h(x)\}$ is the reduced Gröbner basis for $I(V) \subseteq \mathbb{k}[x, y]$ for lex order with $y>x$.

