Math 5385 - Spring 2018 Problem Set 5

Submit solutions to **three** of the following problems.

- 1. Consider the ideal $I = \langle x^2 + y^2 + z^2 + 2, 3x^2 + 4y^2 + 4z^2 + 5 \rangle$. Let X = V(I), let $\pi \colon \mathbb{A}^3(\mathbb{k}) \to \mathbb{A}^2(\mathbb{k})$ be the projection given by $(x, y, z) \mapsto (y, z)$, and let $J = I \cap \mathbb{k}[y, z]$.
 - (a) If $\mathbb{k} = \mathbb{C}$, then prove that $V(J) = \pi(X)$.
 - (b) If $\mathbb{k} = \mathbb{R}$, then prove that $X = \emptyset$ and V(J) is infinite. Hence, V(J) may be much larger than the smallest affine variety containing $\pi(X)$ when the field is not algebraically closed.
- 2. Use elimination to solve the system:

$$0 = x^{2} + 2y^{2} - y - 2z, \qquad 0 = x^{2} - 8y^{2} + 10z - 1, \qquad 0 = x^{2} - 7yz$$

How many solutions are there in $\mathbb{A}^3(\mathbb{R})$; how many are there in $\mathbb{A}^3(\mathbb{C})$?

- 3. Let \Bbbk be an infinite field.
 - (a) Consider

$$A := \begin{bmatrix} 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 & 1 \\ 1 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \end{bmatrix}.$$

Find a generating set for the toric ideal I_A , which is the ideal for the smallest variety containing the image of the map $\varphi \colon \mathbb{A}^6(\mathbb{k}) \to \mathbb{A}^8(\mathbb{k})$ given by

$$\varphi(t_1,\ldots,t_6)\mapsto (t_1t_3t_5,t_1t_3t_6,t_1t_4t_5,t_1t_4t_6,t_2t_3t_5,t_2t_3t_6,t_2t_4t_5,t_2t_4t_6).$$

(b) Find the equations for the image of the rational map $\rho \colon \mathbb{A}^4(\mathbb{k}) \to \mathbb{A}^6(\mathbb{k})$ defined by

$$\rho(x_1, x_2, x_3, x_4) = \left(\frac{1}{x_1 x_2}, \frac{1}{x_1 x_3}, \frac{1}{x_1 x_4}, \frac{1}{x_2 x_3}, \frac{1}{x_2 x_4}, \frac{1}{x_3 x_4}\right).$$

- 4. Let $g \in \mathbb{k}[t]$ be a polynomial such that g(0) = 0. Assume $\mathbb{Q} \subseteq \mathbb{k}$.
 - (a) Prove that t = 0 is a root of multiplicity ≥ 2 of g if and only if g'(0) = 0. **Hint.** Write g(t) = th(t) and use the product rule.
 - (b) More generally, prove that t = 0 is a root of multiplicity $\geq m$ if and only if $g'(0) = g''(0) = \cdots = g^{(m-1)}(0) = 0$.