Math 5385-Spring 2018

Problem Set 5

Submit solutions to three of the following problems.

1. Consider the ideal $I=\left\langle x^{2}+y^{2}+z^{2}+2,3 x^{2}+4 y^{2}+4 z^{2}+5\right\rangle$. Let $X=V(I)$, let $\pi: \mathbb{A}^{3}(\mathbb{k}) \rightarrow \mathbb{A}^{2}(\mathbb{k})$ be the projection given by $(x, y, z) \mapsto(y, z)$, and let $J=I \cap \mathbb{k}[y, z]$.
(a) If $\mathbb{k}=\mathbb{C}$, then prove that $V(J)=\pi(X)$.
(b) If $\mathbb{k}=\mathbb{R}$, then prove that $X=\varnothing$ and $V(J)$ is infinite. Hence, $V(J)$ may be much larger than the smallest affine variety containing $\pi(X)$ when the field is not algebraically closed.
2. Use elimination to solve the system:

$$
0=x^{2}+2 y^{2}-y-2 z, \quad 0=x^{2}-8 y^{2}+10 z-1, \quad 0=x^{2}-7 y z
$$

How many solutions are there in $\mathbb{A}^{3}(\mathbb{R})$; how many are there in $\mathbb{A}^{3}(\mathbb{C})$?
3. Let \mathbb{k} be an infinite field.
(a) Consider

$$
A:=\left[\begin{array}{llllllll}
1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 1 & 0 & 0 & 1 & 1 \\
1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1
\end{array}\right] .
$$

Find a generating set for the toric ideal I_{A}, which is the ideal for the smallest variety containing the image of the map $\varphi: \mathbb{A}^{6}(\mathbb{k}) \rightarrow \mathbb{A}^{8}(\mathbb{k})$ given by

$$
\varphi\left(t_{1}, \ldots, t_{6}\right) \mapsto\left(t_{1} t_{3} t_{5}, t_{1} t_{3} t_{6}, t_{1} t_{4} t_{5}, t_{1} t_{4} t_{6}, t_{2} t_{3} t_{5}, t_{2} t_{3} t_{6}, t_{2} t_{4} t_{5}, t_{2} t_{4} t_{6}\right)
$$

(b) Find the equations for the image of the rational map $\rho: \mathbb{A}^{4}(\mathbb{k}) \rightarrow \mathbb{A}^{6}(\mathbb{k})$ defined by

$$
\rho\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(\frac{1}{x_{1} x_{2}}, \frac{1}{x_{1} x_{3}}, \frac{1}{x_{1} x_{4}}, \frac{1}{x_{2} x_{3}}, \frac{1}{x_{2} x_{4}}, \frac{1}{x_{3} x_{4}}\right) .
$$

4. Let $g \in \mathbb{k}[t]$ be a polynomial such that $g(0)=0$. Assume $\mathbb{Q} \subseteq \mathbb{k}$.
(a) Prove that $t=0$ is a root of multiplicity ≥ 2 of g if and only if $g^{\prime}(0)=0$.

Hint. Write $g(t)=t h(t)$ and use the product rule.
(b) More generally, prove that $t=0$ is a root of multiplicity $\geq m$ if and only if $g^{\prime}(0)=$ $g^{\prime \prime}(0)=\cdots=g^{(m-1)}(0)=0$.

