Math 5385 - Spring 2018 Problem Set 6

Submit solutions to **three** of the following problems.

- 1. Determine whether $f = xy^3 z^2 + y^5 z^3$ is in the ideal $I = \langle -x^3 + y, x^2y z \rangle$.
- 2. Assume that \Bbbk is an algebraically closed field. Identify $\mathbb{A}^9(\Bbbk)$ with the space of (3×3) -matrices $A = [a_{i,j}]$. Let $\rho \colon \mathbb{A}^9(\Bbbk) \to \mathbb{A}^9(\Bbbk)$ be the rational map defined by

$$A \mapsto A \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} A^{-1}.$$

- (a) Find equations for the smallest affine variety X containing the image of ρ .
- (b) Show that X is the set of all nilpotent (3×3) -matrices.
- Use the method of Lagrange multipliers to find the point(s) on the surface defined by x⁴ + y² + z² − 1 = 0 that are closest to the point (1, 1, 1) in ℝ³.
 Hint: Proceed as in Example 3 in §2.8.
- 4. Suppose that k is a field and $\varphi \colon \mathbb{k}[x_1, \ldots, x_n] \to \mathbb{k}[x_1]$ is a ring homomorphism that is the identity on k and maps x_1 to x_1 . Given an ideal $I \subseteq \mathbb{k}[x_1, \ldots, x_n]$, prove that $\varphi(I) \subseteq \mathbb{k}[x_1]$ is an ideal. **Hint:** In the proof of Theorem 3.5.2, we use this result when φ is the map that evaluates x_i at a_i for $2 \leq i \leq n$.
- 5. Consider the ideal $I = \langle x^2y + xz + 1, xy xz^2 + z 1 \rangle$ discussed in §3.5.
 - (a) Show that the partial solution (b, c) = (0, 0) does not extend to a solution $(a, 0, 0) \in V(I)$.
 - (b) In the text, it is shown that $g_o = g_1$ for the partial solution (1, 1). Show that $g_o = g_3$ works for all partial solutions different from (1, 1) and (0, 0).