## Math 5385-Spring 2018 <br> Problem Set 6

Submit solutions to three of the following problems.

1. Determine whether $f=x y^{3}-z^{2}+y^{5}-z^{3}$ is in the ideal $I=\left\langle-x^{3}+y, x^{2} y-z\right\rangle$.
2. Assume that $\mathbb{k}$ is an algebraically closed field. Identify $\mathbb{A}^{9}(\mathbb{k})$ with the space of $(3 \times 3)$ matrices $A=\left[a_{i, j}\right]$. Let $\rho: \mathbb{A}^{9}(\mathbb{k}) \rightarrow \mathbb{A}^{9}(\mathbb{k})$ be the rational map defined by

$$
A \mapsto A\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right] A^{-1} .
$$

(a) Find equations for the smallest affine variety $X$ containing the image of $\rho$.
(b) Show that $X$ is the set of all nilpotent $(3 \times 3)$-matrices.
3. Use the method of Lagrange multipliers to find the point(s) on the surface defined by $x^{4}+y^{2}+z^{2}-1=0$ that are closest to the point $(1,1,1)$ in $\mathbb{R}^{3}$.
Hint: Proceed as in Example 3 in $\S 2.8$.
4. Suppose that $\mathbb{k}$ is a field and $\varphi: \mathbb{k}\left[x_{1}, \ldots, x_{n}\right] \rightarrow \mathbb{k}\left[x_{1}\right]$ is a ring homomorphism that is the identity on $\mathbb{k}$ and maps $x_{1}$ to $x_{1}$. Given an ideal $I \subseteq \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$, prove that $\varphi(I) \subseteq \mathbb{k}\left[x_{1}\right]$ is an ideal.
Hint: In the proof of Theorem 3.5.2, we use this result when $\varphi$ is the map that evaluates $x_{i}$ at $a_{i}$ for $2 \leq i \leq n$.
5. Consider the ideal $I=\left\langle x^{2} y+x z+1, x y-x z^{2}+z-1\right\rangle$ discussed in $\S 3.5$.
(a) Show that the partial solution $(b, c)=(0,0)$ does not extend to a solution $(a, 0,0) \in$ $V(I)$.
(b) In the text, it is shown that $g_{o}=g_{1}$ for the partial solution $(1,1)$. Show that $g_{o}=g_{3}$ works for all partial solutions different from $(1,1)$ and $(0,0)$.

