Math 5385 - Spring 2018 Problem Set 7

Submit solutions to **three** of the following problems.

1. If $f = a_{\ell} x^{\ell} + \cdots + a_0 \in \mathbb{k}[x]$, where $a_{\ell} \neq 0$ and $\ell > 0$, then the *discriminant* of f is defined to be

disc
$$(f) = \frac{(-1)^{\ell(\ell-1)/2}}{a_{\ell}} \operatorname{Res}(f, f'; x).$$

- (a) Prove that f has a multiple factor if and only if disc(f) = 0.
- (b) Does $6x^4 23x^3 + 32x^2 19x + 4$ have a multiple root in \mathbb{C} ?
- (c) Compute the discriminant of the quadratic polynomial $f = ax^2 + bx + c$. Explain how your answer relates to the quadratic formula.
- 2. In $\mathbb{Q}[x, y]$, consider $f = x^2y 3xy^2 + x^2 3xy$ and $g = x^3y + x^3 4y^2 3y + 1$.
 - (a) Compute $\operatorname{Res}(f, g; x)$.
 - (b) Compute $\operatorname{Res}(f, g; y)$.
 - (c) What does the result in part (b) imply about f and g?
- 3. Consider $f, g \in \mathbb{Q}[x, y]$ and let $J := \langle f, g \rangle \cap \mathbb{Q}[y]$.
 - (a) If f = xy 1 and $g = x^2 + y^2 4$, then prove that Res(f, g; x) generates J.
 - (b) If f = xy 1 and $g = yx^2 + y^2 4$, then prove that Res(f, g; x) does not generate the ideal J.
- 4. Let $f = x^2y + x 1$ and $g = x^2y + x + y^2 4$. If $h := \text{Res}(f, g; x) \in \mathbb{C}[y]$, then show that h(0) = 0. However, if we substitute y = 0 into f and g, we get x 1 and x 4, respectively. Show that these polynomials have a nonzero resultant. In particular, we conclude that h(0) is not a resultant.
- 5. Suppose that $f, g \in \mathbb{C}[x]$ are monic polynomials of positive degree.
 - (a) Show that $\gamma \in \mathbb{C}$ is a root of $\operatorname{Res}(f(x), g(y-x); x)$ if and only if we have $\gamma = \alpha + \beta$, where $f(\alpha) = 0 = g(\beta)$.
 - (b) Show that $\gamma \in \mathbb{C}$ is a root of $\operatorname{Res}(f(x), g(y/x) \cdot x^{\operatorname{deg}(g)}; x)$ if and only if we have $\gamma = \alpha \cdot \beta$, where $f(\alpha) = 0 = g(\beta)$.