Math 5385-Spring 2018
 Problem Set 7

Submit solutions to three of the following problems.

1. If $f=a_{\ell} x^{\ell}+\cdots+a_{0} \in \mathbb{k}[x]$, where $a_{\ell} \neq 0$ and $\ell>0$, then the discriminant of f is defined to be

$$
\operatorname{disc}(f)=\frac{(-1)^{\ell(\ell-1) / 2}}{a_{\ell}} \operatorname{Res}\left(f, f^{\prime} ; x\right)
$$

(a) Prove that f has a multiple factor if and only if $\operatorname{disc}(f)=0$.
(b) Does $6 x^{4}-23 x^{3}+32 x^{2}-19 x+4$ have a multiple root in \mathbb{C} ?
(c) Compute the discriminant of the quadratic polynomial $f=a x^{2}+b x+c$. Explain how your answer relates to the quadratic formula.
2. In $\mathbb{Q}[x, y]$, consider $f=x^{2} y-3 x y^{2}+x^{2}-3 x y$ and $g=x^{3} y+x^{3}-4 y^{2}-3 y+1$.
(a) Compute $\operatorname{Res}(f, g ; x)$.
(b) Compute $\operatorname{Res}(f, g ; y)$.
(c) What does the result in part (b) imply about f and g ?
3. Consider $f, g \in \mathbb{Q}[x, y]$ and let $J:=\langle f, g\rangle \cap \mathbb{Q}[y]$.
(a) If $f=x y-1$ and $g=x^{2}+y^{2}-4$, then prove that $\operatorname{Res}(f, g ; x)$ generates J.
(b) If $f=x y-1$ and $g=y x^{2}+y^{2}-4$, then prove that $\operatorname{Res}(f, g ; x)$ does not generate the ideal J.
4. Let $f=x^{2} y+x-1$ and $g=x^{2} y+x+y^{2}-4$. If $h:=\operatorname{Res}(f, g ; x) \in \mathbb{C}[y]$, then show that $h(0)=0$. However, if we substitute $y=0$ into f and g, we get $x-1$ and $x-4$, respectively. Show that these polynomials have a nonzero resultant. In particular, we conclude that $h(0)$ is not a resultant.
5. Suppose that $f, g \in \mathbb{C}[x]$ are monic polynomials of positive degree.
(a) Show that $\gamma \in \mathbb{C}$ is a root of $\operatorname{Res}(f(x), g(y-x) ; x)$ if and only if we have $\gamma=\alpha+\beta$, where $f(\alpha)=0=g(\beta)$.
(b) Show that $\gamma \in \mathbb{C}$ is a root of $\operatorname{Res}\left(f(x), g(y / x) \cdot x^{\operatorname{deg}(g)} ; x\right)$ if and only if we have $\gamma=\alpha \cdot \beta$, where $f(\alpha)=0=g(\beta)$.

