Math 5385-Spring 2018
 Problem Set 8

Submit solutions to three of the following problems.

1. The purpose of this exercise is to show that, if \mathbb{k} is any field which is not algebraically closed, then any affine variety $X \subseteq \mathbb{A}^{n}(\mathbb{k})$ can be defined by a single equation.
(a) For a polynomial $f:=a_{m} x^{m}+a_{m-1} x^{m-1}+\cdots+a_{1} x+a_{0}$ of degree m in x, define the homogenization to be $f^{h}:=a_{m} x^{m}+a_{m-1} x^{m-1} y+\cdots+a_{1} x y^{m-1}+a_{0} y^{m}$. Show that f has a root in k if and only if there is $(p, q) \in \mathbb{A}^{2}(\mathbb{k})$ such that $(p, q) \neq(0,0)$ and $f^{h}(p, q)=0$.
(b) If \mathbb{k} is not algebraically closed, show that there exists $h \in \mathbb{k}[x, y]$ such that the variety defined by $h=0$ consists of just the origin.
(c) If \mathbb{k} is not algebraically closed, show that for each integer $n>0$ there exists an element $f \in \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ such that the only solution of $f=0$ is the origin.
(d) If $X=V\left(g_{1}, \ldots, g_{r}\right)$ is any affine variety in $\mathbb{A}^{n}(\mathbb{k})$ where \mathbb{k} is not algebraically closed, then show that X can be defined by a single equation.
2. Solve this problem WITHOUT the use of a computer algebra system.
(a) Find the minimal Gröbner basis for

$$
\sqrt{\left\langle x^{5}-2 x^{4}+2 x^{2}-x, x^{5}-x^{4}-2 x^{3}+2 x^{2}+x-1\right\rangle} \subseteq \mathbb{Q}[x] .
$$

(b) Let $J=\langle x y,(x-y) x\rangle$. Describe $V(J)$ and show that $\sqrt{J}=\langle x\rangle$.
3. Solve this problem WITHOUT the use of a computer algebra system.

Determine whether the following polynomials lie in the given radical ideals. What is the smallest power of the polynomial that lies in the ideal?
(a) Is $x+y$ in $\sqrt{\left\langle x^{3}, y^{2}, x y(x+y)\right\rangle}$?
(b) Is $x^{2}+3 x z$ in $\sqrt{\left\langle x+z, x^{2} y, x-z^{2}\right\rangle}$?
4. If I is an ideal in $S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ and $f \in S$, then the saturation of I with respect to f is the set

$$
\left(I: f^{\infty}\right):=\left\{g \in S \mid f^{m} g \in I \text { for some } m>0\right\}
$$

(a) Prove that $\left(I: f^{\infty}\right)$ is an ideal.
(b) Prove that there is an ascending chain of ideals $(I: f) \subseteq\left(I: f^{2}\right) \subseteq\left(I: f^{3}\right) \subseteq \cdots$.
(c) Prove that $\left(I: f^{\infty}\right)=\left(I: f^{m}\right)$ if and only if $\left(I: f^{m}\right)=\left(I: f^{m+1}\right)$.
5. A subset $U \subseteq S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ is multiplicatively closed if any product of elements of U is also in U (including the empty product 1).
(a) Let U be a multiplicatively closed subset of S. If I is an ideal in S maximal with respect to inclusion among all ideals not meeting U, then show that I is prime.
(b) Let J be any proper ideal in S. Show that the radical ideal J is the intersection of all prime ideals containing J.

