Math 5385-Spring 2018

Problem Set 9

Submit solutions to three of the following problems.

1. Let I and J be ideals in $S=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$, where \mathbb{k} is an arbitrary field.
(a) If $I^{m} \subseteq J$ for some integer $m>0$, then show that $\sqrt{I} \subseteq \sqrt{J}$.
(b) Prove that $\sqrt{I+J}=\sqrt{\sqrt{I}+\sqrt{J}}$.
2. Two ideals I and J in $S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ are comaximal if and only if $I+J=S$.
(a) If \mathbb{k} is an algebraically closed field, then show that I and J are comaximal if and only if $V(I) \cap V(J)=\varnothing$. Give an example to show that this is false in general.
(b) If I and J are comaximal, then show that $I J=I \cap J$.
(c) If I and J are comaximal, then show that I^{i} and J^{j} are comaximal for all positive integers i and j.
3. Let I, J be ideals in $\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ and suppose that $I \subseteq \sqrt{J}$. Show that $I^{m} \subseteq J$ for some integer $m \geq 1$. Hint. You will need to use the Hilbert Basis Theorem.
4. Find the Zariski closure of the following sets:
(a) The projection of the hyperbola $V(x y-1)$ in \mathbb{R}^{2} onto the x-axis.
(b) The boundary of the first quadrant in \mathbb{R}^{2}.
(c) The set $\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \leq 4\right\}$.
5. Let $I, J, K \subseteq \mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$ be ideals. Prove the following:
(a) $I J \subseteq K$ if and only if $I \subseteq K: J$.
(b) $(I: J): K=I: J K$.
