HOMEWORK \#6 (DUE FRIDAY, NOV. 21).

11/13/2014

Note: Turn in only the "starred" problems; out of these, selected problems will be graded.

Section 7.1.: Exercises 1, 2, 3, 4, 5, 6, 1314^{*}, 15^{*} 21, 22, 29, 30.
Section 7.2.: Exercises 4, 5, 6, 7*, 8, 12.
Section 7.2.: Exercises 1, 2, 3, 4, 5, 6, 9, 10, 20, 21, 25*, 33*.

Additional problems:

All commutative rings are assumed to have unit and $1 \neq 0$.
1*. Let A be a commutative ring.
(a) Show that a formal power series $f=\sum_{i=0}^{\infty} a_{i} X^{i} \in A[[X]]$ is invertible if and only if a_{0} is invertible in A.
(b) Show that a polynomial $f=\sum_{i=0}^{n} a_{i} X^{i} \in A[X]$ is invertible if and only if a_{0} is invertible in A and a_{1}, \ldots, a_{n} are all nilpotent. (An element a in a commutative ring A is nilpotent if $a^{m}=0$ for some $m \geq 1$.)
(c) Show that a polynomial $f=\sum_{i=0}^{n} a_{i} X^{i}$ is nilpotent in $A[X]$ if and only if $a_{0}, a_{1}, \ldots, a_{n}$ are all nilpotent in A.

2*. Let $(G,+)$ be a finite abelian group whose order is not divisible by the square of any integer. (We say the order is square-free.)
(a) Show that, up to isomorphism, there is a unique structure of ring with 1 on G. (That is, show that one can define multiplications on the set G, which together with the given additive operation form structures of ring with 1 , then show that all these rings are isomorphic.) Observe that this unique ring structure is commutative.
(b) Let A denote the ring $(G,+, \cdot)$ from part (a) above. Prove that the multiplicative group $A[X]^{*}$ of invertible polynomials in $A[X]$ coincides with the multiplicative group A^{*} of invertible elements in A. (Exercise $1(b)$ is relevant here; Exercise 4 might help, but you don't really need it.)
(c) Show by examples that both (a) and (b) are false if we don't assume that the order of G is not divisible by a square.
$\mathbf{3}^{*}$. Let d be a square-free nonzero integer.
(i) Show that

$$
\mathbb{Z}[\sqrt{d}]:=\{a+b \sqrt{d} \mid a, b \in \mathbb{Z}\}
$$

is an integral domain, isomorphic to $\mathbb{Z}[X] /\left(X^{2}-d\right)$.
(ii) If $x=a+b \sqrt{d}$, find a generator t of the ideal $(x) \cap \mathbb{Z}$, and a generator r of the ideal $\{m \in \mathbb{Z} \mid m \sqrt{d} \in(x)\}$.
(iii) Is it true in general that $(x)=t \mathbb{Z}+r \sqrt{d} \mathbb{Z}$?

4*. Let A, B be commutative rings and let $\mathfrak{N}(A)$ (respectively, $\mathfrak{N}(B)$) denote the set of nilpotent elements in A (respectively, in B).
(i) Show that $\mathfrak{N}(A)$ is an ideal.
(ii) Show that $\mathfrak{N}(A \times B)=\mathfrak{N}(A) \times \mathfrak{N}(B)$.

