HOMEWORK #3 (DUE WEDNESDAY, MARCH. 25).

03/12/2015

Note: Turn in only the "starred" problems; out of these, selected problems will be graded.

Section 12.1: Exercises 2, 6, 9*, 17, 18, 19, 21*. Section 12.2: Exercises 6, 8, 18*, 19. Section 12.3: Exercises 1, 2, 17*, 25, 26*, 31, 32*, 33, 34*. Additional problems:

1. Prove that if N is a nilpotent matrix, then I + N is invertible.

2^{*}. Let *E* be a finite dimensional vector space over a field *k* and let $A : E \longrightarrow E$ be a *k*-linear endomorphism. We say that *A* is diagonalizable if there exists a basis of *E* consisting of eigenvectors of *A*. Prove that *A* is diagonalizable if and only if the minimal polynomial $q_A(t)$ has the form

$$q_A(t) = \prod_{i=1}^d (t - \lambda_i)$$

with $\lambda_1, \ldots, \lambda_d$ distinct elements of k.