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We assume that we are given the set of natural numbers

N = {0, 1, 2, . . . , n, . . . },

together with the two operations of addition and multiplication, which are both
associative and commutative. The purpose of these notes is to construct from here
the integers and the rationals as successive extensions of the concept of “number”.

Relations

Definition 1. Let S be a set. A relation R on S is a subset R ⊂ S × S. For
x, y ∈ S, we write xRy if (x, y) ∈ R.
The relation R is called
• reflexive, if xRx,∀ x ∈ S.
• symmetric, if xRy implies yRx.
• antisymmetric, if xRy and yRx imply together that x = y.
• transitive, if xRy and yRz imply together that xRz.

A relation which is reflexive, symmetric, and transitive is called an equivalence
relation (usually we’ll denote equivalence relations by “∼”).
A relation which is reflexive, antisymmetric, and transitive is called a (partial)
ordering (usually denoted by “≤”). (S,≤) is called a partially ordered set. It is
totally ordered if ∀ x, y ∈ S we have either x ≤ y, or y ≤ x, i.e., any two elements
of S are comparable.

Examples of partial order relations: 1) (N,≤) is totally ordered. Here, the
usual order relation “≤” on N is defined in terms of the addition operation as
follows:

Given a, b ∈ N, we say that a ≤ b iff there is a c ∈ N with b = a+ c.
2) Consider on N the divisibility relation a|b iff there is a c ∈ N with b = ac.

Then (N, |) is only partially ordered.
3) The subsets of a given set form a partially ordered set with respect to inclusion.

In keeping with the usage in Rudin’s book, from now on by an ordered set we
will mean a totally ordered set.

Examples of equivalence relations: 1) The “=” relation on any set S.
2) The so-called “cardinal equivalence” relation on sets. This will appear at

the beginning of Chapter II in Rudin’s book. If A,B are sets, we say that A is
equivalent to B, and write A ∼ B, iff there exists a mapping f : A −→ B which
is bijective. You should check for yourselves that this is indeed an equivalence
relation.

3) Let f : S −→ T be a function. Define a relation ∼f on S by
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x ∼f y iff f(x) = f(y).

It is immediate to check that “∼f” is an equivalence relation.

Our next task is to show that all equivalence relations are of the kind described
in Example 3 above. So let S 6= ∅ be any set and let “∼” be an equivalence relation
on S. Call a subset ∅ 6= C ⊂ S an equivalence class (of “∼” on S) if it satisfies

(a) x ∼ y, ∀ x, y ∈ C
(b) if for z ∈ S there is an x ∈ C such that x ∼ z, then z ∈ C.

Note that for any x ∈ S there is an equivalence class containing it, namely

Cx := {y ∈ S | y ∼ x}.

(It is trivial to check that Cx satisfies (a) and (b).)
Let now C1, C2 be two equivalence classes. Then

Claim : Either C1 ∩ C2 = ∅, or C1 = C2.
Proof: If C1 ∩ C2 6= ∅, let x ∈ C1 ∩ C2. Pick y ∈ C1. Then x ∼ y by (a) for C1, so
y ∈ C2 by (b) for C2. Hence C1 ⊂ C2. The reverse inclusion follows similarly.

We deduce from the above discussion that S is the disjoint union of all the
equivalence classes. Now put

T := the set of equivalence classes of “ ∼ “ on S

and define p : S −→ T by p(x) = Cx. It follows that p is a well-defined surjective
map, and it is clear from the construction that ∼ coincides with ∼p.

Definition 2. T is called the quotient of S by ∼, and p is called the canonical
surjection. Usually we will write S/ ∼ instead of T for the quotient set.

A complete set of representatives for the quotient set is a subset {xi}i∈I ⊂ S
such that T = ∪i∈ICxi

and Cxi
6= Cxj

for i 6= j.

Construction of the integers

Recall that on N we have the partially defined operation of subtraction: given
a, b ∈ N, with a ≤ b, let c ∈ N be such that b = a+ c and define

b− a := c.

The idea is now to enlarge our notion of number by inventing new numbers which
are the “result of the subtraction b− a” even when a > b!

Let S := N× N. We introduce a relation ∼ on S as follows:

(a, b) ∼ (a′, b′) iff a+ b′ = a′ + b.

(Secretly, we think of the equation a + b′ = a′ + b to mean a − b = a′ − b′, even
though the subtraction doesn’t yet make sense always.)

It is very easy to check that ∼ is an equivalence relation on S.

Definition 3. The set of integers is the quotient set

Z := S/ ∼ .
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So an element of Z is an equivalence class of pairs of natural numbers. Given

(a, b) ∈ N× N, we denote (̂a, b) = C(a,b) the equivalence class containing it.
You should convince yourselves that a complete set of representatives is given

by
{. . . , (0,m), . . . , (0, 2), (0, 1), (0, 0), (1, 0), (2, 0), . . . , (n, 0), . . . },

so that

Z = {. . . , (̂0,m), . . . , (̂0, 2), (̂0, 1), (̂0, 0), (̂1, 0), (̂2, 0), . . . , (̂n, 0), . . . }

Next we define addition and multiplication operations + : Z × Z −→ Z and
· : Z× Z −→ Z by the formulas:

(̂a, b) + (̂c, d) = ̂(a+ c, b+ d),

(̂a, b) · (̂c, d) = ̂(ac+ bd, ad+ bc).

Precisely, this means the following. Given x, y ∈ Z, pick representatives (a, b) for
x, respectively c, d) for y. Then we define the sum x+ y to be the equivalence class
containing (a+ c, b+d) and the product x · y to be the equivalence class containing
(ac+ bd, ad+ bc).

Lemma 1. Addition and multiplication are well-defined operations on Z
Proof: We need to check that they do not depend on the chosen representatives of
the equivalence classes. Assume that (a, b) ∼ (a′, b′), i.e., a+ b′ = a′ + b, and that
(c, d) ∼ (c′, d′), i.e., c+ d′ = c′ + d. We have

(a+ c) + (b′ + d′) = (a+ b′) + (c+ d′) = (a′ + b) + (c′ + d) = (a′ + c′) + (b+ d),

which means precisely that (a + c, b + d) ∼ (a′ + c′, b′ + d′). Hence we’ve shown

that (̂a, b) + (̂c, d) = (̂a′, b′) + (̂c′, d′).

For multiplication, it is better to proceed in two steps: first show that (̂a, b) ·
(̂c, d) = (̂a′, b′) · (̂c, d), and then show similarly that (̂a′, b′) · (̂c, d) = (̂a′, b′) · (̂c′, d′).
I’ll leave this as an exercise.

Proposition 1. Addition and multiplication on Z satisfy the following properties:
(i) addition is associative: (x+ y) + z = x+ (y + z),∀x, y, z ∈ Z;
(ii) Z contains an element 0 such that 0 + x = x+ 0 = x,∀x ∈ Z;
(iii) ∀x ∈ Z, there is an element −x ∈ Z, such that x+ (−x) = (−x) + x = 0;
(iv) addition is commutative: x+ y = y + x, ∀x, y ∈ Z;
(v) multiplication is associative: (x · y) · z = x · (y · z),∀x, y, z ∈ Z;
(vi) Z contains an element 1 such that 1 · x = x · 1 = x, ∀x ∈ Z;
(vii) multiplication is commutative: x · y = y · x, ∀x, y ∈ Z;
(viii) multiplication is distributive with respect to addition:

x · (y + z) = x · y + x · z,∀x, y, z ∈ Z.

Proof:

(i) and (iv) Write x = (̂a, b), y = (̂c, d), z = (̂e, f), with a, b, c, d, e, f ∈ N. Then

(x+ y) + z = ̂((a+ c) + e, (b+ d) + f) = ̂(a+ (c+ e), b+ (d+ f)) = x+ (y + z),
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the middle equality by the associativity of addition in N. Similarly,

x+ y = ̂(a+ c, b+ d) = ̂(c+ a, d+ b) = y + x.

(ii) Take 0 = (̂0, 0). Pick x ∈ Z and write x = (̂a, b). Clearly 0 + x =
̂(0 + a, 0 + b) = (̂a, b) = x.

(iii) Given x = (̂a, b), put −x = (̂b, a). Then x+(−x) = ̂(a+ b, b+ a) = (̂0, 0) =
0.

(v) and (vii) I will leave as exercises.

(vi) Take 1 = (̂1, 0). Then 1 · x = ̂(1a+ 0b, 1b+ 0a) = (̂a, b) = x.

(viii) Again, write x = (̂a, b), y = (̂c, d), z = (̂e, f), with a, b, c, d, e, f ∈ N. We
have

x · (y + z) =(̂a, b) · ̂(c+ e, d+ f) =

̂(a(c+ e) + b(d+ f), a(d+ f) + b(c+ e)) =

̂((ac+ bd) + (ae+ bf), (ad+ bc) + (af + be))) =

̂(ac+ bd, ad+ bc) + ̂(ae+ bf, af + be) =

(̂a, b) · (̂c, d) + (̂a, b) · (̂e, f) =

x · y + x · z.

Remark/Definition. The algebraic structure described above is a very important
one in many areas of mathematics and so it has its own name. Namely, a set R
endowed with two internal operations + : R×R −→ R and · : R×R −→ R which
satisfy axioms (i) through (viii) of Proposition 1 is called a commutative ring.
Note that in any commutative ring R (in particular, in Z), we have a well-defined
subtraction operation, by setting

x− y := x+ (−y),∀x, y ∈ R.

The commutative ring Z has one additional property, namely

If xy = 0, then x = 0 or y = 0.

(Exercise: Prove this!) A commutative ring satisfying this additional requirement
is called an integral domain. We will not use these general notions in this course.

We introduce also an order relation on Z as follows: If x = (̂a, b), y = (̂c, d), we
say that x ≤ y if and only if a + d ≤ b + c. It is immediate to check that this is a
total order. If we choose the system of representatives discussed earlier, we have

{· · · ≤ (̂0,m) ≤ · · · ≤ (̂0, 2) ≤ (̂0, 1) ≤ (̂0, 0) ≤ (̂1, 0) ≤ (̂2, 0) ≤ · · · ≤ (̂n, 0) ≤ . . . }

Define a mapping

φ : N −→ Z, φ(n) = (̂n, 0).
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The map φ is obviously injective. It is immediate to check that φ respects the two
operations on N and Z, that is,

φ(n+m) = φ(n) + φ(m), φ(mn) = φ(m) · φ(n).

Identifying N with its image in Z via φ allows us to view N as a subset of Z, such
that the operations and the order relation on Z extend those on N, and we will
always make this identification from now on. Accordingly, we change notation one

last time and put n = (̂n, 0) for each n ∈ N. Since we have −(̂n, 0) = (̂0, n) (see

the proof of (iii) in Proposition 1), we also denote −n = (̂0, n) for n ≥ 1. We will
call −n a negative integer. Now the set Z we have just constructed is the familiar

Z = {· · · ≤ −m ≤ · · · ≤ −2 ≤ −1 ≤ 0 ≤ 1 ≤ · · · ≤ n ≤ . . . },

with all its standard structures.

Construction of the rationals

One deficiency of Z is the fact that the operation of division is only partially
defined. However, now we have a clear roadmap on how to fix this.

Let Z∗ = Z− {0}. Denote S = Z× Z∗. Define a relation ∼ on S by

(m,n) ∼ (k, l) iff ml = kn.

It is immediate to check this is an equivalence relation.

Definition 4. The set of rational numbers is the quotient set

Q := S/ ∼ .

We denote by m
n = C(m,n) the equivalence class of the pair (m,n) ∈ S.

We define the addition and multiplication operations on Q by the formulas

a

b
+
c

d
=
ad+ bc

bd

a

b

c

d
=
ac

bd

Lemma 2. Addition and multiplication are well-defined operations on Q.
Proof: Exercise.

Definition 5. Let F be a set endowed with two internal operations, addition
+ : F × F −→ F , and multiplication · : F × F −→ F . We say that F is a field
if the two operations satisfy axioms (i) through (viii) of Proposition 1, and one
additional axiom,

(ix) for every 0 6= x ∈ F , there is an element x−1 ∈ F such that xx−1 = 1.
Sometimes x−1 is also denoted 1/x. I will use both notations interchangeably.

Proposition 2. (Q,+, ·) is a field.

Proof: Exercise (take 0 = 0
1 , 1 = 1

1 , −
(
m
n

)
= −m

n , and
(
m
n

)−1
= n

m ).
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Definition 6. An element x ∈ Q is called a positive rational number if it has a
representative x = m

n with both m and n positive integers. In this case, we write
x > 0. Further, we say that x ≥ 0 if either x > 0, or x = 0.

Given x, y ∈ Q, we say that x ≤ y iff y − x ≥ 0.
An element x ∈ Q is called a negative rational number if −x > 0. In this case,

we also write x < 0.

Proposition 3. The relation “≤” defined above is an order on Q. (Recall that
order means total order for us.)
Proof: Exercise.

Proposition 4. The map ψ : Z −→ Q, ψ(n) = n
1 is injective and satisfies

ψ(m+ n) = ψ(m) + ψ(n), ψ(mn) = ψ(m)ψ(n).

Further, m ≤ n iff ψ(m) ≤ ψ(n).
Proof: Exercise.

As before, identifying Z with its image ψ(Z) allows us to view Z as a subset of
Q, and we will do so without comment from now on.


