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Abstract In this paper, we review and refine the main ideas for devising the so-called
hybridizable discontinuous Galerkin (HDG) methods; we do that in the framework
of steady-state diffusion problems. We begin by revisiting the classic techniques of
static condensation of continuous finite element methods and that of hybridization
of mixed methods, and show that they can be reinterpreted as discrete versions of
a characterization of the associated exact solution in terms of solutions of Dirich-
let boundary-value problems on each element of the mesh which are then patched
together by transmission conditions across interelement boundaries. We then define
the HDG methods associated to this characterization as those using discontinuous
Galerkin (DG) methods to approximate the local Dirichlet boundary-value prob-
lems, and using weak impositions of the transmission conditions. We give simple
conditions guaranteeing the existence and uniqueness of their approximate solu-
tions, and show that, by their very construction, the HDG methods are amenable to
static condensation. We do this assuming that the diffusivity tensor can be inverted;
we also briefly discuss the case in which it cannot. We then show how a differ-
ent characterization of the exact solution, gives rise to a different way of statically
condensing an already known HDG method. We devote the rest of the paper to es-
tablishing bridges between the HDG methods and other methods (the old DG meth-
ods, the mixed methods, the staggered DG method and the so-called Weak Galerkin
method) and to describing recent efforts for the construction of HDG methods (one
for systematically obtaining superconvergent methods and another, quite different,
which gives rise to optimally convergent methods). We end by providing a few bib-
liographical notes and by briefly describing ongoing work.
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1 Introduction

In this paper, we give a short introduction to the devising of the hybridizable dis-
continuous Galerkin (HDG) in the framework of the following steady-state diffusion
model problem:

cq+Vu=0 inQcCR? (1a)
Viq=f in®, (1b)
u=up ondQ. (1o

We assume that the data c, f and up are smooth functions such that the solution itself
is smooth. Here c is a matrix-valued function which is symmetric and uniformly
positive definite on 2. We are going to closely follow [24], where the HDG methods
were introduced.

Since the HDG methods are discontinuous Galerkin (DG) methods, [40], we
begin by defining the DG methods for the above boundary-value problem; we follow
[3]. Let us first discretize the domain 2. We denote a triangulation of the domain
Q by @, :={K} and set dQ;, := {dK : K € ©;}. The outward unit normal to the
element K is denoted by n. The set of faces of the element K is denoted by F(K).
An interior face F of the triangulation £, is any set of the form dK™ N dK~, where
K* are elements of £),; we assume that the (d — 1)-Lebesgue measure of F is not
zero. The set of all interior faces is denoted by F };. Similarly, a boundary face F of
the triangulation £, is any set of the form dK N d2, where K are elements of Q;;
again, we assume that the (d — 1) Lebesgue measure of F is not zero. The set of
all boundary faces is denoted by 5'“,?. The set of interior and boundary faces of the
triangulation is denoted by J,.

The notation associated to the weak formulation of the method is the following.

We set
(e =Y, (k. and (90, = Y, (- ak
KGQh KGQh

where (-, -)x denotes the standard L?(K)-inner product, and (-, )¢ denotes the stan-
dard L?(9K)-inner product.
We can now introduce the general form of a DG method. The approximate solu-
tion (qy, ;) given by a DG method is the element of the space Vj, x W, where
V) :={veL*Q):v[x e V(K) VK € @},
Wy = {w e L*(Q) :w|x € W(K) VK € Q,,}.

satisfying the equations

(cqpV)a, — (un,V-v)a, + (i, v-n)y0, =0,

—(q, VW), + (@, -n,w) 0, = (f.w)a,
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for all (v,w) € Vj, x Wy, where the numerical traces ##j, and @, - n are approximations
to ulyo, and q-n|yq, , respectively. The finite dimensional space V;, x W}, is chosen
so that all the integrals in the above weak formulation are well defined.

It remains to discuss how to choose the numerical traces. To do that, let us begin
by introducing some useful notation. The traces of the functions { and z defined
on K* € Q, on the boundary dK* are denoted by {* and z*, respectively. We use
the same notation if the functions { and z are defined on ;. Thus, we define the
jumps of { and z across the interior face F = 0K NJdK~ by

[El:=¢™n"+¢ n~ and [z]:=z" n"+z -n,

respectively, where n™ is the outward unit normal to K*. On boundary faces F, we
simply write

[¢):=¢n and [z] :=z-n,

with the obvious notation. We say that the numerical traces are single-valued if, on
5. [i] = 0 and [[g,] =0.

Slightly extending what was done in [3], the numerical traces i), and (the nor-
mal component of) g, are linear mappings uj, : H'(Q;,) x H'(Q;,) — L*(0€;)
q, : H'(Q)) x H'(£;,) — L?(9Q;,) which approximate the traces of « and (the nor-
mal component of) q on d€2, respectively. We take these numerical traces to be
consistent. We say that they are consistent if

up(—aVv,v) =v|y0,, q,(—aVv,v)-n=—(aVv)-n|yq,,

whenever [[aVv] =0 and [[v] = 0 on the interior faces Fi. Here a := c~!. This
completes the description of the DG methods.

The HDG methods are the DG methods just described which are amenable to
static condensation. They are thus efficiently implementable and turn out to be more
accurate than its predecessors in many instances. None of them fit in the unify-
ing framework developed in [3], since the numerical trace i, of the HDG methods
depends on the approximate flux too. The family of DG methods analyzed in [4]
includes some HDG methods.

The paper is organized as follows. In section 2, we show that the classic tech-
niques of static condensation of continuous finite element methods and that of hy-
bridization of mixed methods, introduced back in 1965 in [56] and [53], respec-
tively, can be reinterpreted as discrete versions of a characterization of the asso-
ciated exact solution expressed in terms of solutions of Dirichlet boundary-value
problems on each element of the mesh patched together by transmission conditions
across interelement boundaries. In section 3, we use this reinterpretation to define
the HDG methods associated to this characterization as those using discontinuous
Galerkin (DG) methods to approximate the local Dirichlet boundary-value prob-
lems, and using weak impositions of the transmission conditions. We show that, by
construction, the global problem of these HDG methods only involves the approx-
imation to the trace of the scalar variable on the faces of the triangulation. We do
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this assuming that the diffusivity tensor a is invertible; in section 4, we show that it
is trivial to treat the case in which it is not. In section 5, we show that a new char-
acterization of the exact solution, based on the elementwise solution of Neumann
boundary-value problems, can be used to produce a different type of static conden-
sation of already known HDG methods. In section 6, we establish bridges between
the HDG and several other methods and comment on two promising ways of de-
vising new HDG methods. We end by providing a few bibliographical notes and by
briefly describing ongoing work.

Note to the reader

Engineering and Mathematics Graduate Students interested in numerical methods
for partial differential equations should be able to read this paper. An elementary
background in finite element methods should be enough since here we focus on the
ideas guiding the devising of the methods rather than in their rigorous error analyses.

The material of these notes is strongly related to the one presented at the Durham
Symposium entitled “Building bridges: Connections and challenges in modern ap-
proaches to numerical partial differential equations” at Durham, U.K., July 8-16,
2014, sponsored by the London Mathematical Society, and EPSRC. I would like
to express my gratitude to the organizers, especially to G.R. Barrenechea and E.
Georgoulis, for the invitation to talk about HDG methods at that meeting.

These notes have evolved from several short courses the author has given: at
the Basque Center of Applied Mathematics, Bilbao, Spain, July 9-17, 2009; at the
University of Pavia, May 28-June 1, 2012; at the Department of Mathematics &
Statistics of the King Fahad University of Petroleum and Minerals, Dec. 2012; at
the International Center for Numerical Methods in Engineering, and Universidad
Polytecnica de Catalunya, Barcelona, Spain, July 11-15, 2012; at the US National
Conference on Computational Mechanics 12, Raleigh, North Carolina, July 22-25,
2013; and at the Department of Mathematics of the Chinese University of Hong
Kong, March 19-21, 2014.

2 Static condensation and hybridization

Here we argue that the static condensation of the continuous Galerkin method, an
implementation technique introduced by R.J. Guyan 1965 in [56], can be reinter-
preted as a discrete version of a characterization of the exact solution. We also ar-
gue that a similar interpretation can be given to the static condensation of a mixed
method as proposed by Fraejis de Veubeque also in 1965 [53], who showed that this
can be achieved provided the mixed method is hybridized first. Although the above-
mentioned procedures were carried out in the setting of linear elasticity, we present
them for our simpler model problem of steady-state diffusion (1).
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We proceed as follows. First, we present a characterization of the exact solution
in terms of solutions of local problems patched together by means of transmission
and boundary conditions. We then show how the original static condensation of
the continuous Galerkin method and that of a mixed method can be thought of as
discrete versions of such characterization.

2.1 Static condensation of the exact solution

2.1.1 A characterization of the exact solution

Here, for any given triangulation Q;, := {K} of Q, we give a characterization of the
exact solution in terms of solutions on each of the elements K € €, and a single
global problem expressed in terms of transmission and boundary conditions.

Suppose that, for each element K € €, we define (Q,U) as the solution of the
local problem

cQ+VU=0 inKk,
V-Q=f inKk,
U=u ondKk,
where we want the single-valued function « to be such that (Q,U) = (q,«) on each

element K € ©;,. We know that this happens if and only if i enforces the following
transmission and boundary conditions:

[Q]=0 onFe St};,

i=up onFedy.

If we now separate the influence of & form that of f, we can easily see that we
obtained the following result.

Theorem 1 (Characterization of the exact solution). We have that
(q.u) = (Q.U) = (Qz Uz) +(Qf.Uy),

where, on the element K € Q, (Qz,Uy) and (Q Iz Uy) are the solutions of

cQ;+VU;=0 inKk, cQ;+VU;=0 ink,
V-Q;=0 ink, V-Q;=f ink,
Us=u ondKk, Ur=0 ondkK,

and where U is the single-valued function solution of
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2.1.2 An example

Let us illustrate this result with a simple but revealing case. Take 2 := (0,1) with
K = (xj_1,x;) fori=1,...,N where xo = 0 and xy = 1. For simplicity, we take c to
be a constant. We then have that

(q,u) = (Qz Ug) +(Qy,Uy),

where, fori = 1,...,N, the functions (Qg, U;) and (Q U ) are the solutions of the
local problem

d . d .
Qi+ Ua=0 in (Xi—1,%;), Qs+ Us=0 in (Xi—1,%;),
d . d .
aQﬁ: 0 in (x—1,x), an =f in(x_1,%),
UgZIjt\ on {xl;l,x,-}, UfZO on {xl;l,x,-}.

Note that we still do not know the actual values of the function @ : {x;} , — R,
but once we obtain them, we can readily get the exact solution (q, ). To find those
values, we only have to solve the global problem

—Qalx; )+ Qalx) = Qrlx; ) = Qplxf)  fori=1,... .N—-1,
it\(x,') = MD()C,') fori= O,N.

Now, let us solve the local problems and then find the global problem. A simple
computation gives that the solutions of the local problems are

i fiy Q (x):—c’l/Xi Gl (x,s)f(s)ds
Chl‘ 5 f o x\7v 5

i

Qa(x) = —
Ua(x) = @i(x) i + @1 (x) i1, Up(x) = /Xi G'(x,5)f(s)ds,

where h; := x; —x;_; and G' is the Green’s function of the second local problem,
namely,

G'(x,5) = chigi(s)@i1(x) ifxi g <s<x,
,8) 1= chigi(x)@i_i(s) ifx<s<x.

where

@i(s) :

) =xim1)/hi ifxi 1 <s<ux,
(Xip1 —8)/hipr ifx; <5 <xigq.
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As a consequence, the global problem for the values {u;}Y  is

i—Ui— Uiy — U Yt .
— = i(s) f(s)ds fori=1,....N—1,
o hiy - @i(s) f(s)

it\jZLtD(Xj) fOIjZO,N.
In other words, the values of the exact solution at the nodes of the triangulation,

{ﬁ,}f\’: o> can be obtained by inverting a (symmetric positive definite) tridiagonal
matrix of order N + 1.

2.2 Static condensation of the continuous Galerkin method

Now, we show that a characterization of the continuous Galerkin method similar to
that one just obtained for the exact solution can be interpreted as the original static
condensation of the method [56].

2.2.1 A characterization of the approximate solution

The continuous Galerkin method provides an approximation to u, uy, in the space
Wy = {we Q) : wlx € W(K) VK € @}
It determines it by requiring that it be the only solution in W;,(up) of the equation
(aVup,, Vw)g = (f,w)a  Yw € W,(0).

where Wy, (g) = {w €W, : w=1I,(g) on dQ}, and I}, is a suitably defined interpola-
tion operator.

Now, to obtain our characterization of the approximate solution, we need to split
the spaces in a suitable manner. Thus, for each element K € £, we define the space
associated to the inferior degrees of freedom,

Wo(K) :={we W(K): w|gg =0},
and the space associated to the degrees of freedom on the boundary,
Wy(K) :={weW(K): w|jx =0 = w|g =0}.
Clearly, W(K) = Wy (K) + W, (K) for all K € £, and so W), = Wy, + W5, where

Wo = {W ceW,: W|[( S WQ(K) VK € Qh},
Wy, == {weWw,: wgeWy(K)VK € Q}.
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We also need to introduce the following sets of traces on F:
M, = {W‘gh we VVh},
My(g) :={1 €My plog =1n(g)}

Note that the trace into F}, is an isomorphism between Wy, and Mj,.
Suppose that, for each element K € £, we define U € W(K) as the solution of
the local problem

(aVU,Vw)g = (fiw)k  Yw € Wp(K),
U=, on JK,

where we want to chose the function #, € M, in such a way that U = u;, on each
element K € ;. This happens if and only 1, is such that

(@aVU,Vw)o = (f.w)a VYwe Wsg,,
ﬁh = Ih(uD) on dQ.

If we separate the influence of uj, from that of f in the definition of the local
problems, and rework the formulation of the global problem, we get the following
result.

Theorem 2 (Characterization of the continuous Galerkin method). The approx-
imation given by the continuous Galerkin method can be written as

MhZUZUgh—‘rUf,

where, on the element K € ,, Ugh and Uy are the elements of W (K) that solve the
local problems

(aVUz,,Vw)gk =0 Vw € Wy(K) (@VUr, Vw)k = (fiw)xk  Yw € Wo(K),

~

Uz, =, ondkK Ur=0 on dK,
and uy, is the element of My (up) that solves the global problem
(aVU;,.VUp)a = (f.Up)a YV ueM0).

Note that, although the static condensation [56] is carried out directly on the
stiffness matrix of the method, this result shows how to use (local and global) weak
formulations to achieve exactly the same thing.

Proof. By the linearity of the problem, we only have to justify the characterization
of the function u,. Let us start from the fact that u}, is the element of M, (up) which
solves the global problem

(aVUg,. Vw)a 4+ (@aVU;, Vw)a = (f.w)a VweWsg,.
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Now, note that, for any w € Wj,, we can define the function wg by the equation
w= Uy +wo,

where p := w|g, ; this readily implies that wg € Wy ;.. If we now insert this expression
in the equation and take into consideration the definition of the solution of the local
problems, that is, that

(a VUﬁh’ VWO)Q = 0,
(aVUy,VUu)e =0,
(aVUy, Vwo)a = (f.wo)e,
we finally get the wanted formulation. This completes the proof. g

2.2.2 The numerical trace of the flux

A quick comparison of the above result with the one for the exact solution, suggests
that the global problem for the continuos Galerkin method is a transmission con-
dition on a discrete version of the normal component of the flux. This little known
fact will allow us to identify the numerical trace of the approximate flux for the
continuous Galerkin method.

To do this, we first write the global problem in its original form, that is,

(aVuh,Vw)_Q Z(f,w)_Q VWEWg:h,
and perform a simple integration by parts to get
—(V-(aVup),w)q, +((aVup) -n,w)5q, = (f.w)a VweWsg,

Let us now define, for each element K € €y, the function R, € W, (K) satisfying the
equation
(Rnswhox = (V- (aVuy,) + fiw)k Yw € Wy (K).

Thus, the function Ry, is a projection of the residual V - (aVuy,) + f. With this defi-
nition, we get that

((—aVuh)~n+Rh,w>99h =0 VWEW({h,

which can be interpreted as a transmission condition forcing the normal component
of numerical trace of the flux

q, n:=(—aVu,) -n+R;, ondQy,

to be weakly continuous across interelement boundaries.
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2.2.3 Relation with static condensation

Let us now show that this characterization is nothing but an application of the well-
known technique of static condensation [56]. Static condensation was conceived as
a way to reducing the size of the stiffness matrix. Indeed, if [u;] is the vector of de-
grees of freedom of the approximation u,, and the matrix equation of the continuous
Galerkin method is

K [up] = [f],

the static condensation consists in partitioning the vector of degrees of freedom [uy,]
into two smaller vectors, namely, the degrees of freedom interior to the elements,
[U], and the degrees of freedom associated to the boundaries of the elements, [iiy],
and then eliminating [U] from the equations. Indeed, taking into account this parti-
tion, the above equation reads

[Koo Koa} [[U}] _ {fo]

Koo Kag| [[un]] — [fo

By our choice of the degrees of freedom, the matrix Ky is easy to invert since it is
block diagonal, each block being associated to a local problem. We thus get

(U] = —Kgq' Koo i) + Koo' o).
We can now eliminate [U] from the original matrix equation to obtain

(—Ka0 Koo' Koo +Kag)[itn] = —Kao Kog' [fo] + [f3)-

The matrix in the left-hand side, nowadays called the Schur complement of the ma-
trix Koo, is clearly smaller than the original matrix K and is also easier to numerically
invert. We have thus shown that our characterization of the approximate solution of
the continuous Galerkin method is nothing but another way of carrying out the good,
old static condensation. The former expresses in terms of weak formulations what
the latter does directly on the matrix equations itself.

2.2.4 An example

Let us now illustrate this procedure in our simple one-dimensional example. We
take
W(K) := Pr(K),

where P;(K) denotes the space of polynomials of degree at most k defined on the
set K. We begin by solving the local problems. If we use the notation #; = uj,(x;)
fori=0,...,N, a few manipulations (and the proper choice of the basis functions)
allow us to see that the solutions of the local problems are
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Uil = 90+ G @iics s = [ Ghles)fs)ds,

i

where h; := x; — x;_; and Giz is the discrete Green’s function of the second local
problem, namely,

. S 1 ; ; : -
Gj(x,s5) == ﬁ/; 2W+1 (PZ+1 —Pi_)(x) (P/l,+1 —Pi_1)(s)

where Pi(x) := P,(T'(x)), T'({) := ({ — (xi +x;-1)/2)/(h;/2) and P, is the Leg-
endre polynomial of degree n. As a consequence, the global problem for the values
{@} is

- A._ 7 . Xi+1
Pl PN 4 B @i(s) f(s)ds fori=1,...,N—1,
h; hi+l Xi-1

it\j:u[)(x]') fOl‘jZO,N.

Note that the size of the matrix equation of the global problem is independent of
the value of the polynomial degree k, a reflection of the effectiveness of the static
condensation technique. Note also that the values of the approximate solution at the
nodes of the triangulation, {ﬁ,}fi o- are actually exact, as expected.

2.3 Static condensation of mixed methods by hybridization

Next, we show how to extend what was done for the continuous Galerkin method
to mixed methods. A particular important point we want to emphasize here is that
hybridization of a mixed method is what allows it to be statically condensed, as first
realized in [53].

2.3.1 A characterization of the approximate solution

A mixed method seeks approximations to the flux q := —aVu, qy, and the scalar u,
uy, in the finite dimensional spaces

Vi ={veH(div,Q):v|g € V(K) VK € Q;}.
W, ={welL*(Q): wlxeW(K)VK e},

respectively. It determines the function (qy,u;,) as the only element of V), x W, sat-
isfying the equations

(cqy,v)o—(un,V-V)g =—(up,v-n)yo YveV,
(V-qu.w)a = (f.w)a Yw € W,
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For mixed methods, the choice of the finite dimensional space V;, x W}, is not simple,
but here we assume that it has been properly chosen as to define a unique approxi-
mate solution.

Now, suppose that, for each element K € €, we define (Q,U) € V(K) x W(K)
as the solution of the local problem

(cQ.V)k — (U,V-V)g = (ap,v-n)yx  VveV(K),
(V-Qw)k = (f,w)k Yw € W(K).

This problem is well defined since it is nothing but the application of the mixed
method, which we assume to be well defined, to the single element K € €2;,. As
before, we want to choose the function uy, in some finite dimensional space Mj, in
such a way that (Q,U) = (qy,u;,) on each element K € €. For this to hold, we only
need to guarantee that

Qe Vy,
(tp,v-m)go = (up,v-n)yg VVEV,.

The first property is a transmission condition since it holds if and only if the normal
component of Q is continuous across interelement boundaries. The second condition
is nothing but a weak form of the Dirichlet boundary condition.

As for the case of the continuous Galerkin method, the choice of the space M}, has
to be made in such a way that the above two conditions do defermine the numerical
trace uy,. Typically, we take

My ={uel*F,): IveV,:u=[[v] onF,}.

Thus, if we set Mj,(g) := {1 € My : (1, M)90 = (g&:M)aa VN € My}, the global
problem can be expressed as follows:

(Q'n1)o0, =0 Ve M0),
ljt\/, GM;,(MD).

Indeed, note that, for any u € M;(0),

(Q-n.1)oa, = (Q )oa o0 = ([Q]. 1)

and if this quantity is zero, we certainly have that Q € V, as wanted. So, let us
assume then that the above global problem for u € M, is well defined.
So, we have obtained the following result.

Theorem 3 (Characterization of the mixed method). The solution of the mixed
method can be written as

(an,un) = (Q.U) = (Qg,, Ug,) + (Qr, Uy),
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where, on each element K € Qy, for any p € L*(9K) and f € L*(K), the functions
(Qu,Uy) and (Qf,Uy) are the elements of V(K) x W(K) which solve the local
problems

(cQu:V)x — (Up, V- V) = — (1, v-m) ok, (cQsV)k —(Up,V-v)g =0,
(V'QN’W)K :O, (VQf’W)K = <f7W>K’

Sor all (v,w) € V(K) x W(K), and the function uy, is the element of My (up) which
solves the global problem

(cQz,,Qu)a, = (f-Up)a, V1€ My(0),

Proof. We only have to prove that uy, € M, (up) satisfies the equation

—(Qg, M U)o0, = (Qr M U)o, Y HEM0).

But, by the definition of the local problems, we have

—(Qz, ', )90, = (cQu, Q) q,

(Qp n,u)s0, = —(cQu,Qr)a, + (U, V-Qy)a,
=—(Up,V-Qz,)0, + (U, V-Qf)a,
= (Up.V-Qy)g,
=(f, UN)-Qh’

and the identity follows. This completes the proof. (|

2.3.2 Relation with static condensation and hybridization

Let us now show that what we have done is nothing but the static condensation of
the hybridized version of the mixed method as done by Fraejis de Veubeke in [53].
Suppose that the matrix equation of the mixed method reads

{fl B} [[qh}] _ [[MD]}

B' O] | [un] 71

It is not easy to eliminate [q;] from this equation since the matrix A is nor block
diagonal because, since q; € Vp, its normal component is continuous across in-
ter element boundaries. To overcome this unwanted feature, Fraejis de Veubeque
relaxed the continuity condition on q;, and worked with a totally discontinuous ap-
proximation Q instead. Because of this, he had to introduce the hybrid unknown uy,,
an approximation to the trace of u on each element; this is why this procedure re-
ceives the name of hybridization of the mixed method. Finally, in order to guarantee
that Q be identical to the original function q;, he then forced it to have a continu-
ous normal component at the interelement boundaries. This operation resulted the
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following matrix equation:

A BC| [[Q] —Co[up]
B OO |[U}=] [f]
00| |[i) 0

Here, [1z] denotes the digressive freedom of the function i, restricted to the interior
faces. On the boundary faces, the relation of uy, to up is already captured by the
right-hand side of the first equation. Note that, since the first two equations define
the local problems, we can easily solve them to obtain

8- [

The third equation, C [Q] = 0 enforces the continuity of the normal component of
Q across inter element boundaries; it is this equation that determines the hybrid
unknown in the interior faces, [i;]. A few computations show that the resulting
matrix equation is of the form

H[a)=Hylup]|+J[f], H:=CEC, E:=A"'"-A"'B(BA™'B)"'BA™!,

and we see that, as expected, the matrix H is symmetric. Moreover, H is positive
definite and E is block-diagonal.

2.3.3 An example

Next, let us illustrate this procedure in our simple one-dimensional example. We
take

V(K) X W(K) = ka_H(K) X Tk(K)

We begin by solving the local problems. A little computation gives that the solutions
of the local problems are

Q) =~ Q)= [ Hitws)f()ds.
Ua(x) = @i(x) it + @1 (x) -1, Up(x) = ; G (x,5)f(s)ds,

Xi—1

where h; :== x; — x;_1 and

NM—‘

k
Hj(x,) == ¢i(x) 9;(s) — @11 (%) ZPM Pi_))(x) Pi(s),

G (x5 Z (B =B (Pl — L))
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Let us recall that Py (x) := P,(T"(x)), T'($) := (§ — (xi +xi-1)/2)/(hi/2) and P,
is the Legendre polynomial of degree n. Note that the function Gj, approximates
the Green function G’ whereas —CH;; approximates its partial derivative G.. As a

consequence, the global problem for the values {#;}Y  is

Up—ii—  Uip — U it .
— = i(s) f(s)ds fori=1,....N—1,
o i - @i(s) f(s)

ﬁj:uD(xj) fOI'j:O,N.

We thus see that the values of the approximate solution at the nodes of the triangu-
lation, {it\l}f\; o» are actually exact, as expected.

3 HDG methods

In this section, we show how to use a discrete version of the characterization of
the exact solution obtained in the previous section to devise HDG methods for our
model problem (1). The local problems are solved by using a DG method and the
transmission conditions by a simple weak formulation. As a consequence, the re-
sulting HDG methods are DG methods whose distinctive feature is that they are
amenable to hybridization and hence to static condensation. Let us emphasize that
this does not happen by accident, but because they are constructed by using a dis-
crete version of the characterization of the exact solution worked out in the previous
section.

After defining the HDG methods, we establish a simple result about the existence
and uniqueness of their approximate solution and display some examples. We end by
showing several different ways of presenting them which will be useful for relating
them to other numerical methods.

We follow closely the work done in 2009 [24] for the original HDG methods,
as well as the work done in the 2014 review paper [38] for HDG methods for the
Stokes system of incompressible fluid flow.

3.1 Definition

We take the approximate solution of the HDG methods to be the function

(qn,un) = (Q, V),

where, on the element K € £, (Q,U) € V(K) x W(K) is the solution of the local
problem
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(cQ,v)xk — (U, V-V)k + (i, v-n) 55 =0 Vv € V(K),
—(Q.VW)k +(Q-mw)ox = (fiw)x  Vw e W(K),
where the numerical trace (3 has to be suitably chosen. Ideally, the numerical trace
of the flux Q should be chosen so that it

(i) is consistent,
(ii) only depends (linearly) on Q|x,U|x and u, |k,
(iii) renders the local problem solvable.

Our favorite choice is
Qn:=Q-n+t(U—i) ondk,

where the function 7 is linear. We are also going to require that T be symmetric, that
is, that, for all K € €,

(t(w), 0)ox = (w,T(@))ox Y w, @ € W(K) +M,;(IK).

Although there are many other choices, we are going to use this one from now on;
not only it is very natural but it actually covers all the known HDG methods.
To complete the definition of the HDG methods, we take the function ), in the
space
My :={u e L*(F,): ur € M(F)YF € 5},

where M(F) is a suitably chosen finite dimensional space, and require that it be de-
termined as the solution of the following weakly imposed transmission and bound-
ary conditions:

(1. [Q D) = (1.Qn)y0,\90 =0,
(1, >aQ = (L, up)9q-

for all u € Mj,. This completes the definition of the HDG methods.

The HDG methods are obtained by choosing different functions 7 and dif-
ferent local spaces V(K), W(K) and M (F).

3.2 Existence and uniqueness

We now provide simple conditions on the local spaces and the function 7 ensuring,
not only that the local problems are solvable, but that the global problem is also
well posed. To do that, we use an energy identity we obtain next which will also
shed light on the role to the function 7.

Proposition 1 (The local energy identity). For any element K € £, we have
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(€Q.Q)k + (U =), T(U—n))ox = (f,U)x — (. Q- M)

Note that the exact solution satisfies the following energy identity:

(cq.q)x = (f.u)k — (u.q-n) -

Typically, the terms (cq,q)x and (cQ, Q) are interpreted as the energy stored in-
side the element K. It is thus reasonable to interpret the term (U — ), 7(U — ) 9k
as an energy associated with the jumps U — &, at the boundary of the element JK.
Since all energies are nonnegative, we assume that the function 7 is such that

(tw—p)w—p)oxg 20 V(w.u) € W(K) x M(IK), (2a)
where
M(9K) := {u € L*(dK) : p|r € M(F), for any face F € ), lying on dK}. (2b)

We now see that the role of 7 is to transform the discrepancy between U and u,
on JdK into an energy. Since an increase of energy is typically associated with an
enhancement of the stability properties of the numerical method, 7 is called the
stabilization function.

Let us now prove Proposition 1.

Proof. If we take (v,w) := (Q,U) in the equations of the local problems, we get
(cQ,Q)x— (U, V-Q)k + (4,Q-m)jx =0,
~(Q.VU)x +(Q n. U)ok = (f. Uk,

and adding the two equations, we obtain

(€Q.Q)x +{(Q—Q) nU—iis)sx = (f,U)x — (Q-m, i) -

The energy identity now follows by simply inserting the definition of the numerical
trace Q. This completes the proof. g

We are now ready to present our main result. It is a variation of a similar result
in [24].

Theorem 4. Assume that the stabilization function T satisfies the nonnegativity con-
dition (2). Assume also that, for each element K € 5, we have that if (w,l) €
W(K) x M(9dK) is such that

M) (tw—p)w—p)ok =0,
(i) (Vw,V)k+{(u—w,v-n)ypr =0V veV(K),

then w is a constant on K and w = U on dK. Then the approximate solution
(qp, up, ) € Vi, X Wy, X My, of the HDG method is well defined.
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Note that condition (ii) establishes a relation between the local spaces V(K),
W (K) and M(dK) and the stabilization function T guaranteeing that the local prob-
lems as well as the global problem have a unique solution. Note also that if condition
(i) were not necessary to obtain that w is a constant on K and w = 1 on dK, we can
simply take 7 = 0. However, for most cases, without condition (i), the method might
simply fail to be well defined. The role of 7, is thus to prevent this failure.

Let us now prove Theorem 4.

Proof. Since the HDG method defines a finite dimensional square system for the
unknowns (Q,U,u;,) € V, x W), X Mj,, we only have to show that, when we set the
data f and up to zero, the only solution is the trivial one.

Thus, setting i := uy, in the transmission condition, and recalling that, by the
boundary condition, u, = 0 on €, we get

0=— (@, Q-n)y0, = (cQ,Q)q, + (U—), T(U—ii1)) 50,

by the energy identity of the previous proposition. By assumption (i), we get that
Q =0on 2 and that ((U—u),7(U—uy))gx = 0 for any K € €. Moreover, the
first equation defining the local problem now reads

(VU,V)g + (i —U,v-n)y =0V veV(K).

By assumption (ii) with (w,u) := (U, ), we have that, on each element K € €y,
U is a constant on K and that U = i;, on dK. As a consequence, U is a constant on
Q and U = @y, on F,,. Since u;, = 0 on dQ we finally get that U = 0 on Q and that
uy, = 0 on F,. This completes the proof. O

Let us now present an almost direct consequence of the previous result in a case
in which the stabilization function 7 is very strong.

Corollary 1 ([24]). Assume that the stabilization function T satisfies the nonnega-
tivity condition (2). Assume also that, for every element K € €,

(@ (w,u) eW(K)xM(IK): (t(w—u),w—U)jx =0 = w=p on JK,
(b) VW(K) C V(K).

Then the approximate solution (qp,up, i) € Vi X Wy X My, of the HDG method is
well defined.

A remarkable feature of this result is that the method is well defined completely in-
dependently of the choice of the space M. This is a direct consequence of condition
(a), which is clearly stronger than condition (i) of Theorem 4 on the stabilization
function 7. Thanks to condition (a) , we can replace condition (ii) of Theorem 4 by
the simpler condition (b), as we see next.

Proof. We only have to show that the assumptions the previous result are satisfied.
Since 7 is a linear mapping, assumption (a) implies condition (i) of Theorem 4.
Now, by assumption (a), if (7(w— u),w— U)5x = 0, we have that w = g on K and
we get that condition (ii) of Theorem 4 reads
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(Vw,v)g =0Vv e V(K).

By assumption (b), we can take v := Vw and conclude that w is a constant on K.
This implies that the second assumption of Theorem 4 holds. This completes the
proof. |

3.3 Characterizations of the HDG methods

Here, we provide two characterizations of the approximate solution provided by the
HDG methods just introduced. We are going to use the set

My(g) ={H EMy: (U.M)oq = (g8 M)sVN € My}

3.3.1 Formulation in terms of (qy, uy,, iy,)
Static condensation formulation

The following result reflects the way in which the HDG methods were devised and
renders evident the way in which their implementation by static condensation can
be achieved.

Theorem 5 (First characterization of HDG methods). The approximate solution
of the HDG method is given by

(@, un) = (Q.U) = (Qgz,,Ug,) + (Qr, Uy),

where, on the element K € Qy, for any u € L*(9K), the function (Qu,Uy) € V(K) x
W (K) is the solution of the local problem
(€Qu,V)k — (Up,V-V)g + (U, v-m)yx =0 Vv e V(K),
—(Qu. VW)x +(Qu - mw)x =0 Ywe W(K),

and, for any f € L*(K), the function (Qs,Us) € V(K) x W(K) is the solution of the
local problem

(cQpv)k—(Usp,V-v)g =0 Vv e V(K),
—(Qr. Vw)k + Qs mw)ox = (frw)k  ¥w e W(K),
Q; n:=Q; n+1(Uy) on JK.

The function uy, is the element of My, (up) such that
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an(ip, 1) = ty(p) v p € My(0),
where ap(p,A) = —(11,Q, ‘m)yq,, and l,(1) == <H,6f"n>agh. Moreover,

ap(p,A) = (cQu.Qx)e, + Uy —u,7(Uy = A))ag,.  n(1)=(f,Up),
)

and ay,(+,-) is symmetric and positive definite on My, (0) X M},(0). Thus, i, minimizes
the total energy functional Jy(1) := Yan(p, 1) — Cy(1) over My(up).

Proof. We only need to prove the last two identities and the property of positive
definiteness of the bilinear form ay, (-, -).

Let us prove the first identity. If we take v := Q,, in the first equation defining
the first local problem, replace p by A in the second equation defining the first local
problem and set w := Uy, we get

(cQu,Qa)k — (Up, V-Qu )k + (1, Qx - Mok =0,
—(Qu.VUp)k + (Qx n,Uy)ox =0.

Adding the two equations, we obtain
(€Qu.Qu)x +{(Qx —Qa) m Uy — t)ox = —(Qa - m, 1) ok

The first identity follows by inserting the definition of the numerical trace (3 ,, and
adding over the elements K € Q.

Let us prove the second identity. If we take v := Qy in the first equation defining
the first local problem and w := U, in the second equation defining the second local
problem, we get

(cQu.Qp)k — (Up,V-Qp)k + (1. Qp -m)yx =0,
—(Qf, VU )k + <6f'n’U#>8K = (£ Up

and if we add the two equations and insert the definition of (3 £, we obtain

(€QuQp)x +(T(Up), U — ok = (f:Up)k — (Qs - 1) ok

If we now take v := Q,, in the first equation defining the second local problem and
w := Uy in the second equation defining the first local problem with i, := u, we get

(cQr.Qu)k — (Up,V-Qu)k =0,
~(Qu.VUp)k +{Qu -m,Up) ok =0,

and if we proceed as before, we get

(cQr, Qu)k +{(t(Uy — 1), Us)ox = 0.

This implies that
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—(t(Uy — 1), Up)ak + (2(Up), Uy — whax = (. Up)k — (Qp - m, 1) gk

and the result follows by the fact that 7 is symmetric.

The fact that a;, (-, -) is symmetric follows from the previous identities and the fact
that 7 is also symmetric. Finally the fact that it is positive definite on M, (0) x M},(0)
follows exactly as in the proof of Theorem 4. This completes the proof. O

Two compact formulations

Let us now show how to rewrite the HDG methods in a more compact manner. It
does not suggest a way to statically condense the methods but it is our favorite way
of presenting them concisely. It emphasizes the role of the numerical traces of the
methods and is suitable for carrying out their analysis. It is the following.

The approximate solution given by the HDG method is the function (qy,, up, up,) €
Vi, X Wy, X My (up) satisfying the equations

(cqn V), — (un,V-v)g, +(#p,v-n)yo, =0 Vv eV, (3a)
—(@n. VW), + (@, n.w)o, = (f.w)a, YwE W, (3b)

Q0= q, -+ T(uy, — i) on 9y, (3¢)

(1,9, m)50, =0 Yu € M;(0). (3d)

Indeed, note that the first, second and third equations correspond to the definition of
the local problems and that the weakly imposed boundary conditions are enforced
by requesting that iz, be an element of M, (up).

We can also eliminate the numerical trace @, to obtain yet another rewriting of the
methods. Once again, it hides the numerical trace of the flux, but emphasizes what
we could call the stabilized mixed method structure of the methods. The formulation
is the following. The approximate solution given by the HDG method is the function
(i ups ) € Vi, x Wy, x My (up) satisfying the equations

Ap(qn, V) + By (up, i v) =0 Vv € Vy,
—Bu(w, w5 qn) + Sp(up, tt; w, ) = (f,w)a, V(w,u) € W, x M;(0),

where
Ap(p,v) :=(cp,V)q, Vp,v € Vy,
Bp(w, u;v) := —(w,V-v) o, + (U, v-m)sq  Y(V,w,u) € V), x Wy x My,
Sh(w,)L;W,IJ) = <T((D*A),W*,u>agh V(w,l),(w,u) e Wy, X M,

Indeed, the first equation follows from the definition of the bilinear forms A(-,-)
and By,(-,-). It remains to prove that

By (w, w3 qp) + Sy (up, ttp; w, 1) = —(qp, Vw) o, + (qy, 'n»W>th —(q- n,,u),mh.
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But, we have, by the definition of the bilinear forms By,(+,-) and Sj(+,-), that

O :=— By (w, 1:qp) + Sy (up, ity w, 1)
=W,V -q)a, — (U,q- )0, +(T(up—un),w—HU)og,
= —(qn, VW), +{q-n+t(up —un),w — )50,

by integration by parts. The identity we want follows now by using the definition of
the numerical trace of the flux.

To end, we note that, thanks to the structure of the methods, it is easy to see that
the solution (qp, up, 1) € Vi, X Wy, X My, (up) minimizes the functional

1
Tn(vow, 1) := S{AR(V, V) + Sulw, tiw, )} = (f.w)a, (4a)
over all functions (v,w, ) in Vj, X W, x Mj,(up) such that
Ah(V,p)+Bh(W,[J;p) =0Vp eV, (4b)

Note that the last equation can be interpreted as the elimination of q; from the
equations. The minimization problem would then be one on the affine space W), x
M), (up) and would correspond to a problem formulated solely in terms of u;, and u,.
Next, we explore the static condensation of such reformulation.

3.3.2 Formulation in terms of (1, u),)

So, here we eliminate the approximate flux q; from the equations defining the HDG
method in order to formulate it solely in terms of (u, i;,). To achieve this, we simply
rewrite q, as a linear mapping applied to (u, ;). This mapping is defined by using
the first equation defining the HDG methods. Thus, for any (w, ) € W, X M}, we
define Q,, , € V} as the solution of

(cQup-V)a, — W, V-v)g, +(U,v-m)yo, =0 VveV,

In this way, we are going to have that q, = Q,, ;,- Note that the above equation is
nothing but a rewriting of the equation (4b).

Static condensation formulation

Using this approach, we obtain the following characterization of the HDG methods.
It is useful for their implementation and involves less unknows than the previous
characterization since the unknown for the approximate flux has been eliminated.
(Of course, the price to pay for this is that we now we have to work with the mapping
(w,u) — Q,.u.) This characterization better shows the role of 7 as a stabilization
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function but it hides its relation with the numerical trace of the flux and does not
clearly indicate the associated transmission condition.

Theorem 6 (Second characterization of HDG methods). The approximate solu-
tion of the HDG method is given by

(@ un) = (Q.U) = (Qu, ;- Ya,) +(Quyo.Ur),

where, on the element K € Qy, for any u € L*(9K) and any f € L*(K), the functions
Uy, Uy € W(K) are the solutions of the local problems

(€Quy - Quo)k + (T(Up — 1), w)gx =0 Yw € W(K),
(€Quy;,0,Quo)x +(t(Uys), w)ak =(fiwxk  YweW(K),

respectively. The function uy, is the element of My (up) such that
ap(ttn, 1) = Ly (1) V€ My(0),
where ap(U, L) := —</.L,(A2Ul’,1 ‘m)y0, and £ (Q) := (M,Quf,oﬂ)ag,,- Moreover,

an(i,A) = (€ Quyu, Quya)ag, +(Up — . t(Ua —4))aq,, ()= (f,Un),

and ay,(+,-) is symmetric and positive definite on My (0) X M},(0). Thus, i, minimizes
the total energy functional Jy(1) := Yan(p, 1) — Cy(1) over My(up).

Proof. This results follows easily from the first characterization of the HDG meth-
ods given in Theorem 5. We only have to show that the solutions of the local prob-
lems coincide, that is, that (Qu, u,Uy) € V(K) x W(K) is the solution of
(€Quypu- V)& = (Up, Vov)g + (1,v-m)gg =0 Vv € V(K),
—(Quyu> YWk + <6Uu,u nw)ox =0 Vwe W(K),
Qu n:=Qy-n+7(Uy—u) on dK,

and that (Qu 0. Uy) € V(K) x W(K) is the solution of

(CQUf',07V)K_(Uf,V'V)K:O VVEV(K),
~(Qu,0,VW)k +(Qu o mw)ox = (frw)k  Yw e W(K),
Qf'ni:Qf~n+T(Uf) on dK.

Since the first equation of these problems is nothing but the definition of the operator
Qyv,u, we only have to show that

(V-Qu W)k +(t(Uy — ), w)5x =0 Yw € W(K),
(V-Quyo.wk +(t(Up)wiox = (fiwk YweW(K).
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But, by the definition of Q,, 9, we have

(V-Quyp-w)k = (€Qu0,Qu, k>
(V-Qu,.0.w)kx = (€Qu0,Qu,0)k

and the result follows. This completes the proof. g

A compact formulation

As we did for the first characterization of the HDG methods, we can rewrite the
above result in a compact manner as follows. The approximate flux provided by the
HDG method is q;, = Q,, 5, and (uy, ;) € Wy, X My, (up) is the solution of

(€Qu i Qup )y + (Tl =), w =)o, = (fiw)e,  V(w, 1) € Wy x My(0).

We immediately see that (uy,, %) is the only minimum over Wj, x M,(0) of the total
energy functional

1
In(w ) := S {(cQupp: Quip) @y, + (T(w = 1), w = l)ag, } = (fiw) -

This minimization problem is identical to the minimization (with restrictions) prob-
lem (4).

4 HDG methods using only the tensor a ;== c !

4.1 Motivation

Note that the the first three equations of the weak formulation of the DG methods
we have been considering can also be expressed as

—(gn-V)ay, — (un,V-¥) o, + (up,v-m)yq, =0,
(th’V)Qh = _(gh’V)Qh’
7(qh,VW)Qh + <ah 'n’W>th = (f’w).Q],’

where the approximate gradient g, is taken in V,, If one prefers to work with the
tensor a := c !, we can simply use the equations

—(gn V)@, — (un, V- V)q, + (@, v-m)0, =0,
(a.V)0, = —(agy.V)q,,
—(q;, VW), + (@, m,w) 50, = (f- W)@,
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for all (v,w) € Vj, x Wy, where the numerical traces ##j, and @, - n are approximations
to ulyo, and q-n|yq, , respectively. The difference between these two DG methods
is certainly not abysmal since it consists in picking one of the two ways of relating
the approximate gradient g;, to the approximate flux qy, namely,

(CQh’V)Qh = *(gh’V)Qh or (thV)Qh = *(3gh,V)_Q,,-

As a consequence, there is a one-to-one correspondence between these two weak
formulations, provided both a and c are well defined. Moreover, both formulations
coincide whenever a and c are constant on each element K € ), which gives rise to
super-closeness of their approximations, as noted in [42].

However, if a degenerates and is not invertible at every point, the second for-
mulation might be preferable. This is also what motivated the so-called “extended”
form of the mixed methods introduced in [1, 62, 11].

Finally, let us note that in elasticity, g corresponds to the strain, q to the stress, a to
the so-called constitutive tensor and c to the so-called compliance tensor. Thus, the
HDG methods obtained for linear and nonlinear elasticity, see the HDG methods for
elasticity considered in 2008 [86], 2009 [87] and 2014 [54] and in 2015 [60], can be
immediately reduced to our simpler case; see also the 2006 DG method proposed in
[51]. It is well known that to work with the constitutive tensor is usually preferred in
the case of nonlinear elasticity. Next, we briefly show how to define and characterize
the HDG methods associated with using the tensor a :=c !,

4.2 Definition, existence and uniqueness

We take the approximate solution of the HDG methods to be the function

(qn.gn.un) = (Q,G,U),

where, on the element K € Q,, (Q,G,U) € V(K) x V(K) x W(K) is the solution of
the local problem

—(G,v)k — (U,V-v)g + (U, v-m)gxg =0 Vv e V(K),
(QV)k =—(aG,v)k VveV(K)
—(QVw)k+(Q-mwhox = (fw)x  YweW(K),

s

where the numerical trace 6 is suitably chosen, and u;, € M, is the solution of the
following weakly imposed transmission and boundary conditions:

(11.Q m)p0,190 =0
(W un)oo = (L,up)yq,

for all u € M;,. This completes the definition of the HDG methods.
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It is not difficult to see that the existence and uniqueness in Theorem 4 and its
Corollary 1 do hold unchanged.

4.3 Characterizations of the HDG methods

4.3.1 Formulation in terms of (qy, gy, up, i)
Static condensation formulation

We have the following result which is analogous to Theorem 5.

Theorem 7 (First characterization of HDG methods). The approximate solution
of the HDG method is given by

(qn-gnun) = (Q,G,U) = (Qgz,.G4,. Uz, ) +(Qy. Gy, Uy),

where, on the element K € Qy, for any p € L*(9K), the function (Qu,Gyu,Uy) €
V(K) x V(K) x W(K) is the solution of the local problem

~(Gu.V)k = (Up, V-¥)k + (1, v-m)yx =0 Vv € V(K),

(Qu.v)x = —(aGy,v)k WV E V(K),

—(Qu. YW)k + (Qu - mw)ox =0 Yw € W(K),
(A)u-n::Qu-n+‘c(Uu—u) on JK,

and, for any f € L*(K), the function (Q7,G,Us) € V(K) x V(K) x W(K) is the
solution of the local problem

—(Gf,v)k—(Up,V-v)g =0 Vv € V(K),

(Qs.v)k = —(aGy,v)k  Vve V(K),

—(Qp, YW)k +(Q - mw)ax = (f,w)k vw e W(K),
Qf-n::Qf-n+T(Uf) on JK.

The function uy, is the element of My, (up) such that
ap(itp, ) = Lp() V1 € My(0),
where ap (U, 1) = —(,u,(A),l ‘m)yq,, and l,(1) = (u,(A)f~n>99h. Moreover,

an(1,4) = (aGyu, Gy ) o, + (Up — 1, 7(Up —A))ag,.  Lu(u)= (f.Up),

and ay,(-,-) is symmetric and positive definite on My (0) x M},(0). Thus, i, minimizes
the functional Jy(1) := Yan(p, 1) — Cy(p) over My(up).
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Two compact formulations

Proceeding as for the first family of HDG methods, we obtain the following two
compact formulations. The first emphazised the role of the numerical traces. It reads
as follows. The approximate solution given by the HDG method is the function
(qn»> 8> tp, ) € Vi, X Vi X Wy, X M, (up) satisfying the equations

—(&n>V)a, — (up,V-V) @, + (Un,v-m)g0, =0 Vv € V),
(@n-V)a, = —(agnV)a, YWEV,,
— (@, Vw)g, + (@ mw)oq, = (fiw)g, Yw € W,
qQp 1= q; -0+ T(uy, — i) on 0,
(1.g Mmoo, =0 Y € M, (0).

The second emphasizes the stabilized mixed structure of the method. It is the
following. The approximate solution given by the HDG method is the function
(qp, up, ) € Vi X Wy, x My, (up) satisfying the equations

Vv eV,
VV e Vhs
fow)a, V(w,u) €W, x My(0),

Ap(gn,v) +Bp(qn,v) =
—Bu(v,gn) + By(up, s v) =
—By(w, 1 qp) + Sp(up, ups w, ) =

0
0

where
An(p,v) := (ap,V)q, Vp,veEVy,
Bu(p.v) := (p.V)aq,» vp,vEVy,
Bp(w, l;v) := —(w,V-v) g, + (L, v-m)sq  Y(V,w,u) € V), x Wy x M,
Sp(@,A;w,u) == (t(®@—1),w—U)j0, Y(w,A), (w, 1) € Wy, x Mj,.

Thanks to the structure of the method, it is easy to see that the solution (g, up, i) €
V), X Wy, X My, (up) minimizes the functional

1
Tn(vow, i) := S ARV V) + S (w, iw, 1)} = (f,w) g, (5)

over the functions (v,w,u) in the space V;, x W), x Mj,(up) such that there exist
qn = qu(v,w, 1) € Vp, such that

Ap(v,p) +Bi(qn.p) =0 Vp eV, (5b)
—Bu(p,v) +By(w,11;p) =0 Vp € V. (5¢)

Once again, Note that the last two equations can be interpreted as the elimination
of (q,gp) from the equations. The minimization problem would then be one on the
affine space W), x M;,(up) and would correspond to a problem formulated solely in
terms of u;, and uy,. Next, we explore such reformulation.
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4.3.2 Formulation in terms of (1, ),)

We eliminate the approximate gradient g; and the approximate flux q; from the
equations defining the HDG method in order to formulate it solely in terms of
(up, uy,). To achieve that, we simply rewrite g, and q;, as a linear mappings applied
to (uy, uy). These mappings are defined by using the first equation defining the HDG
methods. Thus, for any (w, i) € W;, x Mj, we define (G, u, Qu.p) € Vi, X V), as the
solution of

- NIE) n s h ) h = s
(G V), — W, Vov)g, +(1,v-m)yo, =0 VveYV,
(Qw,/,uv)ﬂh = _(a Gw,u,v)[)h Vvev,

In this way, we are going to have that (qj.gs) = (Q,, 5, Gy, 3, )- Note that these two
equations are nothing but a rewriting of equations (5b) and (5¢).

Static condensation formulation

We have the following result.

Theorem 8 (Second characterization of HDG methods). The approximate solu-
tion of the HDG method is given by

(@8- un) = (Q.G,U) = (Qu, -Gu, ;- Vi) + (Quy0-Guyo, Uyp),

up,

where, on the element K € , for any u € L*(K) and f € L*(K), the functions
Uy, Uy € W(K) are the solutions of the local problems

(aGUu,u»Gw,O)K+<T(Uu_u>’w>8K:O VWEW(K),
(@Gu,0,Gwo)k +(t(Uyp).whox = (fiw)x  Ywe W(K),

respectively. The function uy, is the element of My, (up) such that
ap(up, p) = Cy(1) V€ My(0),
where ap(U,A) == _<“’6Uzl ‘m)yq,, and l,(L) == <.Ua6Uf,0 ‘n);q,. Moreover,

an(p,A) = (aGu, 1, Gu, 1)aq, + (U — 1, 7(Ux —A))ag,,  €u(p)= (f,Up),

and ay(-,-) is symmetric and positive definite on My, (0) x M,(0). Thus, i, minimizes
the functional Jy(W) == Yan(p, 1) — 4(p) over My (up).
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Compact formulation

Finally, we display the compact form of this formulation of the HDG method. We
have that (qy.g,) = (Qu,.4, Gu,.a,) Where (up,u,) € Wy, x My (up) is the solution of

(@G> Guwp) o, H(T(un —up),w — ) oq, = (fw)a, ¥Y(w, 1) € Wy, X My (0).  (6)

In other words, (uy, ity,) is the only minimum over W, x M;,(0) of the functional

Iiw, 1) = 5 {(2 G Guge), + {200~ 1) w— o} — (F:wa,

This is exactly the minimization problem (5).

5 Using Neumann instead of Dirichlet boundary conditions

In the previous two sections, we have shown how a characterization of the exact
solution can be used to generate HDG methods. Here we show how a different
characterization of the exact solution can be used to produce a different static con-
densation, that is , a different way of implementing, an already known HDG method.

We proceed as follows. First, we present a characterization of the exact solution
which uses Neumann boundary-value problems instead of the Dirichlet boundary-
value problems to define the local problems. Then, we consider some HDG methods
devised in the previous sections and show how a discrete version of the new charac-
terization of the exact solution is nothing but a new way of implementing them. The
resulting form of the HDG method has already been used in the work on multiscale
methods in [50]. Recently, two different ways of statically condensing the very same
method were proposed in [49].

The idea of using different characterizations of the exact solution to devise HDG
methods was introduced back in 2009 in [23] where four different ways were pre-
sented to devise HDG methods for the vorticity-velocity-pressure formulation of the
Stokes system, as the exact solution could be characterized in terms of four different
local problems and transmissions conditions. Just as it happens with the exact solu-
tion, the very same HDG method could be obtained by using any of the four ways.
In other words, the HDG method could be hybridized and then statically condensed
in each of the above-mentioned four different manners.

5.1 A second characterization of the exact solution

Let us then show how to use local Neumann boundary-value problems to obtain a
characterization of the exact solution.
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Suppose that, for every element K € Q,, we define (Q,U) as the solution of the
local problem

cQ+VU=0 inkK,
V-Q=f+{{@nl)sk—(f.1)k}/IK| inKk,
Q~n:fi.n on 0K,

(U, 1)1( = (ﬁ, 1)1(,

where we want the function q, which has a single-valued normal component, and
the constant %, to be such (q,u) = (Q,U) on K. This happens if and only if q and u
satisfy the equations

[Ul=o0 for F € Fi,
@1k =(f.1)k forKeT,
U=up for F € 3’"}‘?.

Note that we have to provide the average to U on the element, u, otherwise the solu-
tion U is not uniquely determined. Note also that, we have had to add an additional
term to the right-hand side of the second equation in order to ensure that the local
problem has a solution for any boundary data q-n. As a consequence, we have to
make sure that such term is zero. This explains why the global problem consists not
only of transmission and boundary conditions, as in the case of Dirichlet boundary-
value local problems.

If we now separate the influence of , and f, we readily get the following char-
acterization of the exact solution.

Theorem 9 (Characterization of the exact solution). We have that

where (Qg,Ug) and (Qy,Uy) are the solution of the local problems

CQaJrVUa:O nk, CQf+VUf:O inkK,
V-Qg=(a-n1)yk/|K| inKk, V-Qy =f—(f.Dk/IK| inK,
Qi-'n=g-n on dK, Q/n =0 on K,

(Ug. Dk =0, (Up,)x  =0.

where the functions q - n and U are determined as the solution of the equations

—[Ug] — [[@]) = [U/] on F,
@n1)ok=(f. Dk for K € T,
Ugtu=—-Us+tup on "J"g.
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5.2 An example

31

In the case of our one-dimensional example, this result reads as follows. We have

that
(q.u) = (Qg,Ug) +(0,7) + (Qy, Uy),
where
d . d .
CQG‘*‘aUﬁ:O in (xi-1, %), CQf"l‘an:O in (xi—1,%;),
d | N . d 1 .
= h*f(‘li*‘lm) in (xi—1,%7), S == - fooin (xienx),
Qa'n:a'n on {xifl,xi}, Qf'n:O, on {xi,l,xi},
/iUﬁZO, [Uf: .
Xi—1 Jxio

i

and where the functions q and % are the solution of
Ug (") = Ug() + i1 = i1 = =Up(x") +Up(x;)  fori=1,....,N—1,
X
ﬁrﬁ;q:/ f fori=1,....N—1,
Xi-1

i

Ug(xg) +11 2 = —Us(xg ) +up(xo),
+
0

Ua(x;/) +EN—1/2 = —Uf(x )+uD(xN).

Since the solution of the local problems are
Qq(9) = P0G+ 911 (0 1. Q) =~ [ Gitxs) f(s)ds,

Uat) = gL~y i} U = [ Gl fls)as.

i

where G' is the Green’s function of the second local problem, namely,

Gilas) = L[1=3¢(s) =3¢ (x)]  ifxi1 <s<wx
S1=3¢7(x) =392 (s)] ifx<s<x
and y; :=1— 3(pi2, and where the functions q and # are the solution of

chiyy
6

chi . ~
?l(qifl +2q;) +

ai,qH:/ 7 fori=1,...
JXi-

chy , .~ _

¢ @ +a) +1/ = ~Uy(x) +up(x0).
ChN o~ ~ _ _

?(QN—l —2qy) —uy_1y2 = Us(xy) —up(xn).

(zz]\,- +ai+1) FUip12 —Uimyp = 7Uf(xi+) + Uf(xf) fori=1,...
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5.3 Another static condensation of known HDG methods

Let us consider the HDG methods introduced in Section 3. Next, we show that those
methods can be statically condensed in the way suggested by our new characteriza-
tion of the exact solution.

5.3.1 Rewriting the compact formulation based on the numerical traces

First, we rewrite them in such a way that the numerical trace ah, and not uy,, is an
independent unknown. We can do that very easily if we use the compact formulation
of those methods based on the numerical traces, (3). It states that the approximate
solution given by the HDG method is the function (qp, up, %) € Vi, X Wy, X M, (up)
satisfying the equations

(can.V)a, — (un,V-V)q, + (U, v-m)s, =0 Vv € Vy,
—(qn, VW) g, + (@, m,w)50, = (f-w)a, YweW,,
qp-n:=qp-n+ t(u, — i) on 042,

(1.4, m)gq, =0 v € M(0).

Now, if we take the stabilization function 7(-) to be the simple multiplication by the
scalar function 7, we have that

ﬁh:uh—k’fl(qh-n—ﬁhm) on d£,.
If the local space V(K) x W(K) is such that, for each face F of the element K,

V(K)-n|p C M(F),
W(K)|r C M(F),

and take 7 to be constant on each face of the triangulation, we have that g, belongs
to the space

N, :={veL*F,): v-n|yx € M(IK), [v] =0o0nT:}.

We can thus rewrite the HDG method as follows. The approximate solution given
by the HDG method is the function (qp,us,q),) € Vi X W), X Ny, satisfying the equa-
tions

(can. V)@, = (un,V-¥)q, + (Un,v-myq, =0 YV EVy,
—(qn. VW), + (@, n,w)o0, = (f.w)a, Yw € W,
i =up+7 ' (qy-n—@j-n) on 9,

(ﬁh,v~n)39h = <MD,V~1‘I>3_Q Vv € N;,.
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Note that the last equation enforces both the single-valuedness of u;, as well as the
Dirichlet boundary conditions of the model problem (1).
5.3.2 The new static condensation

So, suppose that, for every element K € ), we define (Q,U) € V(K) x W(K) to be
the solution of the local problem

(cQ, )k — (U,V-V)k+ (U,v-n)yr =0 Vv e V(K),
QW)+ (@ mw— Whag = (fow—T)ox Vi € W(K),
U:=U+7'(Q=q,)n on dK,

(U, 1)1( = (ﬁh, 1)1(,

where W[k := (w, 1)x/|K|, and where we want to take q;, € N, and the piecewise
constant function #, such that (qy,u;,) = (Q,U). Clearly, this happens if we have
that (q,, ) is the solution of the global problem

<V-11,0>3Qh = (V-n,uD>3Q YV € Ny,
(@, n.1)ox = (f.1)ox VK€ Q.
Separating the influence of q, from that of u, and f, we obtain the following,

new static condensation of the HDG method. In what follows, W, denotes the space
of real-valued functions which are constant on each element K € £;,.

Theorem 10 (New static condensation of HDG methods). The approximate solu-
tion of the HDG method is

(qp,un) = (Q.U) = (Qg,,Ug,) + (0,1) + (Qf, Uy),

where, for each element K € &, for any | € L*(9K), the function (Qq.Ugp) €
V(K) x W(K) is the solution of the local problem

(cQn.V)k — (Un,V-V)k + (Up,v-n)ox =0 Vv € V(K),
—(Qn.VW)k+ (M n,w—w)x =0 Vwe W(K),
Up:=Up+7'(Qq—n)n on 9K,
(U, g =0,

and, for any f € L*(K), the function (Q;,Uy) € V(K) x W (K) is the solution of the
local problem
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(cQpV)k — (Up, V-v)g+ (Up,v-m)yg =0 Vv e V(K),
—(Qr.VW)k = (fiw—W)ox  Ywe W(K),
Uf = Uer‘L'_le'n on JK,
(Up, 1k =0,

and where (q,,,1,) € Nj, x Wy, is the solution of the global problem

an(@y, V) + by (iR, V) = ly(V) — (up,V-m)gq VYV EN,
by, (6 a ) (f, (l))Qh Yo € Wh,

where
ah(ﬂ,V)3:*<V‘n’Un>th, bp(@,v) :=—(v-n,0)50,, éh(v)::<v~n,Uf>th_
Moreover,

an(M,v) = (cQn,Qv)oq, +((Qp—1) n, T H(Qv—V) ‘moq,, (V)= (f,Uv)q,

and q;, minimizes the complementary energy functional

DY) = 3 (V.¥) ~ (V) + (up,v 1),

over the functions v € Ny, such that by(@,v) = (f,®)q, VO € W),

The proof of this result goes along the very same lines of the proof of the character-
ization Theorem 5.

5.3.3 The stabilized mixed compact formulation

Let us end this section by displaying the compact formulation of the method ob-

tained when we eliminate the numerical trace u;,. Proceeding as for the first charac-

terization, we can obtain that the approximate solution given by the HDG method is
the function (qp,us,qy,) € Vi X Wy, x N, satisfying the equations

Ap(an V) + Sp(Qn Q3 V. V) + By (up: v, V) = —(up, vV -m) 0, . (7a)

=B (w;qi,qy) = (f.w) @, (7b)

for all (v,w, V) € V, x W, x N;,, where

An(p.v) == (cp.V)g, Vp.v €V, (7c)
Bh(w \A V) (VW V)Ql <W, \'E n>agh V(V,W, V) €V, xW, xNy, (7d)
)=

Su( MV, V) == ((P—N)-0,7 ' (v=V)-n)a0, V(p,N),(v,V) € Vi x Ny (Te)
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As a consequence, the solution (qy,q;,) € V;, X N; minimizes the complementary
energy functional

1
In(v,v) = E{Ah(v,v) +8h(V, ViV, V) } +(up, v -m)50,

over all functions (v, 1) in V;, x M, (up) such that B, (w;v,v) = (f,w) Yw € Wj,.

6 Building bridges and constructing methods

Here, we briefly discuss the evolution of the HDG methods. We being by show-
ing that (some of the earliest) HDG methods can be seen as a particular case of
the DG methods introduced in 1998 [39] and analyzed in 2000 [4]. We then recall
the strong relation between the HDG and the mixed methods, already pointed out
in 2009 [24], and show how this relation drove (and is still driving) the develop-
ment of superconvergent HDG methods. The bridge built in 2014 [13] between the
HDG and the so-called staggered discontinuous Galerkin (SDG), a DG method in-
troduced in 2009 [14] and apparently unrelated to the HDG methods, can be seen
as part of this development. We discuss the stabilization introduced by Lehrenfeld
(and Schoberl) in 2010 [63]. We end by showing that the so-called Weak-Galerkin
methods proposed in 2014 [89] and in 2015 [66, 67], are nothing but rewritings of
the HDG methods.

6.1 Relating HDG to old DG methods

Here, we consider HDG methods whose numerical method defining the local prob-
lems is the so-called local discontinuous Galerkin (LDG) method introduced in [39].
The resulting HDG methods are then called the LDG-H methods. For all of them,
the stabilization function 7 on any face F' € J, is a simple multiplication by a con-
stant which we also denote by 7, that is,

q, n:=qu-n+7-(u,—u,) onadLy,.

Examples of local spaces, taken from [24], are shown in the table below.
Method V(K) W(K) M(F)

LDG-H Py (K) Pi(K) Pi(F)
LDG-H Pi(K) PuK) Pu(F)
LDG-H Pi(K) Pi1(K) Pi(F)

In all these cases, we have that the local spaces V(K) x W(K) are such that, for each
face F of the element K,
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V(K) -n|r C M(F),
W(K)|r C M(F).

This implies that [[qp]] € M), and the transmission condition becomes [[q;,]] = 0 on
F},- This can only hold if and only if, on 3,

~ Tru T T u, 1

e T Th4 1T lan]
- T qt Tt Tttt

b= Tt 41 ]

This implies that the DG methods introduced in [39] and analyzed in [4] that have
the above choice of numerical traces can be hybridized and then statically con-
densed. This is why we call these methods the hybridizable DG methods.

Note, that none of these LDG-H methods is an LDG method if we take t* €
(0,00) since for the method to be an LDG method, we must have that 1 /(7" +77) =
0. This shows that none of the DG methods considered in [3] is an LDG-H method
with finite values of the stabilization function. In fact, these methods can converge
faster than any of the DG methods considered therein. For example, in the case in
which ¢ = Id, V(K) x W(K) = Pi(K) x P(K) and M(F) = P¢(F) this LDG-H
method was analyzed in [4], where is was proven that, for arbitrary shape-regular,
polyhedral elements, q; converges with order k+ 1/2 and u;, with order k+ 1, for
any k > 0, provided 7 is of order one. The convergence is in the L?(£)-norm. On the
other hand, other LDG-H methods do have the same order of convergence than those
considered in [3]. Indeed, by using the same approach in [4], one can easily show
that in the case in which V(K) x W(K) = Py_1(K) x Px(K) and M(F) = P(F),
q;, converges with order k and u;, with order k+ 1, for any k > 1, provided 7 is of
order 1/h. This result holds for meshes made of general shape-regular, polyhedral
meshes.

6.2 Relating HDG to mixed methods

As pointed out in [24], if the stabilization function 7 is taken to be identically zero
so that g, -n = qy, - n on F,, and the transmission condition implies that [[q,] = 0
on 5";;, we recover the so-called (hybridized version of the) mixed methods if the
mixed method is used to define the local problems; see also [2]. In the table below,
we display the main examples of mixed methods with this property when K is a
simplex and we compare it with one of the first HDG methods, the LDG-H method.
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Method V(K W(K) M(F)
RT  Pu(K)+xPe(K) Pu(K) Pi(F)
LDG-H  Puk)  Pu(K) Pu(F)
BDM Pi(K) Pr—1(K) Pi(F)

The strong relation between the mixed method and the HDG methods suggested
that the HDG methods might share with the mixed methods some of its convergence
properties. This was proven to be true for a special LDG-H method obtained by
setting T = 0 on all the faces of the simplex K except one. This method, called
the single face-hybridizable (SFH) method, was introduced and analyzed in [18].
Therein, it was shown that the SFH method is strongly related to the RT and BDM
mixed methods. Indeed, the bilinear forms a (-, -) of the RT, BDM and SFH methods
are the same, and the SFH shares with the RT and BDM the same superconvergence
properties.

Next, we briefly describe this superconvergence property. For all of the above
methods, the local averages of the error u — uy,, converge faster than the errors u —
u, and q — q;. As a consequence, we can define, on the each element K, the new
approximation uj; € W*(K) := Pr1(K) as the solution of

(Vu, Vw)g =— (cqu, Vw)k for all w € W*(K),

(upy, Vg =(up, 1)k,

Then u — uj, will converge faster than u — u;,. The orders of convergence are dis-
played in the table below; see [18] for the results on the SFH method and [26] for
those on the general LGD-H method. The symbol  indicates that the non-zero val-
ues of the stabilization function 7 only need to be uniformly bounded by below.

Method T qr, Up u, k

RT 0 k+1k+1k+2>0
SFH * k+1k+1k+2>1
LDG-H O(1) k+1k+1k+2>1
BDM 0 k+1 k k+2>2
LDG-H O(1/h) k k+1k+1>1

6.3 The SDG method as a limit of SFH methods

In [13], it was proved that the staggered discontinuous Galerkin (SDG) method,
originally introduced in the framework of wave propagation in [14], can be obtained
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as the limit when the non-zero values of the stabilization function of a special SFH
method goes to infinity. The special SFH method is obtained as follows. The mesh
consists of triangles or tetrahedra subdivided into three triangles or four tetrahedra.
On the faces of the bigger simplexes, the stabilization function is not zero; it is equal
to zero on all the remaining faces.

By building this bridge between the SDG and the SFH methods, the SDG can
now be implemented by hybridization and can share the superconvergence prop-
erties of the SFH method. Similarly, the SFH method now share the (related but
different) superconvergence property of the SDG method.

6.4 Constructing superconvergent HDG methods

The first superconvergent HDG method was the SFH method. A systematic ap-
proach to uncover superconvergent HDG methods was undertaken in [31] where
the following sufficient conditions were found. The space V(K) x W (K) must have
a subspace V(K) x W (K) satisfying inclusions

Po(K) C VW(K) C V(K),
Po(K) C V-V (K) C W(K),
V(K)-n+W(K) C M(IK).

and whose orthogonal complement satisfies the identity

~1 ~-L
VioneW = M(IK).

Let us present examples taken from [31] in the case in which K is a cube; the first
corresponds to the choice M(F) = Q*(F) and the second to the choice M(F) =

Pr(F).
M(F) = Q4(F).k>1
method V(K) W(K)

RT[k] j)k+l,k,k K

TNT, 04(K) @ HA(
HDG{) 0 (K) & HE(K) 0“(K)
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M(F) = Py(F).k > 1
method V(K) W(K)

BDFMy, P RN\P (1,2)  Ph(K)
X(Pk+1 (K)\f})k+l( Z)
><ka+1( )\j)k+1( )

HDGY PHK) PK(K)
@V x (yz PK(K),0,0)
DV x (0,2 PH(K),0)

BDM|, PHK) PL(K)

k=2 @V x(0,0,xyP¥(y,z2))
&V x (0,xz P(x,y),0)
eV x (yz P¥(x,2),0,0)

In the first example, the HDG method denoted by HDG[Qk] and the mixed method
denoted by TNT] are new. The 7-dimensional space H';(K ) is obtained by adding
a basis function to the space H’g(K ). The precise description of these spaces can be
found in [31] or, better, in [41], where commuting diagrams for the TNT elements
on cubes were obtained for the DeRham complex.

In the second example, the HDG method denoted by HDGfZ] is new. In the
corresponding table, we abuse the notation slightly to keep it simple. Thus, by
PEHL(K)\PE (y,2) we mean the span of {x®yPz7: a+B+y<k+1,a>0}.

In [31], many new superconvergence HDG methods were found for simplexes,
squares, cubes and prisms. For curved elements, see [32].

6.5 The Lehrenfeld-Schoberl stabilization function

Let us recall that the case in which M(F) := P¢(K) and V(K) X W(K) :=Pj_1 (K) x
Pi(K), and the stabilization function 7 is the multiplicative stabilization function,
namely,

T(up —up) = T (up — up,),

the resulting method is an LDG-H method. Moreover, for arbitrary shape-regular,
polyhedral elements, we have that q;, converges with order k and u;, with order k+ 1,
for any k > 0, provided 7 is of order 1/h. Since the size of the stiffness matrix of
the local problem is proportional to the number of faces of the triangulation times
the dimension of the space M(F), a reduction of the space M(F) would result in a
smaller global problem. The question is if this is possible to achieve without loosing
the convergence properties of the method.

In 2010, Ch. Lehrenfeld (and J. Schoberl) [63, Remark 1.2.4] noted that the an-
swer is affirmative, see also [64], if we modify the above stabilization function by
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simply projecting u;, into Mj,:
TLS(uh — it\h) =hnl. (PM(uh) —Up).

The error analysis of this HDG method was carried out in 2014 by 1. Oikawa [77]
who proved optimal orders of convergence for both q; and u;, for regular-shaped,
general polyhedral elements.

For the sake of fairness in the attribution of this simple but remarkable projection,
I would like to emphasize that it was announced in 2009 by J. Schéberl in his plenary
talk at the ICOSAHOM in Trondheim, Norway; at the 2010 Finite Element Circus
in Minneapolis, USA; and then again at Oberwolfach, Germany, February 10-12,
2012; see [85]. I personally knew about it through Ch. Lehrenfeld, who told me
about it during a Ph.D. Course in Pavia, May 28- June 1, 2010. At that time, the error
estimates obtained later by 1. Oikawa [77] were already known to Ch. Lehrenfeld
even though he did not include them in [63].

6.6 Relating HDG with the Weak Galerkin method

So far, no effort has been made to render clear the relation between the HDG and the
so-called Weak Galerkin methods. The first Weak Galerkin method was proposed
in 2013 [88] in the framework of convection-diffusion-reaction equations. Therein,
it is pointed out that the Weak Galerkin is identical to some mixed and HDG meth-
ods but only in the purely diffusion case and whenever the diffusivity tensor is a
constant. This is not an accurate statement which will be discussed elsewhere since
it requires addressing issues related to the convective and reaction terms. Instead,
here we restrict ourselves to discussing other versions of the Weak Galerkin method
devised specifically for steady-state diffusion in [66, 67, 89]. We show that all these
Weak Galerkin methods are rewritings of the HDG methods.

The Weak Galerkin method proposed in 2015 [66] (deposited in the archives
in 2012), was described therein as identical to the HDG methods for the Poisson
equation. Here we show that it is also identical for the model problem under consid-
eration. Indeed, it is nothing but the compact form of the HDG methods (6) in sub-
section 4.3.2 using the multiplication stabilization function T(w—p) :=h~1.(w—pu)
and the tensor a := c ~!. Let us point out that, although the HDG methods were intro-
duced in 2009 [24] (submitted in 2007) by using the formulation with the tensor c,
the extension to the formulation with a := ¢ ~! is straightforward. In fact, as argued
in subsection 4.1, these HDG methods can be obtained by reducing to the model
problem under consideration the HDG methods for the more difficult problem of
linear and nonlinear elasticity. Specifically, the HDG methods for elasticity were
obtained in 2008 in [86] and in 2009 [87] (submitted in 2008). The Weak Galerkin
method in [66] is thus a simple rewriting of HDG methods.

The Weak Galerkin method proposed in 2015 [67] (deposited in the archives in
2013) is nothing but the compact form of the HDG methods (6) in subsection 4.3.2
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using the Lehrenfeld-Schéberl stabilization function and the tensor a := c ~!. Thus,
the Weak Galerkin method in [67] is also a simple rewriting of HDG methods.

Finally, the Weak Galerkin method proposed in 2014 [89] (submitted in 2012)
is nothing but the HDG method (7) in subsection 5.3.3 corresponding to the
Lehrenfeld-Schoberl stabilization function and the tensor c. Although the results of
subsection 5.3 have been obtained when the stabilization function is a simple mul-
tiplication, the extension to the Lehrenfeld-Schoberl function are straightforward.
Indeed, the numerical trace for the HDG method with the Lehrenfeld-Schoberl sta-
bilization is

N 1 .
q, n=gq, n+ E(PM(uh)_uh)

which implies that
Uy = Py (up) +h(qn —qy) -n.

All the results of subsection 5.3 now follow from this simple identity and from the
fact that V(K) -n|p C M(F) for each face F of the triangulation. In other words, the
Weak Galerkin method in [89] is also a simple rewriting of HDG methods.

Let us end by pointing out that, by the previous argument, the Weak Galerkin in
[89] is identical to the Weak Galerkin method in [67] when the tensors ¢ and a are
piecewise constant.

7 Bibliographical notes and ongoing work

After the introduction of the HDG methods in 2009 [24], we have extended the
methods to a variety of partial differential equations and introduced a variation of
the methods called the embedded discontinuous Galerkn (EDG) methods. The EDG
methods were introduced in 2007 [57] in the framework of linear shells, and then
analyzed in 2009 [28] for steady-state diffusion. (The HDG and EDG methods were
devised almost at the same time but the publication of the HDG methods [24] took
much more time than the publication of the EDG methods [28]).

The HDG methods for diffusion were devised and analyzed in [18, 29, 26, 34,
27, 36, 8, 31, 32, 59, 9, 10], multigrid methods for them in [21], a posteriori error
estimation for HDG methods in [43, 44, 45], and the convergence of adaptive HDG
methods in [30]. The implementation of the HDG methods in 2D was considered
in [61] and in 3D in [55]. The methods have been extended to convection-diffusion
in [20, 70, 71, 82], to the Stokes flow of incompressible fluids in [73, 72, 25, 15,
16, 81, 37, 38, 35], to the Oseen equations in [7], to the incompressible Navier-
Stokes equations in [69, 83], to the compressible Euler and Navier-Stokes Equations
[76, 78], to several problems in continuum mechanics in [57, 86, 87, 5, 6, 68, 37,
54, 60], to wave propagation in [74, 75, 33], to the biharmonic in [19] and to scalar
conservation laws in [65].

The current search for more efficient, superconvergent or optimally convergent,
HDG methods seems to be going in three main directions: (1) The refinement of
the sufficient conditions guaranteeing the superconvergence of the HDG methods
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through the so-called technique of M-decompositions [22], (2) the exploration of
the properties of the Lehrenfeld-Schoberl stabilization function [77, 79, 80, 64], and
(3) the exploration of the new, remarkable technique for devising numerical traces
for the hybrid high-order (HHO) methods [46, 48, 47].

In fact, a bridge between the HHO and HDG methods was recently established
in [17]. It would also be interesting to establish bridges with other numerical meth-
ods like, for example, the SUSHI methods [52], the elements constructed by Chris-
tiansen and Gillette [12], the BEM-based methods proposed in [84, 90], and the
methods introduced in [58] for multiscale problems.
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