
Chapter 2
An Introduction to the Theory
of M-Decompositions

Bernardo Cockburn, Guosheng Fu, and Ke Shi

Abstract We provide a short introduction to the theory of M-decompositions
in the framework of steady-state diffusion problems. This theory allows us to
systematically devise hybridizable discontinuous Galerkin and mixed methods
which can be proven to be superconvergent on unstructured meshes made of
elements of a variety of shapes. The main feature of this approach is that it reduces
such an effort to the definition, for each element K of the mesh, of the spaces for
the flux, V (K), and the scalar variable, W(K), which, roughly speaking, can be
decomposed into suitably chosen orthogonal subspaces related to the space traces
on ∂K of the scalar unknown, M(∂K). We begin by showing how a simple a
priori error analysis motivates the notion of an M-decomposition. We then study
the main properties of the M-decompositions and show how to actually construct
them. Finally, we provide many examples in the two-dimensional setting. We end
by briefly commenting on several extensions including to other equations like the
wave equation, the equations of linear elasticity, and the equations of incompressible
fluid flow.

2.1 Introduction

The theory of M-decompositions has been recently introduced as an effective tool
to systematically find the local spaces defining hybridizable discontinuous Galerkin
and mixed methods which can be proven to be superconvergent on unstructured
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6 B. Cockburn et al.

meshes made of elements of a variety of shapes. By “superconvergent” we mean
that they can provide a new approximation, computed in an elementwise manner,
which converges optimally and faster than the original approximation.

The general theory of M-decompositions was introduced in [14, 15, 27] in the
framework of steady-state diffusion problems, as a refinement of the work done in
[22]. Using some of these M-decompositions, new commutative diagrams for the
deRham complex were presented in [16]. The extension to the Stokes system of
incompressible fluid flow was done in [25], to the Navier-Stokes equations in [24],
and to linear elasticity with symmetric approximate stresses in [13]. In this paper,
we provide an introduction to the theory of M-decompositions.

We do this for HDG and mixed methods for the following steady-state diffusion
problem:

cq + ∇u = 0 inΩ,

∇ · q = f inΩ,

u = g on ∂Ω,

where Ω ⊂ Rn (n = 2, 3) is a bounded polyhedral domain, c is a uniformly
bounded, uniformly positive definite symmetric matrix-valued function, f ∈ L2(Ω)

and g ∈ H 1/2(∂Ω). The HDG methods have been thoroughly reviewed in [8].
Therein, theM-decompositionswere briefly mentioned as a step in the development
of the HDG methods. So, this paper can be considered to be a continuation of such
review.

Our intention is to introduce the main ideas about M-decompositions as simply
as possible; for a brief historical overview of the effort of devising superconvergent
methods defined on unstructured meshes, see [27]. The material of this paper is
based on three papers on the early development of M-decompositions. The first is
the work done in [22], which provides general sufficient conditions for HDG and
mixed methods to be superconvergent. The second is the work done in [27], which
refines the previous work and introduces a general theory ofM-decompositions for
steady-state diffusion problems. The third is [14], which is devoted to the actual
construction ofM-decompositions in two-space dimensions.

The paper is organized as follows. In Sect. 2.2, we begin by placing the appear-
ance of the idea of M-decompositions into historical perspective. In Sect. 2.3, we
then introduce the notion of spaces admitting an M-decomposition and show how
to use it to define hybridizable discontinuous Galerkin and mixed methods which
can be proven to be superconvergent on unstructured meshes made of elements
of a variety of shapes. In Sect. 2.4, we display our general construction of spaces
admitting an M-decomposition, and in Sect. 2.5, we give concrete examples. We
end in Sect. 2.6 by briefly describing past and ongoing extensions of this approach.
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2 An Introduction to the Theory of M-Decompositions 7

2.2 What Motivated the Appearance of the
M-Decompositions?

Here, we briefly place the appearance of the M-decompositions into historical
perspective. When the first wave of DG methods appeared around the end of last
century, they were criticized because they could not be as efficiently implemented
and could not provide as accurate approximations as the well-known hybridized
version of the mixed methods. The HDG methods were then introduced in order to
address the issue of efficient implementation. In addition, as these HDG methods
were shown to be closely related to the mixed methods, a systematic effort started
to devise HDG methods with the same superconvergence properties of the mixed
methods. The theory of M-decompositions appeared as a tool to systematically do
this.

2.2.1 DG Methods

To begin our discussion, let us define the DG methods for the model steady-
state diffusion problem. Let Th be a conforming mesh of Ω made of polygonal
(n = 2) or polyhedral (n = 3) elements K . Let ∂Ωh denote the set of boundaries
∂K of the elements K ∈ Th, Fh denote the set of faces F of the elements
K ∈ Th, and F(K) denote the set of faces F of the element K . As usual, we write
(η , ζ )Th

:= ∑
K∈Th

(η, ζ )K, where (η, ζ )D denotes the integral of ηζ over the
domain D ⊂ Rn. We also write ⟨η , ζ ⟩∂Th

:= ∑
K∈Th

⟨η , ζ ⟩∂K, where ⟨η , ζ ⟩D
denotes the integral of ηζ over the 1-codimensional domainD. When vector-valued
functions are involved, we use a similar notation.

The DG methods seek an approximation to (u, q), (uh, qh), in the finite
dimensional space Wh × V h, where

V h := {v ∈ L2(Th) : v|K ∈ V (K), K ∈ Th},
Wh := {w ∈ L2(Th) : w|K ∈ W(K), K ∈ Th},

and determine it as the only solution of the following weak formulation:

(c qh , v)Th
− (uh , ∇ · v)Th

+ ⟨̂uh , v · n⟩∂Th
= 0,

− (qh , ∇w)Th
+ ⟨̂qh · ∇ , w⟩∂Th

= (f , w)Th
,

for all (w, v, µ) ∈ Wh × V h, where the numerical traces ûh and q̂h · ∇ are suitably
defined functions of the unknown (uh, qh).

In the 2002 unified analysis of the DG methods [2], it was shown that, for
elements of general shapes and V (K)×W(K) := Pk(K)×Pk(K), the best orders
of convergence for all the DG methods treated there in were k for the error in the
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8 B. Cockburn et al.

flux ∥q − qh∥L2(Ω), which is suboptimal by 1, and k + 1 for the error in the scalar
variable ∥u − uh∥L2(Ω), which is optimal. The same results can also be obtained
with V (K)×W(K) := Pk−1(K)× Pk(K).

These orders of converge are obtained, in particular, for the following choice of
numerical traces:

ûh =
{ {{uh}}− C12 · [[uh]] + C22 [[qh]] in Fh \ ∂Ω,

g in Fh ∩ ∂Ω,

q̂h =
{ {{qh}} + C12 [[qh]] + C11 [[uh]] in Fh \ ∂Ω,

qh + C11(uh − g)n in Fh ∩ ∂Ω .
,

and C11 positive, of order h−1, C12 of order one, and C22 = 0, that is , for the
LDG method [9]. When C11 and C22 are positive and of order one, and C12 is
also of order one, it was shown in 2000 in [5] that the order of convergence of the
flux increases to k + 1/2 and that of the scalar variable remains k + 1. In 2009
in [18], when the elements are restricted to be simplexes, it was shown in that, if
C11, 1/C11, C22, 1/C22, |C12| are positive and uniformly bounded, the order of the
flux and that of the scalar variable are both k + 1 and that the error in the local
averages superconverges with order k + 2, just as happens for the approximations
of the well known RTk and BDMk mixed methods. This result was obtained by
exploiting the relation between these DG methods and the corresponding HDG
methods which we introduce next.

2.2.2 HDG Methods

The HDG methods were introduced in 2009 in [19] with the intention of obtaining
DG methods for which static condensation was guaranteed. As argued in the 2016
review in [8], this resulted in a significant reduction of the number of globally-
coupled degrees of freedom for the DGmethods, highlighted the strong link between
the HDG methods and the hybridized mixed methods, and led to new DG methods
with better accuracy than all previously known DG methods.

The HDG methods seek an approximation to (u, q, u|Fh
), (uh, qh, ûh), in the

finite dimensional spaceWh × V h ×Mh, where

V h := {v ∈ L2(Th) : v|K ∈ V (K), K ∈ Th},
Wh := {w ∈ L2(Th) : w|K ∈ W(K), K ∈ Th},
Mh := {µ ∈ L2(Fh) : µ|F ∈ M(F), F ∈ Fh},
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2 An Introduction to the Theory of M-Decompositions 9

and determine it as the only solution of the following weak formulation:

(c qh , v)Th
− (uh , ∇ · v)Th

+ ⟨̂uh , v · n⟩∂Th
= 0, (2.1a)

− (qh , ∇w)Th
+ ⟨̂qh · n , w⟩∂Th

= (f , w)Th
, (2.1b)

⟨̂qh · n, µ⟩∂Th\∂Ω = 0, (2.1c)

⟨̂uh,µ⟩∂Ω = ⟨g,µ⟩∂Ω , (2.1d)

for all (w, v, µ) ∈ Wh × V h ×Mh, where

q̂h · n = qh · n+ α(uh − ûh) on ∂Th. (2.1e)

As pointed out in [19], by taking particular choices of the local spaces V (K),W(K)

and

M(∂K) := {µ ∈ L2(∂K) : µ|F ∈ M(F) for all F ∈ F(K)},

and of the linear local stabilization function α, different HDGmethods are obtained.
If we can take α to be zero, we obtain nothing but the well-known hybridized version
of the mixed methods. This establishes a strong link between the HDG methods,
which use a non-zero stabilization α, and the mixed methods.

It can be shown, see [8, 19], that the very structure of the above weak formulation
guarantees that the only globally-coupled degrees of freedom are those of the
numerical trace ûh. This results in a very efficient implementation of the method
which provides a significantly smaller stiffness matrix in comparison to that of all
other DG methods.

It can also be shown that the HDG methods are strongly related to previously
introduced DG methods. For example, if we take for V (K) ×W(K) := Pk(K) ×
Pk(K) and M(F) := Pk(K), and the stabilization function as α(µ) := τ µ, where
τ is a constant on each face, it can be easily shown that the resulting HDG method
is nothing but a classic DG methods with the following numerical traces:

ûh =
{

τ+
τ++τ− u

+
h + τ−

τ++τ− u
−
h + 1

τ++τ− [[qh]] in Fh \ ∂Ω,

g in Fh ∩ ∂Ω,

q̂h =
{

τ−
τ++τ− q

+
h + τ+

τ++τ− q
−
h + τ+τ−

τ++τ− [[uh]] in Fh \ ∂Ω,

qh + τ (uh − g)n in Fh ∩ ∂Ω .
,

To illustrate the convergence properties of this method, let us consider the model
problem

−∆ u = f in Ω,

u = g on ∂Ω,
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where Ω is a unit square, and the exact solution is u(x, y) = sin(2πx) sin(2πy).
In the table below, we display a history of convergence for the case k = 1 for
three different types of meshes and τ = 1. We display the L2(Ω)-norm of the error
between the exact solution u and a local postprocessing u∗h, see [32, 40, 41], defined
on the elementK as the polynomial of degree k + 1 such that

(∇u∗h,∇w)K = −(c qh,∇w)K ∀ w ∈ Pk+1(K), and (u∗h, 1)K = (uh, 1)K .

For this HDG method, C11 = C22 = 1, C12 = 0. The results of the first
column fully agree with the theoretical predictions in [18] which, for triangular
meshes, ensures that the flux converges with order k + 1 and that the local averages
superconverges with order k + 2; the local postprocessing thus must converge with
order k + 2, as we see in the table. For polygonal meshes, we cannot rely on the
theoretical predictions in [5] which only guarantee an order of convergence of the
flux of k + 1/2 and that of the scalar variable is k + 1.

Thus, we see that the optimal order of convergence for u∗h of 3 = k + 2 holds
only for triangular meshes and deteriorates as the number of sides of the element
increases. This raises the question of how to achieve the superconvergence of the
local averages independently of the shape of the elements.

h ∥u− u⋆h∥Th
Rate ∥u− u⋆h∥Th

Rate ∥u− u⋆h∥Th
Rate

τ = 1
0.1 0.15E−2 – 0.83E−2 – 0.52E−2 –
0.05 0.18E−3 3.06 0.16E−2 2.36 0.10E−2 2.34
0.025 0.23E−4 3.03 0.28E−3 2.52 0.19E−3 2.43
0.0125 0.28E−5 3.02 0.44E−4 2.68 0.35E−4 2.46

2.2.3 Local Spaces or Stabilization Functions

The theory of M-decompositions allows us to answer to this question. Roughly
speaking, this theory provides an explicit construction of the smallest number of
basis functions one has to add to the local spaces of the approximate flux so
that the resulting method becomes superconvergent. Once the new local spaces
are found, the theory automatically constructs two mixed methods whose local
spaces “sandwich” the new found spaces. Thus, we can also consider the theory
of M-decompositions as a systematic way of constructing superconvergent mixed
methods.

The emphasis of the approach based onM-decompositions is on the construction
of the local spacesV (K)×W(K) and the trace spaceM(∂K). It is not on the how to
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2 An Introduction to the Theory of M-Decompositions 11

determine a stabilization function α which could render the resulting HDG method
superconvergent. This second approach represents an complementary alternative to
the theory ofM-decompositions and is being currently developed. For more details,
we refer the reader to before-the-last paragraph of the Introduction in [27].

Here, let us end by briefly mentioning the main contributions to this alternative.
Lehrenfeld-Schöberl proposed a new, relatively simple stabilization function back
in 2010 in [33, Remark 1.2.4]. The corresponding HDG method was then proven
to be superconvergent by Oikawa in 2015 in [34]; see the extension to Stokes in
[35]. In a parallel, independent effort, a new, sophisticated stabilization function α
was identified in 2015 in [23] which is associated to the hybrid high-order (HHO)
methods introduced in 2014 in [29] and in 2015 in [28] (for linear elasticity). See
also [36] for an extension to the linear elasticity equations with strong symmetric
approximate stresses, and [37] for the Navier-Stokes equations.

2.3 TheM-Decompositions

In this section, we show that when the local spaces V (K)×W(K) admit anM(∂K)-
decomposition for every element K ∈ Th, the associated HDG or mixed methods
are superconvergent on unstructured meshes.

In what follows, to simplify the notation, when there is no possible confusion,
we do not indicate the domain on which the functions of a given space are defined.
For example, instead of V (K), we simply write V .

2.3.1 Definition

To define theM-decomposition of the space

V ×W ⊂ {v ∈ H (div,K) : v · n|∂K ∈ L2(∂K)}×H 1(K),

we need to consider the combined trace operator

tr :V ×W −→ L2(∂K)

(v, w) -−→ (v · n+w)|∂K

where n : ∂K → Rd is the unit outward pointing normal field on ∂K .

Definition 2.1 (The M-Decomposition [27] ) We say that V × W admits an M-
decomposition when

(a) tr(V ×W) ⊂ M ,
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12 B. Cockburn et al.

and there exists a subspace Ṽ × W̃ of V ×W satisfying

(b) ∇W ×∇ · V ⊂ Ṽ × W̃ ,

(c) tr : Ṽ ⊥ × W̃⊥ → M is an isomorphism.

Here Ṽ⊥ and W̃⊥ are the L2(K)-orthogonal complements of Ṽ in V , and of W̃ in
W , respectively.

Although it can be proven that we must have W̃ = ∇ · V , the space Ṽ is not
unique. However, it is always possible to choose Ṽ as indicated in the following
result which is expressed in terms of the following space of solenoidal, H (div,K)-
bubbles:

Vsbb := {v ∈ V : ∇ · v = 0, v · n|∂K = 0}.

Proposition 2.1 (The Canonical M-Decomposition [27]) If the space V × W

admits an M-decomposition, then it admits an M-decomposition based on the
subspaces

Ṽ = ∇W⊕Vsbb (orthogonal sum), W̃ = ∇ · V .

Of course, it is far from obvious that spaces V ×W admittingM-decompositions
can lead to superconvergent HDG and mixed methods. To see that, we need to carry
out the error analysis of the methods with the help of a projection we define next.

2.3.2 The HDG-Projection

We define this auxiliary projection in terms of the L2(∂K)−projection intoM(∂K),
which we denote by PM .

Definition 2.2 (The HDG-Projection [22] ) Let (q, u) be smooth enough so that
their boundary traces are in L2(∂K). Let V ×W admit anM-decomposition. Then,
the pair Πh(q, u) = (ΠV q,ΠWu) ∈ V ×W defined by the equations

(α) (ΠWu,w)K = (u,w)K ∀w ∈ W̃ ,
(β) (ΠV q, v)K = (q, v)K ∀v ∈ Ṽ ,
(γ ) ⟨ΠV q · n+ α(ΠWu− PMu),µ⟩∂K = ⟨q · n, µ⟩∂K ∀µ ∈ M ,

is the HDG-projection associated to the M-decomposition and to the stabilization
operator α : L2(∂K)→ L2(∂K).

Note that, when the stabilization function α is zero, we obtain nothing but the
well-known projection used for the analysis of the mixed methods. The HDG-
projection is thus an extension of such projection. Indeed, for any w ∈ W , we

cockburn@math.umn.edu



2 An Introduction to the Theory of M-Decompositions 13

have

(ΠW∇ · q, w)K = −(q,∇w)K + ⟨q · n, w⟩∂K
= −(ΠV q,∇w)K + ⟨ΠV q · n+ α(ΠWu− PMu),w⟩∂K
= (∇ · ΠV q, w)K + ⟨α(ΠWu− PMu),w⟩∂K,

and if we define LW(m) as the element ofW such that

(LW(m),w)K = ⟨m,w⟩∂K ∀w ∈ W,

we can write

ΠW∇ · q = ∇ · ΠV q + LW(α(ΠWu− PMu)).

This extends to our framework the commutativity properties of the projectionsΠW

and ΠV for the mixed methods, that is, for the case in which we can take α = 0.
Next, we provide a sufficient condition on the stabilization function α ensuring

that the HDG-projection is actually well defined.

Proposition 2.2 (The HDG-Projection [22]) Let V × W admit an M-
decomposition. Then the auxiliary HDG-projectionΠh is well defined if we take the
linear stabilization operator α : L2(∂K)→ L2(∂K) such that

w ∈ W̃⊥ : ⟨α(w),w⟩∂K = 0 0⇒ w = 0.

This result shows that we can take the stabilization function α equal to zero
whenever W̃⊥ = {0}. In this way, the stabilization function α can be linked to the
gap betweenW and W̃ = ∇ ·V . To measure such a gap, we introduce the following
number, which is nonnegative because of the inclusion property (b).

Definition 2.3 (The S-Index) The S-index (“S” for stabilization) of the space V ×
W is the number

IS(V ×W) := dimW − dim∇ · V .

Note that by the inclusion condition (b), IS(V × W) is a natural number. It is
zero if and only if W̃⊥ = {0} in which case we can take α = 0.

Proof (of Proposition 2.2) Let us start by noting that the system defining the
projection is square. The number of equations is dim Ṽ + dim W̃ + dimM and the
number of unknowns is dimV + dimW . Let us show that these numbers coincide.
Since V × W admits an M-decomposition, there are spaces Ṽ and W̃ satisfying
property (c), and so

dimM = dim Ṽ
⊥ + dim W̃⊥.
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14 B. Cockburn et al.

This implies that dim Ṽ + dim W̃ + dimM = dimV + dimW, and so the system is
square.

Now we only have to set (q, u) = (0, 0) and prove that the only solution is the
trivial one. In this case, we get that

(ΠWu,w)K = 0 ∀w ∈ W̃ ,

(ΠV q, v)K = 0 ∀v ∈ Ṽ ,

⟨ΠV q · n+ α(ΠWu),µ⟩∂K = 0 ∀µ ∈ M,

whichmeans thatΠV q ∈ Ṽ ⊥ and thatΠWu ∈ W̃⊥. Since, by property (a),W |∂K ⊂
M , we can take µ := ΠWu in the third equation defining the projection to get

⟨α(ΠWu),ΠWu⟩∂K = −⟨ΠV q · n,ΠWu⟩∂K
= (∇ · ΠV q,ΠWu)K + (ΠV q,∇ΠWu)K

= 0,

by the inclusion properties (b), since ∇ · ΠV q ∈ ∇ · V ⊂ W̃ and since ∇ΠWu ∈
∇W ⊂ Ṽ . Therefore, by the assumption on the stabilization function α, it follows
that ΠWu = 0. Finally, by property (a), since V · n|∂K ⊂ M , we can take µ :=
ΠV q · n in the third equation defining the projection to get

⟨ΠV q · n,ΠV q · n⟩∂K = 0,

which implies, by property (c), that ΠV q = 0 since ΠV q ∈ Ṽ ⊥. This completes
the proof.!

2.3.3 Estimates of the Projection of the Errors

Next, we find the equations of the projection of the errors:

eq := ΠV q−qh, eu := ΠWu−uh, eq̂ ·n := PM(q ·n)−q̂h·n, eû := PM(u)−ûh.

We show that the definition of anM-decomposition and that of the HDG-projection
are tailored to the numerical schemes under consideration.

Since the exact solution also satisfies the weak formulation defining the HDG
method, we can write that

(c (q − qh) , v)Th
− (u− uh , ∇ · v)Th

+ ⟨u− ûh , v · n⟩∂Th
= 0,

− (q − qh , ∇w)Th
+ ⟨q · n− q̂h · n , w⟩∂Th

= 0,
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2 An Introduction to the Theory of M-Decompositions 15

⟨q · n− q̂h · n, µ⟩∂Th\∂Ω = 0,

⟨u− ûh, µ⟩∂Ω = 0,

for all (w, v, µ) ∈ Wh × V h ×Mh, where q̂h · n = qh · n + α(uh − ûh) on ∂Th.
But, we have that

⟨u− ûh , v · n⟩∂Th
= ⟨eû , v · n⟩∂Th

by property (a),

⟨q · n− q̂h · n , w⟩∂Th
= ⟨eq̂ · n , w⟩∂Th

by property (a),

(u− uh , ∇ · v)Th
= (eu , ∇ · v)Th

by properties (α) and (b),

(q − qh , ∇w)Th
= (eq , ∇w)Th

by properties (β) and (b),

eq̂ · n = eq · n+ PMα(eu − eû) on ∂Th,

by property (γ ), and so, we get that

− (eu , ∇ · v)Th
+ ⟨eû , v · n⟩∂Th

= −(c (q −ΠV q) , v)Th
,

− (eq , ∇w)Th
+ ⟨eq̂ · n , w⟩∂Th

= 0,

⟨eq̂ · n, µ⟩∂Th\∂Ω = 0,

⟨eû, µ⟩∂Ω = 0,

for all (w, v, µ) ∈ Wh × V h ×Mh.
We immediately see that if the right-hand side of the first equation is zero, then

the all the projection of the errors are zero. This means that all of them are controlled
by the size of the approximation error q −ΠV q. In particular, the standard energy
argument, obtained by setting (v, w,µ) := (eq , eu, eû) and adding the equations,
and noting that eû|∂Ω = 0, gives that

(c eq , eq)Th
+ ⟨α(eu − eû) , eu − eû⟩∂Th

= −(c (q −ΠV q) , eq)Th
.

In fact, it is possible to prove the following estimates.

Theorem 2.1 (A Priori Error Estimates) Suppose that for every K ∈ Th, the
space V (K) × W(K) admits an M(∂K)-decomposition and that the stabilization
function α satisfies the following properties:

(i) w ∈ W̃⊥(K), ⟨α(w),w⟩∂K = 0 0⇒ w = 0,
(ii) ⟨α(µ), µ⟩∂K ≥ 0 for all µ ∈ M(∂K),
(iii) ⟨α(λ), µ⟩∂K = ⟨λ,α(µ)⟩∂K , for all λ, µ ∈ M(∂K).
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16 B. Cockburn et al.

Then, we have

∥eq∥Th
≤ C ∥q −ΠV q∥Th

,

∥eu∥Th
≤ C H ∥q −ΠV q∥Th

,

where H = 1 for general polyhedral domains. For convex polyhedral domains, we
have that H = h provided

P0(K) ⊂ ∇W(K) ∀ K ∈ Th.

2.3.4 Local Postprocessing

Next, we define an elementwise postprocessing u∗h defined to converge faster than
the original approximation uh; we follow [32, 40, 41]. We take the postprocessing
u∗h in the space

W∗
h := {w ∈ L2(Th) : w|K ∈ W∗(K), K ∈ Th},

and define it as follows. On each element K ∈ Th, the function u∗h is the element of
W∗(K) such that

(∇u∗h,∇w)K =− (c qh,∇w)K ∀ w ∈ W̃∗(K)⊥,

(u∗h,w)K = (uh,w)K ∀ w ∈ W̃∗(K).

where W∗(K) = W̃∗(K) ⊕ W̃∗(K)⊥ and W̃∗(K) is any non-trivial subspace of
W̃ (K) containing constant functions. We have the following result which follows
directly from the analysis carried out in [22].

Theorem 2.2 Under the assumptions of the previous result, and if

P0(K) ⊂ ∇ · V (K) ∀ K ∈ Th,

then

∥u− u∗h∥Th
≤ ∥ΠWu− uh∥Th

+ C h (∥q −ΠV q∥Th
+ inf

ω∈W∗
h

∥∇(u− ω)∥Th
).

This result states that, once we find spaces V × W spaces admitting M-
decompositions, we still have to check the conditions

(J.1) P0(K) ⊂ ∇ · V ,
(J.2) P1(K) ⊂ W ,
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2 An Introduction to the Theory of M-Decompositions 17

in order to achieve the superconvergence of the elementwise averages and the
optimal convergence of the elementwise postprocessing.

It remains to obtain the approximation properties of the HDG-projection. We do
that next.

2.3.5 Approximation Properties of the HDG-Projection

Note that, in view of the second equation defining the auxiliary HDG-projection, one
might think that its approximation properties depend on the choice of the subspace
Ṽ . This would be rather unpleasant given that, unlike the subspace W̃ , the subspace
Ṽ of an M-decomposition is not uniquely defined. Fortunately, this is not so as we
see in the next result which is a small variation of a similar result in [22]; for the
sake of completeness, we include a proof in the Appendix. To state it, we need to
introduce the quantities

aW̃⊥ :=
{
infµ∈γ W̃⊥\{0}⟨α(µ), µ⟩∂K/∥µ∥2∂K if W̃⊥ ̸= {0},
∞ if W̃⊥ = {0},

and

∥α∥ := sup
λ,µ∈M\{0}

⟨α(λ), µ⟩∂K/(∥λ∥∂K∥µ∥∂K).

When W̃⊥ = {0}, that is, when W̃ = W , we take α := 0.
In what follows, PS denotes the L2(Ω)−projection into the space S. We use this

notation for S := V h, S := W and S := W̃ .

Proposition 2.3 (Approximation Properties of the HDG-Projection) LetV×W
admit anM-decomposition, and let the stabilization function α satisfy the condition

aW̃⊥ > 0.

Then, we have

∥q −ΠV q ∥K ≤ ∥(Id − PV ) q ∥K + C1 h
1/2
K ∥((Id − PV )q) · n∥∂K

+ C2 hK ∥(Id − PW̃ )∇ · q∥K + C3 h
1/2
K ∥(Id − PW )u∥∂K,

∥u−ΠWu∥K ≤ ∥(Id − PW )u∥K + C4 h
1/2
K ∥(Id − PW )u∥∂K

+ C5 hK ∥(Id − PW̃ )∇ · q∥K,
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18 B. Cockburn et al.

where C1 := CṼ⊥ and

C2 :=
CW̃⊥

aW̃⊥
CṼ ⊥ ∥α∥, C3 :=

(
1+ ∥α∥

aW̃⊥

)
CṼ ⊥ ∥α∥, C4 :=

CW̃⊥

aW̃⊥
∥α∥, C5 :=

C2
W̃⊥

aW̃⊥
.

Here

CṼ ⊥ := sup
v∈Ṽ⊥\{0}

h
−1/2
K ∥v∥K/∥v · n∥∂K, CW̃⊥ := sup

w∈W̃⊥\{0}
h
−1/2
K ∥w∥K/∥w∥∂K,

Note that the fact that the coercivity constant aW̃⊥ is positive implies the property of
the stabilization function α used in Proposition 2.2: this is due to the third condition
in the definition of M-decomposition. Note also that, if W = W̃ = ∇ · V , then
Ci = 0 for i = 2, 3, 4, 5 since in this case we are taking α = 0 and aW̃⊥ =∞.

2.4 A Construction ofM-Decompositions

Here, we show how to use the notion of M-decompositions to actually construct
spaces admittingM-decompositions. To do that, we begin by establishing a charac-
terization of M-decompositions which is going to be the basis for the construction.
We then apply it to show, given an element K , a space of traces M(∂K), and
a the space Vg × Wg , how to systematically construct three spaces admitting an
M-decomposition. One of them generates an HDG method whereas the other two
generate mixed methods.

2.4.1 A Characterization ofM-Decompositions

We begin by stating the main result of this section, namely, a characterization of
the M-decompositions expressed solely in terms of the spaces V × W . Roughly
speaking, it states that V ×W admits an M-decomposition if and only if the space
M is the orthogonal sum of the traces of the kernels of ∇· in V and of ∇ inW . It is
expressed in terms of a special integer we define next.

Definition 2.4 (The M-Index) TheM-index of the space V ×W is the number

IM(V ×W) := dimM − dim{v · n|∂K : v ∈ V ,∇ · v = 0}
− dim{w|∂K : w ∈ W,∇w = 0}.
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2 An Introduction to the Theory of M-Decompositions 19

Theorem 2.3 (A Characterization of M-Decompositions) For a given space of
tracesM , the space V ×W admits anM-decomposition if and only if

(a) tr(V ×W) ⊂ M ,
(b) ∇W × ∇ · V ⊂ V ×W ,
(c) IM(V ×W) = 0.

In this case, we have the so-called the kernels’ trace decomposition identity

M = {v · n|∂K : v ∈ V ,∇ · v = 0}⊕{w|∂K : w ∈ W,∇w = 0},

where the sum is orthogonal.

Note that the subspaces Ṽ and W̃ appearing in the definition of an M-
decomposition, which were strongly associated to the very form of the HDG
methods under consideration, are not present anymore in this characterization.
This suggests that the M-decomposition can be considered to be associated to the
operators (∇·,∇) rather than to a specific numerical method.

Note also that the above result states that, if the space V × W satisfies the
inclusion conditions (a) and (b), we have that

M = CM ⊕ {v · n|∂K : v ∈ V ,∇ · v = 0}⊕{w|∂K : w ∈ W,∇w = 0},

for some subspace CM of M . This means that the dimension of CM is nothing but
IM(V ×W) and that V ×W admits anM-decomposition if and only if CM = {0},
that is, if and only if IM(V ×W) = 0.

2.4.2 The General Construction

Here, we show how to use the above result to construct spaces admitting M-
decompositions. We proceed as follows. First, given the elementK and the space of
tracesM(∂K), we pick our favorite spaceVg×Wg satisfying the inclusion properties
(a) and (b) of Theorem 2.3. Then, we construct three of spaces admitting an M-
decomposition as follows.

Step 1. We find a space δVfillM such that

(a) δVfillM · n|∂K = CM ,
(b) ∇ · δVfillM = {0},
(c) dim δVfillM = IM(Vg ×Wg).

Then, we can verify that (Vg ⊕ δVfillM)×Wg admits anM-decomposition.
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Step 2. The space (Vg⊕δVfillM)×∇ ·Vg immediately admits anM-decomposition
provided

{w|∂K : w ∈ Wg,∇w = 0} = {w|∂K : w ∈ ∇ · Vg,∇w = 0}.

In this case, we can take the stabilization function α equal to zero and so the
corresponding method is a mixed method.

Step 3. Finally, ifWg = CW ⊕∇ · Vg , we find a space δVfillW such that

(a) δVfillW · n|∂K ⊂ M ,
(b) ∇ · δVfillW = CW ,

(c) dim δVfillW = IS(Vg ×Wg).

Then we immediately have that (Vg ⊕ δVfillM ⊕ δVfillW) × Wg admits an M-
decomposition. Moreover, we can take the stabilization function α equal to zero
and so the corresponding method is a mixed method.

We summarize our construction of spaces admitting M-decompositions in
Tables 2.1, 2.2 and 2.3.

Table 2.1 Construction of spaces V × W admitting an M-decomposition, where the space of
traces M(∂K) includes the constants

V W ∇ · V
Vg ⊕ δVfillM ⊕ δVfillW Wg (if ⊃ P0(K)) Wg

Vg ⊕ δVfillM Wg (if ⊃ P0(K)) ⊂ Wg

Vg ⊕ δVfillM ∇ · Vg (if ⊃ P0(K)) ∇ · Vg
The given space Vg ×Wg satisfies the inclusion properties (a) and (b)

Table 2.2 The properties of
the spaces δV

δV ∇ · δV δV · n|∂K dim δV

δVfillM {0} CM IM(Vg ×Wg)

δVfillW CW ⊂ M IS(Vg ×Wg)

The computation of the space CW is fairly
simple and, usually, independent of the shape
of the element. In contrast, the computation of
the space CM is the most difficult part of the
construction

Table 2.3 The spaces
Ṽ × W̃ defining the canonical
decomposition of each space
V ×W in terms of the space
Vg ×Wg

Ṽ W̃

∇Wg ⊕ Vg,sbb Wg

∇Wg ⊕ Vg,sbb ∇ · Vg
∇(∇ · Vg)⊕ Vg,sbb ∇ · Vg
Here Vg,sbb := {v ∈ Vg : ∇ ·
v = 0, v · n|∂K = 0}
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2.5 Examples

Here, we give examples of this construction. We only present the spaces that can
be concisely described and so we restrict ourselves to the two-dimensional case.
First, we show the computation by hand of the whole construction in a very simple
case. We then consider triangular, rectangular and quadrilateral elements and show
the old and new spaces that result from our construction. Finally, we describe and
briefly discuss the case of a general polygonal element.

2.5.1 An Illustration of the Construction

Let us illustrate the general construction just sketched in a very simple case, namely,
whenK is the unit square and

M(∂K) := {µ ∈ L2(∂K) : µ|F ∈ P0(F ) for all faces F of K},
Vg ×Wg := P0(K)× P0(K).

Here, P0 denotes the space constant functions, and P0 the space of vectors whose
components lie on P0. Since, it is clear that the inclusion properties (a) and (b) are
satisfied, we can now proceed.

Step 1. Since

{v · n|∂K : v ∈ Vg,∇ · v = 0} = span{-1
0

0
1, 0

1

−1
0},

{w|∂K : w ∈ Wg,∇w = 0} = span{1
1

1
1},

M(∂K) = span{0
0

0
1, 1

0

0
0, 0

1

0
0, 1

0

0
0}

we have that IM(Vg×Wg) = 4− 2− 1 = 1 and we can take CM = span{0
−1

0
1}.

So, we can take

VfillM := span{(x,−y)}.

This means that

(Vg ⊕ δVfillM)×Wg = span{(1, 0), (0, 1), (x,−y)}× span{1},

admits an P0(∂K)-decomposition.
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Step 2. The space constructed in this step, namely,

(Vg ⊕ δVfillM)× ∇ · Vg = span{(1, 0), (0, 1), (x,−y)}× {0},

does not admit an P0(∂K)-decomposition because

{w|∂K : w ∈ Wg,∇w = 0} = span{1} ̸= {0} = {w|∂K : w ∈ ∇ ·Vg,∇w = 0}.

Step 3. Finally, we note that ∇ · Vg = {0} and so IM(Vg ×Wg) = 1− 0 = 1 and
CW = Wg . We can then take

VfillW := span{(x, y)}.

This means that the space

(Vg⊕δVfillM⊕δVfillW)×Wg = span{(1, 0), (0, 1), (x,−y), (x, y)}×span{1},

also admits an P0(∂K)-decomposition. This completes the construction.

2.5.2 Triangular and Quadrilateral Elements

Let us now consider triangular and quadrilateral elements, M := Pk(∂K) and two
cases of the spaces Vg×Wg . The first is only associated with rectangles, Vg×Wg :=
Qk × Qk; Qk denotes the space of tensor product polynomials of degree at most k,
and Qk denotes the space of vectors whose components lie on Qk . The second is
Vg×Wg := Pk×Pk; Pk denotes the space polynomials of degree at most k, andPk

denotes the space of vectors whose components lie on Pk . The results are displayed
in Table 2.4 taken from [14].

In Table 2.4, we use the notation curlp := (−py, px). We also need to define
the linear function λi and the rational function ξi associated to the definition of the
spaces for quadrilaterals. Let {vi}4i=1 be the set of vertices of the quadrilateral K
which we take to be counter-clockwise ordered. Let {ei}4i=1 be the set of edges of
K where the edge ei connects the vertices vi and vi+1, where we set v5 = v1. Then,
for 1 ≤ i ≤ 4, we define λi to be the linear function that vanishes on edge ei and
reaches maximum value 1 in the closure of K , and ξi to be a rational function such
that ξi |ei ∈ P1(ei ) and ξi (vj ) = δij , where δij is the Kronecker delta. A particular
choice of ξi is given as follows:

ξi := ηi−1
λi−2

λi−2(vi )
+ ηi

λi+1

λi+1(vi )
, where ηi := Π4

j=1
j ̸=i

λj

λj + λi
.
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Table 2.4 Spaces V ×W admitting an M(∂K)-decomposition, where M = Pk(∂K)

V W Method

K is a square and Vg ×Wg = Qk × Qk

Qk ⊕ curl span{xk+1y, x yk+1}⊕ span{x xkyk} Qk TNT[k] [22]
Qk ⊕ curl span{xk+1y, x yk+1} Qk HDGQ

[k][22]
Qk ⊕ curl span{xk+1y, x yk+1} Qk \ {xk yk} BDM[k]
K is a triangle and Vg ×Wg = Pk × Pk

Pk ⊕ x P̃k Pk RTk [38]
Pk Pk HDGk[22]
Pk Pk−1 BDMk [4]
K is a square and Vg ×Wg = Pk × Pk

Pk ⊕ curl span{xk+1y, x yk+1}⊕ x P̃k Pk (new)
Pk ⊕ curl span{xk+1y, x yk+1} Pk (new)
Pk ⊕ curl span{xk+1y, x yk+1} Pk−1 BDM[k] [4]
K is a quadrilateral and Vg ×Wg = Pk × Pk

Pk ⊕ne
i=1 curl span{ξ4 λk3, ξ4 λk4}⊕ x P̃k Pk (new)

Pk ⊕ne
i=1 curl span{ξ4 λk3, ξ4 λk4} Pk (new)

Pk ⊕ne
i=1 curl span{ξ4 λk3, ξ4 λk4} Pk−1 (new)

The rational function ηi is constructed in such a way that its trace on ∂K is zero
except on the edge ei , where it is equal to one.

2.5.3 General Polygonal Elements

For general polygonal elements, we have the following result.

Theorem 2.4 ([14]) Let K be a polygonal of ne edges such that no consecutive
edges lie on the same line. Then, forM := Pk(∂K) and Vg×Wg = Pk(K)×Pk(K),
we have that

IM(Vg ×Wg) = (ne − 3)(θ + 1)− 1
2
θ(θ − 1), and IS(Vg ×Wg) = k + 1,

where θ := min{k, ne − 3}. Moreover, we have

δVfillM := ⊕ne
i=1curlΨi ,

δVfillW := x P̃k.
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Here

Ψi =

⎧
⎨

⎩

{0} if i = 1, 2,
span{ξi+1λ

b
i+1;max{k + 3− i, 0} ≤ b ≤ k} if 3 ≤ i ≤ ne − 1,

span{ξi+1λ
b
i+1;max{k + 4− i, 1} ≤ b ≤ k} if i = ne.

The functions {ξi}nei=1 ⊂ H 1(K) are lifting functions that satisfy

(L.1) ξi |ej ∈ P1(ej ), j = 1, . . . , ne,
(L.2) ξi (vj ) = δi,j , j = 1, . . . , ne,

where δi,j is the Kronecker delta.

Thus results gives us an explicit, ready-to-implement description of the three
spaces of our construction.

It is interesting to see how the dimension of these spaces changes when we fix
the polynomial degree k and let the number of edges of the element K , ne, vary.
Indeed, although the space δVfillW remains unchanged, this is not true for δVfillM.
In fact, when k ≤ ne − 3, for each additional edge in the element, the above result
states that we have to add k+1 new basis functions to δVfillM. In particular, if k = 1,
the dimension of δVfillM is 2 (ne − 3).

Next, we test the convergence properties of one of them. In the table below, we
retake our earlier example and instead of using V (K)×W(K) = Pk(K)× Pk(K)

and M(∂K) = P(∂K) as local spaces for elements of all shapes, we consider the
local spaces

V (K)×W(K) = (Pk(K)⊕ δVfillM)× Pk(K),

which, by the previous result, admit anM(∂K) = P(∂K)−decomposition.We now
obtain the optimal convergence order of 3 = k + 2. This is in full agreement with
our theoretical error estimates of Theorems 2.2 and 2.1, given that the approximation
errors of the HDG-projection of Proposition 2.3 are both of order k + 1 for smooth
solutions.

h ∥u− u⋆h∥Th
Rate ∥u− u⋆h∥Th

Rate ∥u− u⋆h∥Th
Rate

τ = 1
0.1 0.15E−2 – 0.26E−2 – 0.17E−2 –
0.05 0.18E−3 3.06 0.31E−3 3.06 0.21E−3 3.02
0.025 0.23E−4 3.03 0.38E−4 3.03 0.27E−4 2.95
0.0125 0.28E−5 3.02 0.47E−5 3.02 0.35E−5 2.96
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2.6 Extensions

We end by describing extensions of the work presented here.

Curved Elements Note that our general theory of M-decompositions for diffusion
problems can be easily extended to curved elements by following the work done
in [21].

Hanging Nodes Although in Theorem 2.4, we restricted ourselves to the case of
elements with no consecutive edges in the same line, two-dimensional elements
with hanging nodes can be treated by applying the general theory by simply
considering that an edge with a hanging node is in fact two different edges. The
three-dimensional case can be similarly treated. The case of a triangle with a
hanging node is considered in [14, Section 4.2].

Local Postprocessing of the Flux By using our construction, we can locally
compute two H(div)-conforming approximate fluxes, see [27, Section 6.3], for the
HDG approximation. This elementwise postprocessing extends the postprocessing
obtained back in 2003 by Bastian and Rivière [3] (see the variations proposed, for
simplicial meshes, in 2005 [17], in 2007 [31] and in 2010 in [20]). As was argued
therein, see also [1, Section 2.2], H(div)-conforming fluxes seem to be preferable
to the original DG-like approximation, even if both approximations are of the same
accuracy, when used on other convection-diffusion problems in which the fluxes
drive the convection.

2D Versus 3D The three-dimensional case is significantly more involved than the
two-dimensional case, essentially because of the computation of the space

{v ∈ Vg : ∇ · v = 0, v · n|∂K = 0},

which is very simple in 2D but very complicated in 3D. This reflects the fact
that, although M-decompositions were explicitly obtained for arbitrary polygonal
elements [14], in the three dimensional case, the explicit construction of M-
decompositions has been done for tetrahedra, prisms, pyramids and hexahedra [15].
The automatic construction ofM-decompositions for three-dimensional polyhedral
elements of arbitrary shape constitutes the subject of ongoing research.

New Discrete H 1-Inequalities In [24], new H 1-discrete inequalities were intro-
duced which extend to all spaces admitting M-decompositions similar inequalities
obtained in [30, Proposition 3.2], for the well known Raviart-Thomas spaces for
simplexes, and, for smaller spaces, in [7, Theorem 3.2] for the Staggered DG
method.

Other Equations As pointed out in [27], this work can be extended to devise
superconvergent HDG and mixed methods for the heat equation, by following
[6], to the wave equation by following [12], see [26] for a Stormer-Numerov
time-marching method and [39] for symplectic methods, to the velocity gradient-
velocity-pressure formulation of the Stokes problem by following [10], see [25], and
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for methods for the the equations of linear elasticity with weakly symmetric stress
approximations by following [11]. The extension to methods for the equations of
linear elasticity with strongly symmetric stresses was carried out in [13]—the actual
construction of the local spaces in 3D is still an open problem though. The extension
to the incompressible Navier-Stokes equations was done in [24].

The theory ofM-decompositions Maxwell equations constitute subject of ongo-
ing research.
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Appendix: Proof of the Characterization of M-Decompositions

In this Appendix, we provide a proof Theorem 2.3, as it sheds light on the nature of
M-decompositions.We closely follow the proof given in [27], and use the existence
of the so-called canonical decomposition of Proposition 2.1.

Step 1. We take Ṽ × W̃ given by the canonical M-decomposition and begin by
showing that

dim Ṽ⊥ · n|∂K = dim Ṽ ⊥ and dim W̃⊥|∂K = dim W̃⊥.

Let us prove the first equality. If ṽ⊥ ∈ Ṽ ⊥ is such that ṽ⊥ · n|∂K = 0, for any
w ∈ W , we have that

0 = ⟨w, ṽ⊥ · n⟩∂K = (∇w, ṽ⊥)K + (w̃⊥,∇ · ṽ⊥)K = (w̃⊥,∇ · ṽ⊥)K

since ∇w ⊂ Ṽ . Since W ⊃ ∇ · V , we can take w := ∇ · ṽ⊥ and conclude that
∇ · ṽ⊥ = 0, which means that ṽ⊥ ∈ Vsbb, which means that ṽ⊥ = 0. Thus, the
first equity holds.
Now, let us prove the second equality. If w̃⊥ ∈ W̃⊥ and is zero on ∂K , then, for
any v ∈ V , we have

0 = ⟨w̃⊥, v · n⟩∂K = (∇w̃⊥, v)K + (w̃⊥,∇ · v)K = (∇w̃⊥, v)K

since W̃ = ∇ · V . Since V ⊃ ∇W , we can now take v := ∇w̃⊥ and conclude
that w̃⊥ is a constant on K . As a consequence w̃⊥ = 0, and the second equality
follows.
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Step 2. Next, we show that

dim tr(Ṽ⊥ × W̃⊥) = dim Ṽ ⊥ · n|∂K + dim W̃⊥|∂K.

To do that, we only need to show that Ṽ ⊥ · n|∂K ∩ W̃⊥|∂K = {0}. So, if
(̃v⊥, w̃⊥) ∈ Ṽ ⊥ × W̃⊥ we get that

⟨w̃⊥, ṽ⊥ · n⟩∂K = (∇w̃⊥, ṽ⊥)K + (w̃⊥,∇ · ṽ⊥)K = 0,

because ∇w̃⊥ ∈ ∇W ⊂ Ṽ and because ∇ · ṽ⊥ ∈ ∇ · Ṽ ⊂ W̃ .

Step 3. By the inclusion property (a), the number

I := dimM − dim Ṽ ⊥ − dim W̃⊥

= dimM − dim Ṽ ⊥ · n|∂K − dim W̃⊥|∂K.

is always nonnegative and is equal to zero if and only if property (c) holds. Next,
we show that I = IM(V ×W); this is the key computation of the proof. Indeed,
we have

I := dimM − dim Ṽ⊥ − dim W̃⊥

= dimM − (dimV − dim Ṽ )− (dimW − dim W̃ )

= dimM − (dimV − dim∇W − dimVsbb)− (dimW − dim∇ · V )

= dimM − (dimV − dim∇ · V − dimVsbb)− (dimW − dim∇W)

= dimM − (dim{v ∈ V : ∇ · v = 0}− dim{v ∈ V : ∇ · v = 0, v · n|∂K = 0})
− dim{w ∈ W : ∇w = 0}

= dimM − dim{v · n|∂K : v ∈ V ,∇ · v = 0}− dim{w|∂K : w ∈ W,∇w = 0}
=IM(V ×W).

Step 4. Now, by the inclusion property (a), we have that

{v · n|∂K : v ∈ V ,∇ · v = 0}⊕ {w|∂K : w ∈ W,∇w = 0} ⊂M,

where the sum is L2(∂K)-orthogonal since

⟨v · n, w⟩∂K = (∇ · v, w)K + (v,∇w)K = 0

if ∇ · v = 0 and ∇w = 0. Finally, since the M-index IM(V × W) is zero by
property (c), the equality holds. This completes the proof of the characterization
Theorem 2.3.
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