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Abstract. We find new discrete H1- and Poincaré–Friedrichs inequalities by studying the in-
vertibility of the discontinuous Galkerkin (DG) approximation of the flux for local spaces admitting
M-decompositions. We then show how to use these inequalities to define and analyze new, su-
perconvergent hybridizable DG (HDG) and mixed methods for which the stabilization function is
defined in such a way that the approximations satisfy new H1-stability results with which their error
analysis is greatly simplified. We apply this approach to define a wide class of energy-bounded, su-
perconvergent HDG and mixed methods for the incompressible Navier–Stokes equations defined on
unstructured meshes using, in two dimensions, general polygonal elements and, in three dimensions,
general, flat-faced tetrahedral, prismatic, pyramidal, and hexahedral elements.
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1. Introduction. In this paper, we obtain new discrete stability inequalities
with which we carry out the first a priori error analysis of a wide class of hybridizable
discontinuous Galerkin (HDG) and mixed methods for the Navier–Stokes equations.
The methods are defined on unstructured meshes using, in two dimensions (2D), gen-
eral polygonal elements and, in 3D, general, flat-faced tetrahedral, prismatic, pyra-
midal, and hexahedral elements. They are a direct extension of the corresponding
methods introduced for the Stokes flow in [13]. We prove optimal error estimates in
all the unknowns as well as superconvergence results for the approximate velocity.
By this, we mean that a new approximation for the velocity can be obtained in an
elementwise manner which converges faster than the original velocity approximation.

The unifying feature of the above-mentioned class of methods is that they are
defined by using the theory of M-decompositions. Using this theory, superconvergent
HDG and mixed methods have been devised for di↵usion [14, 10, 11], for linear in-
compressible flow [13], and for linear elasticity [9]. The theory of M-decompostions
has also been used to obtain commuting de Rham sequences [12]. Here, we use it to
obtain the above-mentioned new discrete inequalities.

To better explain our results, we introduce the HDG and mixed methods for
steady-state di↵usion

cq +ru = 0, r · q = f in ⌦, and u = g on @⌦,
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3408 BERNARDO COCKBURN, GUOSHENG FU, AND WEIFENG QIU

and introduce the concept of an M-decomposition. We then describe the inequalities
we want to obtain and, finally, describe how we are going to apply them to the analysis
of HDG and mixed methods for the Navier–Stokes equations.

HDG methods and M-decompositions. To define the HDG methods, we
follow [15]. Thus, we take the domain ⌦ ⇢ Rd to be a polygon if d = 2 and a
polyhedron if d = 3. We triangulate it with a conforming mesh Th := {K} made of
shape-regular polygonal/polyhedral elements K. We set @Th := {@K : K 2 Th}, and
denote by Fh the set of faces F of the elements K 2 Th. We also denote by F(K) the
set of faces F of the element K.

The HDG method seeks an approximation to (u, q, u|Fh), (uh, qh, buh), in the finite
dimensional space Wh ⇥ V h ⇥Mh, where

V h := {v 2 L2(Th) : v|K 2 V (K), K 2 Th},

Wh := {w 2 L2(Th) : w|K 2 W (K), K 2 Th},

Mh := { bw 2 L2(Fh) : bw|F 2 M(F ), F 2 Fh},

and determines it as the only solution of the following weak formulation:

(c qh , v)Th � (uh , r · v)Th + hbuh , v · ni@Th = 0,(1.1a)

� (qh , rw)Th + hbqh · n , wi@Th = (f , w)Th ,(1.1b)

bqh · n = qh · n + ↵(uh � buh) on @Th,(1.1c)

hbqh · n, bwi@Th\@⌦ = 0,(1.1d)

hbuh, bwi@⌦ = huD bwi@⌦(1.1e)

for all (w,v, bw) 2 Wh ⇥ V h ⇥Mh. Here we write (⌘ , ⇣)Th :=
P

K2Th
(⌘, ⇣)K , where

(⌘, ⇣)D denotes the integral of ⌘⇣ over the domainD ⇢ Rn. We also write h⌘ , ⇣i@Th :=P
K2Th

h⌘ , ⇣i@K , where h⌘ , ⇣iD denotes the integral of ⌘⇣ over the domainD ⇢ Rn�1.
When vector-valued functions are involved, we use a similar notation.

The di↵erent HDG methods are obtained by choosing the local spaces V (K),
W (K), and

M(@K) := { bw 2 L2(@K) : bw|F 2 M(F ) 8F 2 F(K)},

and the linear local stabilization function ↵. It turns out [14] that if we can decompose
V (K)⇥W (K) in such a way that

V (K) = eV (K)� eV
?
(K),

W (K) = fW (K)�fW?(K),

M(@K) = eV
?
(K) · n|@K �fW?(K)|@K ,

and use a couple of simple inclusion properties, that it is possible to find a stabilization
function ↵ such that the resulting HDG (↵ 6= 0) or mixed method (↵ = 0) is super-
convergent. Since this decomposition is essentially induced by the space M(@K), it is
called an M(@K)-decomposition of the space V (K)⇥W (K). The explicit construc-
tion of those spaces for general polygonal elements was carried in [10] (see the main
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DISCRETE H1-INEQUALITITES 3409

examples in Table 2.1) and for flat-faced general pyramids, prisms, and hexahedral
elements in [11].

Invertibility of the discrete gradient operator. In this paper, we study the
invertibility properties of the mapping

W (K)⇥M(@K) �! V (K),(1.2a)

(uh, buh) 7�! qh,(1.2b)

where

(1.2c) (c qh,v)K = (uh,r · v)K � hbuh,n · vi@K 8 v 2 V (K)

for spaces V (K)⇥W (K) admitting an M(@K)-decomposition [14]. This mapping is
a discrete version of the constitutive equation relating a vector-valued function q and
a scalar-valued function u:

c q = �ru,

where c and c�1 are bounded, symmetric, and uniformly positive definite matrix-
valued functions, and have been used in, arguably, all DG and hybridized versions of
mixed methods. In particular, it captures the first equation defining the HDG method
for steady-state di↵usion. We present new discrete versions of the estimates

kruk2K = kc qk2K (trivial),

h�2

K ku� uKk2K  C kc qk2K (Poincaré–Friedrichs),

where ⇣
D

denotes the average of ⇣ on D and k · kD is the L2(D)-norm. They are
expressed in terms of the (equivalent) seminorms

|(uh, buh)|2
1,K :=kruhk2K + h�1

K kuh � buhk2@K ,(1.3a)

|(uh, buh)|2PF,K :=kuh � buh
@Kk2K + hK kbuh � buh

@Kk2@K(1.3b)

and are, essentially, of the form

| (uh, buh) |2
1,K  C

�
kc qhk2K + h�1

K kPMS (uh � buh)k2@K
�

(H1),

h�2

K | (uh, buh) |2PF,K  C
�
kc qhk2K + h�1

K kPMS (uh � buh)k2@K
�

(Poincaré–Friedrichs),

where MS = MS(@K), referred to as the stabilization space, is an easy-to-compute
subspace of the space M(@K) whose dimension is chosen to be minimal, and PMS is
its corresponding L2-projection. These inequalities, which are nothing but stabilized
versions of inf-sup conditions [1], are the key ingredients for our analysis of HDG
and mixed methods. They generalize, to all spaces admitting M-decompositions, the
H1-inequality obtained with MS = ; in [19, Proposition 3.2], for the well known
Raviart–Thomas spaces for simplexes, and, for smaller spaces, in [7, Theorem 3.2]
with MS equal to the restriction of M(@K) onto an arbitrary face FK on which buh

was set to coincide with uh.

Application to the Navier–Stokes equations. We show how to do that,
not in the relatively simple case of convection-di↵usion equations, but in the more
di�cult case of the velocity gradient-velocity-pressure formulation of the steady-state
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3410 BERNARDO COCKBURN, GUOSHENG FU, AND WEIFENG QIU

incompressible Navier–Stokes equations in two- and three-space dimensions:

L = ru in ⌦,(1.4a)

�⌫r·L +r·(u⌦ u) +rp = f in ⌦,(1.4b)

r·u = 0 in ⌦,(1.4c)

u = 0 on @⌦,(1.4d)
Z

⌦

p = 0 ,(1.4e)

where L is the velocity gradient, u is the velocity, p is the pressure, ⌫ is the kinematic
viscosity, and f 2 L2(⌦)d is the external body force.

Let us compare our results with those in [4] where the only error analysis for HDG
methods for the Navier–Stokes equations has been recently carried out. Let (uh, buh)
be an approximation of the velocity (u|

⌦

,u|Fh), where Fh denotes the set of faces of
the mesh Th of the domain ⌦, and let Lh be an approximation of the velocity gradient
L|

⌦

. In [4], the authors considered unstructured meshes made of simplexes, spaces of
polynomials of degree k, and a stabilization function ↵ such that

h↵(uh � buh),uh � buhi@K = h�1

K k(uh � buh) · nk2@K .

For this HDG method, optimal convergence order for all unknowns as well as the
superconvergence of the velocity was obtained by using the novel upper bound

|||(uh, buh)|||2
1,Th

 C
X

K2Th

(kLhk2K + h�1

K k(uh � buh) · nk2@K),

where the discrete H1-norm |||·|||Th
is given by

|||(uh, buh)|||
1,Th

:=

 
X

K2Th

|(uh, buh)|2
1,K

◆
1/2

.

In contrast, in this paper, stronger results are obtained for a wide class of HDG and
mixed methods defined on a variety of element shapes: general polgonal elements in
2D, and tetrahedral, pyramidal, prismatic, and hexahedral elements in 3D. The local
spaces defining these methods are those used for the corresponding methods for the
Stokes equations of incompressible flow proposed in [13]; the stabilization function is
not the same though. The spaces are constructed by using, as building blocks, the
local spaces V (K) ⇥ W (K) admitting an M(@K)-decomposition introduced in [14]
for steady-state di↵usion.

To obtain the new discrete inequalities, we proceed in two steps. First, we show
that for all these methods, we have the discrete H1-inequality

|||(uh, buh)|||2
1,Th

 C
X

K2Th

(kLhk2K + h�1

K kPMS (uh � buh)k2@K).

We then show that if we define a stabilization function ↵ such that

h↵(uh � buh),uh � buhi@K = h�1

K kPMS (uh � buh)k2@K ,

we obtain new H1-boundedness results for the approximation, and new H1-stability
inequalities, with which can easily obtain the above-mentioned convergence properties.

Organization of the paper. The rest of the paper is organized as follows. In
section 2, we present the general properties of the local spaces admitting
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DISCRETE H1-INEQUALITITES 3411

M-decompositions and those of the the stabilization subspaces MS ; specific choices
of MS for the main spaces admitting M-decompositions are also provided. We then
present and discuss our main result, namely, the new discrete inequalities of Theorem
2.3 which we prove in section 3. In section 4, we define our HDG and mixed methods
for the incompressible Navier–Stokes equations and present their energy-boundedness
and superconvergence properties; their proofs are provided in section 5. We end with
some concluding remarks in section 6.

2. The main result. In this section, we present and discuss our main result,
namely, the discrete H1- and Poincaré–Friedrichs inequalities of Theorem 2.3; their
proof is postponed to section 3. We first present the two ingredients needed to obtain
these inequalities, namely, the spaces admitting M-decompositions and a stabilization
subspace of the trace space M(@K).

2.1. Notation. Given a domain D ⇢ Rn, we denote by Pk(D) and ePk(D) the
space of polynomials of degree no greater than k, and the space of homogeneous
polynomials of degree k, respectively, defined on the domain D. When D is a unit
square with coordinates (x, y), we denote by Qk(D) := Pk(x) ⌦ Pk(y) and eQk(D) :=
ePk(x) ⌦ ePk(y) the space of tensor-product polynomials of degree no greater than k,
and the space of homogeneous tensor-product polynomials of degree k, respectively.
We use a similar notation on tensor-product polynomial spaces on the unit cube.
When D := B ⌦ I is a unit prism having a triangular base B with coordinates
(x, y) and a z-directional edge I, we denote by Pk|k(D) := Pk(x, y) ⌦ Pk(z) and
ePk|k(D) := ePk(x, y) ⌦ ePk(z) the space of tensor-product polynomials of degree no
greater than k, and the space of homogeneous tensor-product polynomials of degree
k, respectively. Vector-valued spaces are denoted with a superscript d (the space
dimension); for example, Pk(K)d is the space of vectors whose entries lie in Pk(K).

We denote by k · kWm,p
(D)

the standard Wm,p-Sobolev norm on the domain D ⇢
Rd. For the Hilbert space Hm(D) := Wm,2(D), we simply write k · km,D instead of
k · kHm

(D)

, and k · kD instead of k · k
0,D. Similarly, when p = 1, we write k · km,1,D

instead of k · kWm,1
(D)

, and k · k1,D instead of k · k
0,1,D. For a given a second-order

tensor c, we denote by k · k
c,D the c-weighted L2-norm on the domain D.

Finally, we denote by �max

c

(K) the L1(K)-norm of the maximum eigenvalue of
the tensor c.

2.2. Examples of spaces V (K) ⇥ W (K) admitting M(@K)-decompos-
itions. An M-decomposition relates the trace of the normal component of the space
of approximate fluxes V (K) and the trace of the space of approximate scalars W (K)
with the space of approximate traces M(@K). To define it, we need to consider the
combined trace operator

tr :V (K)⇥W (K) �! L2(@K),

(v, w) 7�! (v · n+ w)|@K .

Definition 2.1 (The M-decomposition). We say that V (K)⇥W (K) admits an
M-decomposition when

(a) tr(V (K)⇥W (K)) ⇢ M(@K),

and there exists a subspace eV (K)⇥fW (K) of V (K)⇥W (K) satisfying

(b) rW (K)⇥r · V (K) ⇢ eV (K)⇥fW (K),

(c) tr : eV ?(K)⇥fW?(K) ! M(@K) is an isomorphism.
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3412 BERNARDO COCKBURN, GUOSHENG FU, AND WEIFENG QIU

Table 2.1
Spaces V (K)⇥W (K) admitting an M(@K)-decomposition [14].

V (K) W (K) Method

M(@K) = Pk(@K), K is a square.

Qk � curl span{xk+1y, x yk+1}� span{xxkyk} Qk TNT
[k] [16]

Qk � curl span{xk+1y, x yk+1} Qk HDGQ
[k][16]

Qk � curl span{xk+1y, x yk+1} Qk \ {xk yk} BDM
[k]

M = Pk(@K), K is a triangle.

Pk � x

ePk Pk RTk [20]
Pk Pk HDGk[16]
Pk Pk�1

BDMk [2]

M = Pk(@K), K is a square.

Pk � curl span{xk+1y, x yk+1}� x

ePk Pk [10]
Pk � curl span{xk+1y, x yk+1} Pk [10]
Pk � curl span{xk+1y, x yk+1} Pk�1

BDM
[k] [2]

M = Pk(@K), K is a quadrilateral.

Pk �ne
i=1

curl span{⇠
4

�k
3

, ⇠
4

�k
4

}� x

ePk Pk [10]
Pk �ne

i=1

curl span{⇠
4

�k
3

, ⇠
4

�k
4

} Pk [10]
Pk �ne

i=1

curl span{⇠
4

�k
3

, ⇠
4

�k
4

} Pk�1

[10]

Here eV ?(K) and fW?(K) are the L2(K)-orthogonal complements of eV (K) in V (K),

and of fW (K) in W (K), respectively.

Local spaces V (K)⇥W (K) admitting M(@K)-decompositions have been explic-
itly constructed in 2D for general polygonal elements K (see some examples in Table
2.1) in [10] and in 3D for four types of polyhedral elements K, namely, tetrahedra,
pyramids, prisms, and hexahedra in [11]. As pointed out in the introduction, the
main interest of these spaces is that they generate superconvergent HDG and mixed
methods; see [14].

Let us explain the notation used in Table 2.1. By curl p we mean the vector
(�py, px). By {vi}4i=1

(and v
5

:= v
1

), we mean the four vertices of a quadrilateral;
the vertices are ordered in a counterclockwise manner. We denote by ei the edge
connecting the vertices vi and vi+1

. Then, we set

⇠i := ⌘i�1

�i�2

�i�2

(vi)
+ ⌘i

�i+1

�i+1

(vi)
and ⌘i := ⇧4

j=1

j 6=i

�j

�j + �i
,

where �i is the linear function that vanishes on the edge ei and reaches the maximum
value 1 in the closure of K. For details, see [14, 10].

2.3. The stabilization subspace MS(@K). We also need to introduce the
stabilization space MS(@K). This is a subspace of M(@K) satisfying the following
two conditions inspired from [14, Proposition 3.2]:

dimMS(@K) = dimfW?(K) = dimW (K)� dimr·V (K),(2.1a)

kPMS (·)k@K is a norm on the space fW?(K).(2.1b)

Here, PMS denotes the L2(@K)-projection into the space MS(@K). Examples of
MS(@K) for various element shapes are collected in the following proposition, whose
proof is given in section 3.
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Proposition 2.2. Let the space V (K)⇥W (K) admit an M(@K)-decomposition.
Then, conditions (2.1) are satisfied

(1) if r·V (K) = W (K) and MS(@K) = ;;
(2) if r·V (K) = Pk�1

(K),W (K) = Pk(K) and

MS(@K) := { bw 2 L2(@K) : bw|F⇤ 2 Pk(F
⇤), bw|@K\F⇤ = 0};

here F ⇤ is a fixed face of the element K such that K lies in one side of the
hyperplane containing F ⇤;

(3) if K is a square or cube, r·V (K) = r·Qk(K)d,W (K) = Qk(K) and

MS(@K) := { bw 2 L2(@K) : bw|F⇤ 2 eQk(F
⇤), bw|@K\F⇤ = 0};

here F ⇤ is any fixed face of the square or cubic element K;
(4) if K is a prism with tensor product structure, r·V (K) = r·Pk|k(K)d,

W (K) = Pk|k(K), and

MS(@K) := { bw 2 M : bw|F⇤ 2 ePk(F
⇤); bw|@K\F⇤ = 0};

here F ⇤ is a triangular base of the prism K.

2.4. Discrete H1- and Poincaré–Friedrichs inequalities. Our main result
is the following.

Theorem 2.3 (local, discrete H1- and Poincaré–Friedrichs inequalities). - - -
- Let K be any element of the mesh Th. Consider the mapping (uh, buh) 2 W (K) ⇥
M(@K) 7�! qh 2 V (K) given by (1.2). Then, if V (K)⇥W (K) admits an M(@K)-
decomposition, and

⇥K :=
�
�max

c

(K) kqhk2c,K + h�1

K kPMS (uh � buh)k2@K
�
,

where MS(@K) is any subspace of M(@K) satisfying conditions (2.1), we have the
inequalities

| (uh, buh) |2
1,K  C ⇥K (H1),

h�2

K | (uh, buh) |2PF,K  C ⇥K (Poincaré–Friedrichs),

where the constant C only depends on the finite element spaces V (K), W (K), and
MS(@K), and on the shape-regularity properties of the element K.

A detailed proof of this result is given in the next section. Here, let us briefly
discuss it:

(1) First, note that it is not very di�cult to obtain these inequalities if the pro-
jection operator PMS is replaced by the identity. Indeed, if we only assume that
rW (K) ⇢ V (K), we can take v := ruh in the equation defining qh, (1.2c), to
immediately obtain

kruhk2K  kc qhk2K + C h�1

K kuh � buhk2@K .

The wanted inequality now easily follows. However, such a choice might degrade the
accuracy of the HDG method, as is typical of DG methods; see, for example, [3]. To
avoid this, we must chose a minimal space MS such that the inequalities in Theorem
2.3 still hold.
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(2) The inequalities of the above result are nothing but stabilized versions of
inf-sup conditions for the bilinear form defining qh (see (1.2)), since

kc qhkK � sup
v2V (K)\{0}

(uh,r · v)K � hbuh,v · ni@K
kvkK

;

see [1, section 6.3]. For this reason, the subspace MS(@K) is called a stabilization
subspace.

(3) Let us argue that the dimension of the stabilization space MS(@K) is actually
minimal. It is obvious that the influence of uh on qh is only through its L2-projection
into r · V (K). As a consequence, the part of uh lying on the L2(K)-orthogonal
complement of r · V (K) in W (K) cannot be controled by the size of qh. Since the
dimension of such space is dimW (K) � dimr·V (K) and this number, by the first
of conditions (2.1), is equal to dimMS(K), we see that the dimension of MS(@K)
cannot be smaller for the inequalities under consideration to hold.

(4) The above H1-inequality has been explicitly obtained in the literature for two
cases [19, 7]. The first [19] is the case of the Raviart–Thomas elements on a simplex
in which the spaces, using our notation,

V (K) = Pk(K)d + xPk(K), W (K) := Pk(K),

M(@K) := {µ 2 L2(@K) : µ|F 2 Pk(F ) 8 F 2 F(K)},MS(@K) = ;,

see [19, Proposition 3.2]; the second [7] is the case for the staggered DG method in
which the spaces (defined on a simplex) are given as follows:

V (K) = Pk(K)d, W (K) := Pk(K),

M(@K) := {µ 2 L2(@K) : µ|F 2 Pk(F ) 8 F 2 F(K)},
MS(@K) := {µ 2 M(@K) : µ = 0 on @K \ FK},

where FK is a single face of the simplex K; see [7, Theorem 3.2].
(5) Given data buh and f , let (qh, uh) 2 V (K) ⇥ W (K) be the solution to the

local problem (1.1a)–(1.1b) with the space V (K) ⇥ W (K) admitting an M(@K)-
decomposition. The following inequalities were obtained in [14, Theorem 4.3]:

kruhk2K  C
�
�max

c

(K) kqhk2c,K + kPfW?fk2K
�
,

h�1

K kuh � buhk2@K  C
�
�max

c

(K) kqhk2c,K + kPfW?fk2K
�
.

Our result replaces the quantity kPfW?fk2K on the above right-hand side with

h�1

K kPMS (uh � buh)k2@K .

It is this small change that significantly facilitates the analysis of HDG schemes for
the incompressible Navier–Stokes equation considered in this paper.

(6) The dependence of the constant C in the estimates on the local spaces
V (K),W (K), and MS(@K), and on the shape regularity of the element K, remains
to be studied. It is reasonable to believe that C can be uniformly bounded by a
function of the maximum degree of the polynomial functions belonging to the local
spaces and by a suitable measure of the element shape-regularity.
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2.5. Choosing the stabilization function ↵ to get H1-stability. We end
this section by illustrating the fact that the stabilization subspace MS(@K) can be
actually used, when defining HDG methods, to obtain what we could call the minimal
stabilization function ↵ needed to achieve a new H1-stability result. Let us do that
in the framework of HDG approximations for steady-state di↵usion problems.

So, if (qh, uh) 2 V (K)⇥W (K) is the solution of the local problem (1.1a)–(1.1b),
we have the discrete energy identity

EK(qh;uh, buh) = (f, uh)K � hbqh · n, buhi@K ,

where
EK(qh;uh, buh) := (c qh, qh)K + h↵(uh � buh), uh � buhi@K ,

is the energy associated to the element K. We immediately see that

kc qhk2K + h�1

K kPMS (uh � buh)k2@K  C EK(qh;uh, buh)

if we pick the stabilization function ↵ as

(2.2) ↵(b!) := h�1

K PMS (b!) 8 b! 2 L2(@K),

the case in which we say that this stabilization function ↵ is minimal. Thus, by
establishing this link between the HDG stabilization function ↵ and the stabilization
subspace MS(@K), an estimate of the energy immediately implies an estimate on the
discrete seminorms under consideration, that is,

max{h�2

K |(uh, buh)|2PF,K , |(uh, buh)|2
1,K}  C EK(qh;uh, buh).

Now considering the full HDG scheme (1.1) for di↵usion, we easily obtain a discrete
H1-stability result of the approximation with respect to the data f by summing the
above inequality over all elements:

|||(uh, buh)|||2
1,Th

=
X

K2Th

|(uh, buh)|2
1,K  C

X

K2Th

EK(qh;uh, buh) = C (f, uh)Th .

This stability result can be similarly obtained for the HDG method for the convection-
di↵usion equation in which convection is treated with the standard upwinding tech-
nique. We use this approach in section 4 to deal with the HDG and mixed methods
for the Navier–Stokes equations.

3. Proofs of the results of section 2. In this section, we give a proof of the
properties of the stabilization spaces MS(@K), and then a proof of the discrete H1-
and the discrete Poincaré–Friedrichs inequalities.

3.1. Proof of Proposition 2.2. Let us first prove Proposition 2.2 on the prop-
erties of the stabilization spaces MS(@K). We just prove the second case since the
proofs for the other three are similar and simpler.

For this case, we have r·V = Pk�1

(K), W = Pk(K), and

MS = { bw 2 L2(@K) : bw|F⇤ 2 Pk(F
⇤), bw|@K\F⇤ = 0},

where F ⇤ is a face of the element K such that K lies on one side of the hyperplane
containing F ⇤. Hence, we have

dimMS = dimPk(F
⇤) = dimPk(K)� dimPk�1

(K)

= dimW � dimr·V = dimW � dimfW = dim �(fW?).

This proves the first condition for MS .
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To prove the second condition, we only need to show that for any function bw 2
�(fW?), PMS ( bw) = 0 implies bw = 0. Now, let bw be a function in �(fW?) such that

PMS ( bw) = 0. By the definition of �(fW?), there exists a function w 2 fW? such that
�(w) = bw. Hence, PMS (�(w)) = 0. By the definition of MS and W , we have w = � ew,
where � 2 P

1

(K) is the linear function vanishing on F ⇤ and ew 2 Pk�1

(K) = fW . By

L2-orthogonality of the spaces fW and fW?, we have

(w, ew)K = (� ew, ew)K = 0,

which immediately implies w = 0 by the assumption on the face F ⇤. This completes
the proof of Proposition 2.2.

3.2. Proof of Theorem 2.3. Here, we prove the inequalities of Theorem 2.3.
Although it is enough to prove only one since the seminorms |(·, ·)|

1,K and |(·, ·)|PF,K

are equivalent, we provide a di↵erent proof for each of them, as they put in evidence
di↵erent properties of the M-decompositions.

3.2.1. Proof of the first inequality. To prove the first inequality, it is con-
venient to first carry out a simple integration-by-parts in the equation defining qh,
(1.2c):

(c qh,v)K = �(ruh,v)K + huh � buh , v · ni@K 8 v 2 V (K).

By property (b) of an M-decomposition, we can now set v := ruh to get

kruhk2K = � (c qh,v)K + huh � buh , v · ni@K ,

and conclude that

kruhkK  (�max

c

)1/2kqhkc,K + CrW h
�1/2
K kuh � buhk@K ,

CrW := sup
v2rW (K)\{0}

h
1/2
K kv · nk@K

kvkK
.

Let us now estimate the jump uh � buh 2 M(@K). By property (c) of an M-
decomposition, we can write that uh � buh = P

�fW?(uh � buh) + P� eV ?(uh � buh). Now,

by the second of conditions (2.1), there is a constant CMS such that

kP
�fW?(uh � buh)k@K  CMSkPMS

�
P
�fW?(uh � buh)

�
k@K

 CMS

�
kPMS (uh � buh)k@K + kPMS

�
P� eV ?(uh � buh)

�
k@K

�

 CMS

�
kPMS (uh � buh)k@K + kP� eV ?(uh � buh)k@K

�
.

It remains to estimate kP� eV ?(uh � buh)k@K . Taking v 2 eV ?(K) such that v ·n|@K =

P� eV ?(uh � buh) in the definition of qh, and using the fact that ruh 2 eV (K) is L2-

orthogonal to v 2 eV ?(K), we get

kP� eV ?(uh � buh)k2@K = (c qh,v)K ,

and conclude that

kP� eV ?(uh � buh)k@K  C eV ?(�
max

c

)1/2 h1/2
K kqhkc,K ,

C eV ? := sup
v2 eV ?

(K)\{0}

kvkK
h
1/2
K kv · nk@K

.

The first inequality now easily follows.
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3.2.2. Proof of the second inequality. To prove this inequality, it is conve-
nient to rewrite the equation defining qh, (1.2c), as follows:

(c qh,v)K � (uh � buh
@K

,r · v)K + hbuh � buh
@K

, v · ni@K = 0 8 v 2 V (K).

By [14, Theorem 2.4], since V (K)⇥W (K) admits an M(@K) decomposition, we have
the identity

{µ 2 M(@K) : hµ, 1i@K = 0} = {v · n|@K : v 2 V (K), r · v = 0}.(3.1)

This means that there is a function v 2 V (K) such that v · n|@K = buh � buh
@K

and
r · v = 0. Using this function as test function, we get

kbuh � buh
@Kk2@K = �(c qh,v)K ,

and so

kbuh � buh
@Kk@K  (�max

c

(K))1/2kqhkc,KCV ·n h
1/2
K ,

CV ·n := sup
µ 2 M(@K)

hµ, 1i@K = 0

inf
v 2 V (K) \ {0}

r · v = 0

v · n = µ

kvkK
h
1/2
K kv · nk@K

.

It remains to estimate kuh � buh
@KkK . We define a test function v 2 V (K)

such that r · v = Pr·V (uh � buh
@K

), which we can assume to be di↵erent from zero.
Obviously, we get

kPr·V (uh � buh
@K

)k2K =(c qh,v)K + hbuh � buh
@K

, v · ni@K ,

and so

kPr·V (uh � buh
@K

)kK 
�
kcqhkK + h

�1/2
K kbuh � buh

@Kk@K
�
Cr·V hK ,

Cr·V := sup
g2r·V (K)\{0}

inf
v 2 V (K)

r · v = g

(kvkK + h
1/2
K kv · nk@K)

hKkr · vkK
.

Finally, let us estimate (Id � Pr·V )(uh � buh
@K

). Since this function coincides

with PfW?(uh � buh
@K

) because fW (K) = r · V (K), we get

kPfW?(uh � buh
@K

)kK  CK h
1/2
K kP

�fW?(uh � buh
@K

)k@K

 CM CK h
1/2
K kPMS (uh � buh

@K
)k@K

 CM CK h
1/2
K (kPMS (uh � buh)k@K + kPMS (buh � buh

@K
)k@K),

 CM CK h
1/2
K (kPMS (uh � buh)k@K + kbuh � buh

@Kk@K),

and the estimate follows. This completes the proof of Theorem 2.3.
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4. Application: HDG methods for the Navier–Stokes equations. In this
section, we introduce and analyze new HDG and mixed methods for the steady-
state incompressible Navier–Stokes equation with velocity gradient-velocity-pressure
formulation described by (1.4).

We proceed as follows. After defining the methods, we show that their approxi-
mate solution exists, is unique, and satisfies an energy-boundedness property under
a smallness assumption on the data. We then provide results on the convergence
properties.

Some of the errors involving the velocities are measured in the norms and semi-
norms defined as follows. For any (v, bv) 2 V h ⇥Mh, we set

|||(v, bv)|||2`,Th
:=

dX

i=1

X

K2Th

|(vi, bvi)|2`,K for ` = 0, 1, PF,

where |(·, ·)|
1,K and |(·, ·)|PF,K are defined by (1.3), and

|(vi, bvi)|2
0,K := kvik2K + hK(kbvik2@K + kvi � bvik2@K).

4.1. Definition of the methods.

4.1.1. The general form of the methods. The HDG and mixed methods for
(1.4) seek an approximation to (L,u, p,u|Fh), (Lh,uh, ph, buh), in the space Gh⇥V h⇥
Q̊h ⇥Mh(0) given by

Gh := {G 2 L2(Th)
d⇥d : G|K 2 G(K), K 2 Th},(4.1a)

V h := {v 2 L2(Th)
d : v|K 2 V (K), K 2 Th},(4.1b)

Q̊h := {q 2 L2(Th) : q|K 2 Q(K), K 2 Th, (q, 1)⌦ = 0},(4.1c)

Mh := {bv 2 L2(Fh)
d : bv|F 2 M(F ), F 2 Fh},(4.1d)

Mh(0) := {bv 2 Mh : bv|@⌦ = 0},(4.1e)

where the local spaces G(K),V (K), Q(K), and M(F ) are suitably defined finite di-
mensional spaces, and determine it as the only solution of the following weak formu-
lation:

(⌫ Lh , G)Th + (uh , ⌫r·G)Th � hbuh , ⌫Gni@Th = 0,(4.2a)

(⌫ Lh , rv)Th + h�⌫ Lh n+ ↵v(uh � buh) , v � bvi@Th

� (ph , r·v)Th + hph n , v � bvi@Th

� (uh ⌦ � , rv)Th + h(� · n) buh + ↵c(uh � buh) , v � bvi@Th = (f , v)Th ,(4.2b)

� (uh , rq)Th + hbuh · n , qi@Th = 0(4.2c)

for all (G,v, q, bv) 2 Gh ⇥ V h ⇥ Q̊h ⇥Mh(0), where

↵v : L2(@K)d �! L2(@K)d and ↵c : L
2(@K)d �! L2(@K)d

are the local stabilization operators related to the viscous and convective parts, respec-
tively. To complete the definition of the method, we have to define the local spaces,
the divergence-free post-processed velocity �, and the stabilization operators. We do
this next.

D
ow

nl
oa

de
d 

01
/1

4/
19

 to
 1

28
.1

01
.1

55
.2

51
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

DISCRETE H1-INEQUALITITES 3419

4.1.2. The local spaces. The finite element spaces are the ones used in [13] for
Stokes flow. Let the space V D(K)⇥WD(K)⇥MD(@K) be such that V D(K)⇥WD(K)
admits an MD(@K)-decomposition; see Definition 2.1. Moreover, we assume that

WD(K) is a polynomial space such that
dX

i=1

@iW
D(K) ⇢ WD(K).(4.3)

Then, the local spaces G(K), V (K), and Q(K) and the local trace space M(@K)
are defined as follows:

Gi(K)⇥ V i(K)⇥M i(K) := V D(K)⇥WD(K)⇥MD(@K) i = 1, . . . , d,(4.4a)

Q(K) := WD(K).(4.4b)

4.1.3. The postprocessed velocity �. On the element K, the postprocessed
velocity � is taken in a finite dimensional space V ⇤(K) satisfying the conditions

V D(K) ⇢ V ⇤(K),r·V ⇤(K) = WD(K),(4.5a)

V ⇤(K)⇥WD(K) admits an MD(@K)-decomposition.(4.5b)

This vector-valued space can be easily constructed from V D(K), as shown in [14,
Proposition 5.3].

On the element K, the postprocessed velocity � := Ph(uh, buh) 2 V ⇤
h is defined

as the function in V ⇤(K) such that

(Ph(uh, buh),v)K = (uh,v)K 8 v 2 fV ⇤(K),(4.6a)

hPh(uh, buh) · n , bvi@K = hbuh · n , bvi@K 8 bv 2 MD(@K).(4.6b)

Here fV ⇤(K) := rWD(K)� {v 2 V ⇤(K) : r·v = 0, v · n|@K = 0}.
We gather the main properties of this mapping in the next result, which we prove

in Appendix A.

Proposition 4.1. Let (v, bv) 2 V h ⇥ Mh. Then, for any element K 2 Th, we
have

|||(Ph(v, bv), {Ph(v, bv)})|||`,K  C |||(v, bv)|||`,K for ` = 0, 1,

kPh(v, bv)k1,K  C |||(v, bv)|||1,K

with a constant C depending only on the space V (K) ⇥ M(@K) and the shape reg-
ularity of the element K. Moreover, if (uh, buh) 2 V h ⇥ Mh(0) satisfies the weak
incompressibility condition given by (4.2c), then

Ph(uh, buh) 2 H(div,⌦) and r·Ph(uh, buh) = 0.

4.1.4. The stabilization operators. For the convective stabilization operator,
we take the choice leading to the classic upwinding:

↵c(bv) := max{� · n, 0} bv 8 bv 2 L2(@K)d,(4.7a)

where � = Ph(uh, buh) is given in (4.6). For the viscous stabilization operator, we
take

↵v(bv) :=
⌫

hK
PMS (bv) 8 bv 2 L2(@K)d,(4.7b)

where PMS is the projection onto the space MS(@K), whose ith component is taken
to be MD

S (@K).
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4.2. Existence, uniqueness, and boundedness. Now that we have com-
pleted the definition of the methods, we must ask ourselves if the approximate so-
lutions actually exist and are unique. The next result shows that this is the case
under a standard smallness condition on the data.

Theorem 4.2 (existence, uniqueness, and boundedness). If ⌫�2kfk
⌦

is small
enough, then the HDG method (4.2) has a unique solution. Furthermore, for the
component (uh, buh) 2 V h⇥Mh(0) of the approximate solution the following stability
bound is satisfied:

|||(uh, buh)|||
1,Th

 C⌫�1 kfk
⌦

for a constant C that depends only on the finite element spaces, the shape-regularity
of the mesh, and the domain.

4.3. Convergence properties. Having shown that the approximate solutions
are well defined, we next measure how well they approximate the exact solution by
comparing them with suitably chosen projections of the exact solution.

4.3.1. Projections of the errors. Let us define the projections we are going to
use in our a priori error analysis. We denote PG, PV , PQ, PM to be the L2-projections

onto Gh, V h, Q̊h, and Mh. We also define the projection ⇧V into the space V h as
follows. On the element K, ⇧V u 2 V (K) is defined as follows:

(⇧V u,v)K = (u,v)K 8 w 2 r·G,(4.8a)

h⇧V u , bvi@K = hu , bvi@K 8 bv 2 MS .(4.8b)

Our strategy is to first estimate the size of the projection of the errors

eL = PGL� Lh, eu = ⇧V u� uh, ep = PQp� ph, ebu = PMu� buh,

and then use the triangle inequality to estimate the size of the actual errors. To
do that, we need to use the well-known approximation properties of the various L2-
projections. We also need the approximation properties of the projection ⇧V , which
we show depend on the L2-projection PV . The following result, proven in Appendix
B, is a direct consequence of the assumption on the stabilization space MS .

Proposition 4.3. For the projection ⇧V u 2 V (K) defined above, we have

k⇧V u� ukK  C
⇣
kPV u� ukK + h

1/2
K kPV u� uk@K

⌘

k⇧V uk1,K  C kuk1,K ,

where the constant C only depends on the spaces V (K) and MS(K).

4.3.2. A priori error estimates. Next, we state our main convergence result.

Theorem 4.4. Let (Lh,uh, ph, buh) 2 Gh ⇥ V h ⇥ Q̊h ⇥ Mh(0) be the numerical
solution of (4.2). Assume that

Pk(K)d⇥d ⇥ Pk(K)d ⇥ Pk(K) ⇢ G(K)⇥ V (K)⇥Q(K) 8 K 2 Th,

Pk(F )d ⇢ M(F ) 8 F 2 Fh.

Then, for ⌫�2kfk
⌦

and ⌫�1kuk1,⌦ su�ciently small, we have

keLkTh + kepkTh + |||(eu, ebu)|||
1,Th

+ h�1 |||(eu, ebu)|||PF,Th
+ keukTh  C hk+1 ⌅,(4.9)
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where ⌅ := kLkk+1

+⌫�1 k�k1,⌦ kukk+1

+⌫�1 kpkk+1

and the constant C only depends
on the finite element spaces, the shape-regularity of the mesh, and the domain ⌦.

Moreover, if ⌫�1kruk
⌦

is small enough, u 2 W 1,1(⌦), and the regularity esti-
mate in [4, equation (2.3)] holds, then

keuk⌦  C hk+2 8k � 1.(4.10)

Finally, if u⇤
h 2 H(div,⌦) is the postprocessed approximate velocity introduced in [13,

equation (2.9)], then we have r · u⇤
h = 0 in ⌦, and

ku⇤
h � uk

⌦

 C hk+2 8k � 1.(4.11)

Note that this result gives optimal convergence of the velocity gradient Lh, the
velocity uh, and the pressure ph approximations. It also gives two superconvergence
results. The first is the one of the projections of the error in the velocity, which
are of order k + 1 for |||(eu, ebu)|||

1,Th
and of order k + 2 for |||(eu, ebu)|||PF,Th

. The
second is also for the projection of the error in the velocity. The only di↵erence is
that the first superconvergence estimate does not say anything about the convergence
properties of the local averages, whereas the second does. Moreover, the second
superconvergence result allows the local postprocessing of the velocity u⇤

h to be an
H(div), globally divergence-free approximation to the velocity converging faster than
the original approximation uh.

5. Proofs of the results of section 4. In this section, we prove Theorem 4.2
on the existence, uniqueness, and boundedness of the approximate solution, and the
convergence properties of Theorem 4.4.

We would like to emphasize that, due to the existence of the discrete-H1 stability
results in Theorem 2.3, the proofs in this section can be considered as a word-by-
word “translation” of the corresponding proofs in [4], where, for the first time, a
superconvergent HDG method was analyzed for the incompressible Navier–Stokes
equations

To simplify the notation, we write A . B to indicate that A  C B with a
constant C that only depends on the finite element spaces, the shape-regularity of the
mesh, and the domain.

5.1. Preliminaries.

Rewriting the method in a compact form. To facilitate the analysis, we
rewrite the formulation of the methods under consideration by using the bilinear
form associated to the Stokes system,

Bh(L,u, p, bu; G,v, q, bv) := ⌫(L,G)Th + ⌫(u,r·G)Th � hbu , ⌫Gni@Th

+ (⌫ L,rv)Th + h�⌫ Ln+ ↵v(u� bu) , v � bvi@Th

� (p,r·v)Th + hpn , v � bvi@Th

� (u,rq)Th + hbu · n , qi@Th ,(5.1a)

and the bilinear form associated to the convection,

Oh(�; (u, bu), (w, bw)) := � (u⌦ �,rv)Th

+ h(� · n) bu+ ↵c(u� bu) , v � bvi@Th ,(5.1b)

D
ow

nl
oa

de
d 

01
/1

4/
19

 to
 1

28
.1

01
.1

55
.2

51
. R

ed
is

tri
bu

tio
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.si
am

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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where (L,u, p, bu) and (G,v, q, bv) lie in the space
�
H1(Th)d⇥d + Gh

�
⇥ H1(Th)d ⇥

H1(Th)⇥ L2(Fh; 0)d, and � 2 V� \ V ⇤
h, where

V� := {v 2 H(div,⌦) : r·v = 0,v · n|@K 2 L2(@K), K 2 Th},
V ⇤

h := {v 2 L2(Th)
d : v|K 2 V ⇤(K), K 2 Th}.

Now, the equations defining the HDG method (4.2) can be recast as

Bh(Lh,uh, ph, buh; G,v, q, bv) + Oh(�; (uh, buh), (v, bv)) = (f ,v)Th(5.2)

with � = Ph(uh, buh) defined in (4.6). Consistency of the HDG method (4.2) implies
that, for the exact solution (L,u, p) 2 H1(⌦)d⇥d⇥H2(⌦)d⇥H1(⌦) of (1.4) (assuming
H2-regularity),

Bh(L,u, p,u; G,v, q, bv) + Oh(u; (u,u), (v, bv)) = (f ,v)Th(5.3)

for all (G,v, q, bv) 2 Gh ⇥ V h ⇥ Q̊h ⇥Mh(0).

An inequality for the viscous energy. Next, we obtain a key inequality for
the viscous energy associated the discrete Stokes operator associated with the HDG
method (4.2), namely,

E(L,u, bu) := Bh(L,u, p, bu; L,u, p, bu)

= ⌫(L,L)Th +
D ⌫

hK
PMS (u� bu) , PMS (u� bu)

E

@Th

.(5.4)

Lemma 5.1. Let (Lh,uh, ph, buh) 2 Gh ⇥ V h ⇥ Q̊h ⇥ Mh(0) be the numerical
solution of the linear system (4.2) with a prescribed velocity � 2 V�, then we have

E(Lh,uh, buh)  (f, uh)Th .

Proof. By (5.2) with (G,v, q, bv) := (Lh,uh, ph, buh), we get the energy identity

E(Lh,uh, buh) + Oh(�; (uh, buh), (uh, buh)) = (f ,v)Th ,

and since Oh(�; (uh, buh), (uh, buh)) = 1

2

h|� · n|(uh � buh) , uh � buhi@Th � 0, the
inequality follows. This completes the proof.

The new discrete inequalities. Next, we relate the viscous energy of the
discrete Stokes operator with our new discrete inequalitites of Theorem 2.3.

Theorem 5.2 (global, discrete H1- and Poincaré–Friedrichs inequalities). Let
(rh, zh, bzh) 2 Gh ⇥Wh ⇥Mh satisfy

(rh,G)Th � (zh,r·G)Th + hbzh , Gni@Th = 0 8 G 2 Gh.

Then,

|||(zh, bzh)|||2
1,Th

 C ⇥h (H1),

h�2 |||(zh, bzh)|||2PF,Th
 C ⇥h (Poincaré–Friedrichs),

where

⇥h :=
X

K2Th

(krhk2K + h�1

K kPMS (zh � bzh)k2@K) = ⌫�1 E(rh, zh, bzh).

Here, the constant C only depends on the finite element spaces V (K), W (K), and
MS(@K), and on the shape-regularity properties of the elements K 2 Th.
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Proof. This result follows from the local discrete inequalities of Theorem 2.3. For
i = 1, . . . , d, let ri denote the ith row of the matrix r, and let vi denote the ith
component of the vector v. Then, by the choice of the local spaces (4.4a), we have
that, on the element K,

((rh)i, (zh)i, (bzh)i) 2 V D(K)⇥WD(K)⇥MD(@K),

and since V D(K) ⇥WD(K) admits an MD(@K)-decomposition, we can apply The-
orem 2.3 with c = Id and (qh, uh, buh) := ((rh)i, (zh)i, (bzh)i). The inequalities now
follow by adding over all element K 2 Th and then over the components i = 1, . . . , d.
This completes the proof.

Properties of the convective form Oh. In the next result, we gather some
properties of the convective form Oh.

Lemma 5.3 (properties of the nonlinear term Oh [4, Propositions 3.4 and 3.5]).
For any (vh, bvh) 2 V h ⇥Mh(0), we have

|Oh(�; (u, bu), (vh, bv))| . |||(�, {�})|||
1,Th

|||(u, bu)|||
1,Th

|||(vh, bvh)|||
1,Th

(5.5a)

for all � 2 V ⇤
h and (u, bu) 2 V h ⇥Mh(0),

|Oh(�; (u, bu), (vh, bv))| . k�k1,⌦|||(u, bu)|||
0,Th

|||(vh, bvh)|||
1,Th

(5.5b)

for all � 2 L1(⌦)d \ V ⇤
h, and (u, bu) 2 H1(Th)d ⇥ L2(Fh, 0)d, and

|Oh(�; (u, bu), (vh, bv))� Oh(�; (u, bu), (vh, bv))|
. |||(� � �, 0)|||

0,Th
|||(u, bu)|||1,Th

|||(vh, bvh)|||
1,Th

(5.5c)

for all � 2 H1(Th)d + V ⇤
h and (u, bu) 2 L1(Th)d ⇥ L1(Fh)d.

5.2. Proof of Theorem 4.2. Now we are ready to prove the existence and
uniqueness of the approximation in Theorem 4.2. The proof is almost identical to
that in [4, section 5].

We use a Banach fixed-point theorem by constructing a contraction mapping
F : Zh ! Zh, where

Zh := {(v, bv) 2 V h ⇥Mh(0) : (vh,rq)Th � hbv · n , qi@Th = 0 8 q 2 Q̊h}.

Let us show that there is a ball Kh inside Zh such that F maps Kh into Kh. For a
pair (wh, bwh) 2 Zh, the mapping is defined by F(wh, bwh) := (uh, buh) with (uh, buh)
being part of the numerical solution to the linear system (4.2) with � = Ph(wh, bwh).
By Lemma 4.1, we have that � 2 V� . Then,

|||(uh, buh)|||2
1,Th

. ⌫�1E(Lh,uh, buh) by Theorem 5.2

. ⌫�1(f ,uh)Th by Lemma 5.1

. ⌫�1kfkTh kuhkTh

. ⌫�1kfkTh |||(uh, buh)|||
1,Th

,

and we get
|||(uh, buh)|||

1,Th
. ⌫�1kfkTh .
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Then, defining

Kh := {(v, bv) 2 Zh : |||(v, bv)|||
1,Th

 C
sm

⌫�1kfkTh}

with a positive constant C
sm

big enough, we conclude that F maps Kh into itself.
Now we only have to show that F is a contraction in Kh. Set (u1

h, bu
1

h) :=

F(w1

h, bw
1

h) and (u2

h, bu
2

h) := F(w2

h, bw
2

h) with (wi
h, bw

i
h) 2 Kh for i = 1, 2. Now, let

(Li
h,u

i
h, p

i
h, bu

i
h) be the solution to (4.2) with �i := Ph(wh, bwh). Using dL := L1

h�L2

h

and similar definitions for du, dp, dbu, d� , dw, and d bw and the fact that (5.2) is satisfied
for i = 1, 2, we conclude that

E(dL, du, dbu) = � Oh(�
1; (u1

h, bu
1

h), (du, dbu)) + Oh(�
2; (u2

h, bu
2

h), (du, dbu))

= � Oh(d� , ; (u
1

h, bu
1

h), (du, dbu))� Oh(�
2; (du, dbu), (du, dbu))

 � Oh(d� ; (u
1

h, bu
1

h), (du, dbu)).

By Lemma 5.3, we easily get that

E(dL, du, dbu) . |||(d� , {d�})|||
1,Th

���
���
���(u1

h, bu
1

h)
���
���
���
1,Th

|||(du, dbu)|||
1,Th

. |||(dw, d bw)|||
1,Th

���
���
���(u1

h, bu
1

h)
���
���
���
1,Th

|||(du, dbu)|||
1,Th

by Proposition 4.1,

. ⌫�1kfkTh |||(dw, d bw)|||
1,Th

|||(du, dbu)|||
1,Th

,

by Theorem 4.2. Combining this result with Theorem 5.2, we immediately get

|||(du, dbu)|||
1,Th

. ⌫�2kfkTh |||(dw, d bw)|||
1,Th

.

Hence, for ⌫�2kfkTh su�ciently small, the mapping F is a contraction in Kh. This
completes the proof of Theorem 4.2.

5.3. Proof of estimate (4.9) in Theorem 4.4. The energy estimate (4.9)
in Theorem 4.4 directly follows from Proposition 4.3, the approximation properties
of the finite element spaces, and Theorem 5.4 below. To simplify the notation, we
introduce the following approximation errors:

�L := L� PGL, �u := u�⇧V u, �p := p� PQp, �bu := u� PMu.

Theorem 5.4. Under the assumptions of Theorem 4.4, we have

keLkTh + |||(eu, ebu)|||
1,Th

+ h�1 |||(eu, ebu)|||
0,Th

+ keukTh  C ⌫�1 ⇥1/2
ns ,

where

⇥ns :=
X

K2Th

hK (k⌫ �L nk2@K + k�pk2@K) + kuk21,⌦ |||(�u, �bu)|||2
0,Th

.

Here, the constant C depends only on the finite element spaces, the shape-regularity
of the mesh Th, and the domain ⌦.

The rest of this subsection is devoted to the proof of Theorem 5.4. We need the
following two auxiliary results.
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Lemma 5.5. We have

Bh(eL, eu, ep, ebu; G,v, q, bv) = h⌫ �L n� �p n , v � bvi@Th

+ Oh(Ph(uh, buh); (uh, buh), (v, bv))
� Oh(u; (u,u), (v, bv))

for all (v, wh, bwh) 2 V h ⇥Wh ⇥Mh(0).

Proof. It is a direct consequence of the definition of the numerical method (5.2),
the consistency of the method (5.3), and the definition of the projections in subsection
4.3.1. In particular, note that, by the definition of ⇧V , there holds

D ⌫

hK
PMS (�u � �bu) , v � bv

E

@K
=

⌫

hK
h�u � �bu , PMS (v � bv)i@K = 0.

Lemma 5.6. We have

Oh(Ph(uh, buh); (uh, buh), (eu, ebu))

� Oh(u; (u,u), (eu, ebu)) . kuk1,⌦ � |||(eu, ebu)|||
1,Th

,

where

� := |||(eu, ebu)|||
0,Th

+ |||(�u, �bu)|||
0,Th

+ |||(Ph(⇧V u, PMu)� u, 0)|||
0,Th

.

For a proof, see Appendix C; see also [4, section 6].
We are now ready to prove Theorem 5.4. Since the following estimates hold,

keukTh  |||(eu, ebu)|||
1,Th

, by [18, Theorem 2.1],

|||(eu, ebu)|||
1,Th

 C ⌫�1 E(eL, eu, ebu), by Theorem 5.2,

h�1 |||(eu, ebu)|||PF,Th
 |||(eu, ebu)|||

1,Th
,

the left-hand side of the inequality in Theorem 5.4 is smaller than

C⌫�1E(eL, eu, ebu).

We turn to estimate the above term next using a standard energy argument.
To do that, we take

(G,v, q, bv) := (eL, eu, ep, ebu)

in Lemma 5.5, to get

E(eL, eu, ebu) = h⌫ �L n� �p n , eu � ebui@Th

+ Oh(Ph(uh, buh); (uh, buh), (eu � ebu))

� Oh(u; (u,u), (eu � ebu)).

Then, applying the Cauchy–Schwarz inequality and using Lemma 5.3, we obtain

E(eL, eu, ebu) .
✓ X

K2Th

hK k⌫ �L n� �p nk2@K
◆

1/2

|||(eu, ebu)|||
1,Th

+ kuk1,⌦|||(�u, �bu)|||
0,Th

|||(eu, ebu)|||
1,Th

+ kuk1,⌦ |||(Ph(⇧V u, PMu))� u, 0)|||
0,Th

|||(eu, ebu)|||
1,Th

+ kuk1,⌦ |||(eu, ebu)|||
0,Th

|||(eu, ebu)|||
1,Th

.
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Now, assuming ⌫�1kuk1,⌦ su�ciently small such that

kuk1,⌦ |||(eu, ebu)|||
0,Th

|||(eu, ebu)|||
1,Th

 1

2
E(eL, eu, ebu),

we get

E(eL, eu, ebu) .
X

K2Th

hK k⌫ �L n� �p nk2@K + kuk21,⌦ |||(�u, �bu)|||2
0,Th

since we have that

|||(Ph(⇧V u, PMu))� u, 0)|||
0,K . |||(�u, �bu)|||

0,K ,

by the approximation properties of Ph; see Proposition 4.1. This completes the proof
of Theorem 5.4.

5.4. Proofs of estimates (4.10) and (4.11) in Theorem 4.4. The super-
convergent velocity estimates in L2-norm in (4.10) and (4.11) follow from a standard
duality argument. For a detailed proof, we refer interested reader to [4].

6. Concluding remarks. As we pointed out in section 2.5, the application of
our approach to the steady-state di↵usion problem gives rise to the first superconver-
gent HDGmethod, namely, the so-called SFH method proposed in [8] when its nonzero
stabilization is taken to be of order 1/h. As shown in [8], the convergence properties
of the SFH method remain unchanged when the stabilization function increases. A
similar phenomenon takes place for all the methods considered here.

The extension of the techniques developed in this paper to other nonlinear partial
di↵erential equations constitutes the subject of ongoing work.

Appendix A. Proof of Proposition 4.1. Here we give a proof of Proposition
4.1 on the properties of the convective velocity Ph(uh, buh).

The well-posedness of the projection Ph(uh, buh) 2 V ⇤(K) is due to properties

(4.5) on the space V ⇤(K) since we have �((fV ⇤(K))?) = MD(@K); see [14, Propo-
sition 6.4]. Then, the first two estimates directly follows from scaling and norm-
equivalence on finite dimensional spaces.

Now, assume (uh, buh) satisfies (4.2c) for all q 2 Q̊h. By (4.6b) and property
(4.5b) on the space V ⇤(K), we immediately have Ph(uh, buh) 2 H(div;⌦).

Let us now prove that it is divergence-free. Obviously, (4.2c) is satisfied for the
constant test function q = 1. Hence, we have, on each element K,

�(uh,rq)K + hbuh · n , qi@K = 0 8 q 2 Q(K) = WD(K).

Next, by the definition of fV ⇤(K), we have rQ(K) = rWD(K) ⇢ fV ⇤(K). Hence,
using the definition of Ph(uh, buh) in the above equation, and integrating by parts, we
get

(r·Ph(uh, buh), q)K = 0 8 q 2 WD(K).

This implies r·Ph(uh, buh) = 0 by (4.5a). This concludes the proof of Proposition
4.1.
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Appendix B. Proof of Proposition 4.3. Here, we give a proof of Proposition
4.3 on the approximation properties of the projection ⇧V . By defintion of ⇧V u, (4.8),
we have that, on the element K, its ith component, (⇧V u)i, is defined as the element
of WD(K) such that

((⇧V u)i, w)K = (ui, w)K 8 w 2 WD(K),(B.1a)

h(⇧V u)i , bwi@K = hui , bwi@K 8 bw 2 MS(@K).(B.1b)

Thus, if we set ⇧Wui := (⇧V u)i, to prove our result, we only have to prove a similar
result for the projection ⇧W .

By (B.1a), we have ⇧Wu� PWu 2 fW?(K). By (B.1b), we have

h⇧Wu� PWu , bwi@K = hu� PWu , bwi@K 8 bw 2 MS .

Hence,

k⇧Wu� PWuk@K  CMSkPMS (⇧Wu� PWu)k@K  CMS ku� PWuk@K ,

since the constant CMS exists by condition (2.1). Then, the first estimate follows
directly by scaling and norm-equivalence of kwkK and kwk@K for functions w 2
fW?(K).

Moreover, we have

kPWu� ukK + h
1/2
K kPWu� uk@K  kPWukK + kukK + h

1/2
K kPWuk@K + h

1/2
K kuk@K

 C kPWukK + kukK + h
1/2
K kuk@K

 C kukK + h
1/2
K kuk@K

 C h
d/2
K kuk1,K .

The second estimate is obtained by scaling, norm-equivalence of h
d/2
K kwk1,K and

kwkK for the finite dimensional space W (K), the above estimate, and the first esti-
mate of Proposition 4.3. This completes the proof of Proposition 4.3.

Appendix C. Proof of Lemma 5.6. Here, we prove Lemma 5.6 on the
properties of the convective term Oh. The main idea is to first split the terms on the
left-hand side of the estimate in Lemma 5.6 into the sum of the following four terms,

T
1

:= Oh(Ph(uh, buh); (uh, buh), (eu, ebu))

� Oh(Ph(uh, buh); (⇧V ,PMu), (eu, ebu)),

T
2

:= Oh(Ph(uh, buh); (⇧V u, PMu), (eu, ebu))

� Oh(Ph(⇧V u, PMu); (⇧V u, PMu), (eu, ebu)),

T
3

:= Oh(Ph(⇧V u, PMu); (⇧V u, PMu), (eu, ebu))

� Oh(Ph(⇧V u, PMu); (u,u), (eu, ebu)),

T
4

:= Oh(Ph(⇧V u, PMu); (⇧V u, PMu), (eu, ebu))

� Oh(u; (u,u), (eu, ebu)),

and then estimate each of them.
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So, by (5.5c), we have that T
1

= �Oh(Ph(uh, buh); (eu, ebu), (eu, ebu))  0.
For the second term, we have

T
2

= � Oh(Ph(eu, ebu); (⇧V u, PMu), (eu, ebu))

. |||(Ph(eu, ebu), {Ph(eu, ebu)})|||
0,Th

|||(⇧V u, PMu)|||1,Th
|||(eu, ebu)|||

1,Th

. |||(eu, ebu)|||
0,Th

kuk1,⌦ |||(eu, ebu)|||
1,Th

,

by Propositions 4.1 and 4.3. For the third term, we have, by (5.5b),

T
3

= Oh(Ph(⇧V u, PMu); (�u, �bu), (eu, ebu))

. kPh(⇧V u, PMu)k1,Th |||(�u, �bu)|||
0,Th

|||(eu, ebu)|||
1,Th

. kuk1,⌦ |||(�u, �bu)|||
0,Th

|||(eu, ebu)|||
1,Th

,

by Proposition 4.1. For the last term, we have

T
4

. k (Ph(⇧V u, PMu)� u, 0) k
0,Thkuk1,⌦|||(eu, ebu)|||

1,Th
,

by (5.5c). This concludes the proof of Lemma 5.6.
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