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ABSTRACT
Stochastic dynamics, such as molecular dynamics, are important in many scientific applications. However, summarizing and analyzing the
results of such simulations is often challenging due to the high dimension in which simulations are carried out and, consequently, due to
the very large amount of data that are typically generated. Coarse graining is a popular technique for addressing this problem by providing
compact and expressive representations. Coarse graining, however, potentially comes at the cost of accuracy, as dynamical information is,
in general, lost when projecting the problem in a lower-dimensional space. This article shows how to eliminate coarse-graining error using
two key ideas. First, we represent coarse-grained dynamics as a Markov renewal process. Second, we outline a data-driven, non-parametric
Mori–Zwanzig approach for computing jump times of the renewal process. Numerical tests on a small protein illustrate the method.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0162440

I. INTRODUCTION

Stochastic dynamics play a critical role in the study of com-
plex systems across various scientific domains. Molecular dynamics
(MD), for instance, simulate the motion of collections of atoms over
time. MD simulations have found applications in materials science,
chemistry, biology, and physics.1–6 Analyzing the immense vol-
ume of data generated, and navigating the high-dimensional space
in which these simulations operate, creates significant challenges.
Indeed, a single snapshot of an MD trajectory resides in a contin-
uous 3Natom-dimensional space, with Natom ranging from hundreds
to billions. This makes model reduction highly desirable. Effective
model reduction not only enhances interpretability but also allows
for upscaling results to inform higher-fidelity models.

Another challenge comes from metastability,7 where stochas-
tic trajectories are confined to small regions of space for long
times, punctuated by rare but fast transitions between regions.
Metastability is typical in MD, where such regions might rep-
resent folded and unfolded states of a protein. In addition to
MD, metastable stochastic dynamics arise in climate models,8–11

granular flows,12 neural evolution,13–18 hydrodynamics,19 and power
networks,20 in addition to various ordinary differential equations
models.21–24

Coarse graining is a common approach for handling high
dimensionality or metastability. It is based on dividing the orig-
inal high-dimensional space of microstates into a discrete set of
macrostates. Usually, the dynamics on the macrostates is modeled
as a Continuous Time Markov Chain (CTMC)25 or a discrete time
Markov chain (DTMC).25,26 In MD, such CTMC models are called
chemical reaction networks or kinetic Monte Carlo models,27,28 and
the DTMCs are called Markov state models.29 These Markovian
models offer advantages such as formal simplicity, compact rep-
resentation, and ease of use with ready-made algorithms, such as
BKL30 or Gillespie,31 for simulation.

The Markov assumption underlying CTMC and DTMC mod-
els is significantly flawed if macrostates are not carefully chosen,32

if temperatures are not sufficiently low,33 or if time scales are not
long enough. Even with careful choices of all these parameters,
some degree of departure from exact Markovian behavior generally
remains.34–37
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Meanwhile, recent findings show that the Markov assumption
can be weakened, with an arbitrarily accurate representation achiev-
able using Markov Renewal Processes38 (MRPs) by simply adjusting
a scalar parameter.39 This scalar parameter, called τ below, is a decor-
relation time chosen to allow the underlying dynamics to reach local
equilibrium in the macrostates, inheriting the Markov property at
each such time. MRPs differ from Markov processes in only hav-
ing the Markov property at certain times (called jump times below).
Despite having formal simplicity, a complete MRP parameterization
for N macrostates would require N2 scalars and N2 functions of
time. Accurately representing these functions from limited, short-
time length data poses a challenge.39 This article proposes a new
technique, rooted in first principles, to efficiently model this MRP
with a few N ×N matrices.

A. Contributions
Below, we propose a compact, data-driven parameterization

for the MRP model described in Ref. 39. Our methods, rooted in
Mori–Zwanzig (MZ) theory, are simple and data-driven, and our
contributions are practical and theoretical.

On the practical side, we propose a mathematically princi-
pled representation of the MRP derived from Mori–Zwanzig the-
ory. In our formulation, the MRP is represented by, and can
be generated from, a (small) number of memory kernels. These
memory kernels are N ×N matrices, where N is the number of
macrostates. We propose a new method to obtain the kernels by
solving a certain linear system comprised of correlation matrices.
Efficient, scalable solvers designed for positive semidefinite sys-
tems can then be used to obtain the kernels (e.g., RPCholesky40,41

uses randomized low-rank approximation). Numerical results on
alanine dipeptide, a small protein, illustrate the promise of the
method.

On the theoretical side, we show that these methods become
exact as the number of memory kernels and the decorrelation time
grow. This demonstration takes the following steps. To start, we give
the first proof that coarse-grained dynamics described in Ref. 39
converges to a MRP (Theorem A.1). Then, we represent the transi-
tion probabilities of the MRP in terms of memory kernels using the
discrete Mori–Zwanzig equation (3). Lastly, we prove that Eq. (3)
is exact (Theorem D.2). This equation first appeared in Ref. 42 in a
different setting (without the decorrelation). There, it was derived as
an approximation of a continuous time Mori–Zwanzig equation. We
give the first full derivation of (3) that shows it is exact for any choice
of dynamical lag (we use lag τ in our setup). As τ can be significantly
longer than the time step of the underlying dynamical integrator,
exactness at the discrete time level is important.

In addition, we provide exact expressions for the memory ker-
nels in terms of an orthogonal dynamics (Appendix D). While these
expressions cannot directly be put to practical use, they help lend
explainability to the kernels and could potentially be exploited to
quantify their decay in time. Our novel data-driven method for actu-
ally computing the memory kernels, based on the linear solve (5),
can also be explained in terms of inter-macrostate correlations.

Finally, we show that our Mori–Zwanzig equation is optimal,
in the sense that the representation is compact when the MRP
representation is almost fully Markovian. We actually prove an

TABLE I. Definitions of symbols used in this work.

Symbol Definition

X(t) Underlying Markov chain on microstates
x, y, z Microstates
I, J, L Macrostates
N Number of macrostates
τ Macroscopic time step
R(t) Macroscopic jump process
r, s, t Times [multiples of τ, when associated with R(t)]
s−, t− Preceding times: s− = s − τ, t− = t − τ
τI Decorrelation time in macrostate I
ηI QSD in macrostate I
T (s, t) Transition probability matrix
T (t) Transition matrix of renewal process
P(t) Jump probability matrix
K(t) Memory kernel matrix
C(t) Consecutive time in current macrostate
P, Q Projector and complementary projector
χI Characteristic function of macrostate I
n, m Non-negative integers

ideal case of this, showing that all but one of the memory ker-
nels vanishes in the case where the MRP representation is, in fact,
Markovian.

This article is organized as follows. We summarize our notation
in Table I. In Sec. II, we review how we discretize the under-
lying dynamics, following Ref. 39. In Sec. III, we introduce the
Mori–Zwanzig equation and explain how we use it to estimate mem-
ory kernels nonparametrically from short time simulations. We also
show how the memory kernels can be used to infer longer time
information. In Sec. IV, we give an outline of our proof that the dis-
cretized dynamics converges to a MRP (the proof is in Appendix A).
In Sec. V, we illustrate our method on alanine dipeptide. We show
that we can reduce errors arising from ordinary spatial discretiza-
tion, recovering accurate dynamics with a relatively small number
of memory kernels. All proofs, including the derivation of the
Mori–Zwanzig equation and the proof of convergence to a MRP, are
in Appendixes A–D.

II. MARKOV CHAINS AND MARKOV RENEWAL
PROCESS

Throughout, X(t) is an underlying Markov process evolving in
a space of microstates. This process can be discrete or continuous
in both time and space. We consider a division of microstates into
finitely many macrostates I, J, etc.

Our work focuses on a discrete time jump process R(t) on these
macrostates, with time step τ, defined from the underlying process
and a set of decorrelation times, written as τI , τJ , etc. The jumps occur
when X(t) spends consecutive time τJ in some macrostate J. Specif-
ically, R(t) jumps from I to J at time t if X(t − c) is in macrostate
J for 0 ≤ c ≤ τJ . Jumps only occur among distinct states (J ≠ I) and
at multiples of the time step (t = nτ for integer n). See Fig. 1 for an
illustration.
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FIG. 1. Illustration of X(t) and R(t), with three macrostates labeled 1–3, when
the decorrelation times are τ1 = τ2 = τ3 = τ. Solid horizontal lines divide the
macrostates. For illustrative purposes, we show an example where X(t) makes
several transitions that are not recorded by R(t) due to a failure to decorrelate in
macrostates.

To describe the evolution of R(t), we define T IJ(s, t) as the
probability for R(t) to be in J at time s + t, assuming that there was
a jump into I at time s. That is,

T IJ(s, t) = P(R(s + t) = J∣R(s−) ≠ I, R(s) = I), (1)

where we use the shorthand s− = s − τ.
The introduction of decorrelation times allows the underlying

Markov process to reach a local equilibrium within each macrostate.
Conceptually, when τJ is large enough, X(t) loses memory of how
it entered J by the time that R(t) jumps into macrostate J. This
makes R(t) into a MRP, which means it has the Markov property
at jump times.39 Note that R(t) does not retain information about
what occurs on timescales shorter than the decorrelation times and
τ. This is a modeling assumption that may lead to the loss of rele-
vant dynamical information if important transition events occur on
such timescales. On the other hand, information loss will be mini-
mal when the typical residence time in a macrostate is much longer
than both τ and the decorrelation time.

Assuming that R(t) is, in fact, a MRP, we can write T (s, t)
= T (t), where T (t) is a standard transition matrix for each t. These
transition matrices together satisfy a renewal equation defined by a
jump probability matrix P(t), where PIJ(t) is the probability for
R(t) to jump from I to J in time t,

PIJ(t) = P(R(s + t) = J∣R(s−) ≠ I, R(s′) = I, s ≤ s′ < s + t).

The renewal equation is38

T (t) = ∑
0<s≤t

P(s)T (t − s) + F(t), (2)

where F IJ(t) = δI=J∑L∑s>t PIL(s). Here, δI=J = 1 if I = J and δI=J
= 0 otherwise. The time arguments here are multiples of τ, and we
continue with this convention for other equations associated with
R(t) below.

The Markov renewal framework of (2) is exact in the limit
of large decorrelation times (Theorem A.1). Below, we outline
how to estimate T (t) in a principled, parameter-free way using
Mori–Zwanzig theory. Once T (t) is estimated, Eq. (2) can be used

to compute the jump time distribution P(t). This provides a princi-
pled way to describe—and simulate—the process R(t), which exactly
reflects the macroscopic behavior of X(t).

Our setup above allows for situations where the decorrela-
tion times are state-dependent: there is a (potentially different)
decorrelation time τI for each macrostate I. For simplicity, in the
numerical examples and ensuing discussion in Sec. V, we take all
the decorrelation times to be the same and equal to τ, i.e., τI = τ for
each I.

III. NONPARAMETRIC ESTIMATION OF TRANSITION
PROBABILITIES

Using Mori–Zwanzig theory,

T (t) = ∑
0<s≤t

K(s)T (t − s), (3)

where K(s) are memory kernels that can be estimated from data, as
we describe below. Equation (3) is derived as an approximation of a
continuous-time Mori–Zwanzig equation in Ref. 42, while different
discrete time Mori–Zwanzig equations are described in Refs. 43 and
44. We will give a short proof of exactness of (3) in Appendix D
(Theorem D.2) and provide more details on the memory kernel
structure there.

Equations (2) and (3) appear superficially similar but are quite
different. While P(s) defines jump probabilities of the MRP, K(s)
involves quantities associated with a so-called orthogonal dynam-
ics. Roughly speaking, this dynamics describes situations where X(t)
transitions between macrostates without decorrelating in them. We
arrived at (3) by choosing a Mori–Zwanzig projector that leads to
very compact representations (i.e., fast time decay of memory ker-
nels) when R(t) is nearly Markovian. Indeed, in Appendix D, we
show that if R(t) is actually Markovian, only one memory kernel is
nonzero: K(s) = 0 for s > τ. Meanwhile, if R(t) is Markovian, then
P(s) is geometric in s with rates in inverse proportion to the mean
jump times between macrostates [resulting in a slow decay of P(s)
for large mean jump times].

While Eq. (3) could be used to solve for the memory kernels
directly given enough sampling,42 we find that the following setup
is superior in practice. In order to nonparametrically estimate K(t),
we introduce a loss function

L(K) = ∑
t≤tmax

XXXXXXXXXXXX

T (t) − ∑
0<s≤min{t,tmem}

K(s)T (t − s)
XXXXXXXXXXXX

2

, (4)

where tmem is a cutoff time for the memory matrices, tmax is a cutoff
time for the transition matrices, and ∥⋅∥ represents the Frobenius
norm.

By setting the gradient of the loss function equal to zero, we get
the following symmetric positive semidefinite linear system that can
be solved for the memory matrices (see Appendix E):

∑
0<s≤tmem

K(s)A(s, t) = B(t), 0 < t ≤ tmem, (5)
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where A and B are the correlation matrices,

A(s, t) = ∑
r≤tmax

T (r − s)T (r − t)T ,

B(s) = ∑
r≤tmax

T (r)T (r − s)T ,
(6)

and where, by convention, T (s) = 0 for s < 0. (Various regulariza-
tions, including ridge regression that penalizes the Frobenius norms
of the memory kernels, can easily be applied if desired.)

The memory kernels K(t) can then be obtained as follows.
First, we can estimate T (t) for t ≤ tmax from data of the underly-
ing Markovian dynamics. Then, we can estimate the matrices A and
B in (6). Finally, we solve the linear system (5) to obtain K(t) for
0 < t ≤ tmem.

With the memory kernels in hand, the transition probabilities
can be estimated by repeatedly applying the equation

T (t) ≈ ∑
0<s≤min{t,tmem}

K(s)T (t − s), (7)

while incrementally increasing t. Note that this allows for estima-
tion up to any time, including beyond tmax. The memory kernels
carry N2k entries in total, with N being the number of macrostates
and k = tmem/τ being the number of memory kernels. We find good
results even with a relatively small number of kernels; see Sec. V.
Once T (t) is in hand, P(t) can be computed by unrolling the
renewal equation (2).

In Appendix II, we show that if R(t) is actually a Markov
chain—that is, if it has the Markov property at all times, not just at
jump times—then K(t) = 0 for t > τ. In this case, T (nτ) = K(τ)n

= T (τ)n, and the estimation of the system only depends on the
underlying Markov chain dynamics at lag τ. Equation (7) provides
an extension of this to allow for non-Markovian behavior.

Other methods for estimating memory kernels have been
recently described in Refs. 42, 45, 46, and 47. We find that our
method significantly outperforms applying a direct solve42 in Eq. (3),
while inheriting the simplicity of least squares45 and interpretability
in terms of time correlation matrices.

IV. QUASISTATIONARY DISTRIBUTIONS
AND CONVERGENCE TO A MARKOV
RENEWAL PROCESS

For large enough decorrelation times, the underlying process
reaches a local equilibrium each time that R(t)makes a jump, lead-
ing to a Markov property for R(t). We now make this precise using
quasistationary distributions (QSDs).

The QSD of X(t) in I is defined by the condition that if X(t) is
initially distributed as the QSD in I, then conditionally on staying
in I, it remains distributed as the QSD. Writing ηI for the QSD
in I,

ηI(⋅) = ∫ ηI(dx)P(X(t) ∈ ⋅∣X(0) = x, X(s) ∈ I, s ≤ t), (8)

FIG. 2. Building a Markov model for alanine dipeptide, using states defined through PCCA. Except at very long lags, the Markov model is considerably less accurate than
what we obtain with our methods (see Fig. 3). This is because a simple coarse graining of X(t) into these states is not sufficiently Markovian. Each Markov model is based on
a single transition matrix, computed from counts of transitions of X(t) between macrostates at the specified lag time. Transitions at longer lags are computed using powers
of this single matrix.
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FIG. 3. Results from our method for parameterizing the MRP using (a) states defined by PCCA and (b) equal rectangular states. A very good parameterization is achieved in
each case with 7 and 15 memory kernels in (a) and (b), respectively. Plotted are transition probabilities inferred using (7) with a smaller number of memory kernels (dashed
line) and a larger number of memory kernels (solid line). The kernels are computed using (5) and (6) with cutoff time twice the memory length (tmax = 2tmem). We use the
macroscopic time steps, τ = 8 ps (a) and τ = 30 ps (b), that define the “good” decorrelation times. [See Fig. 5 for the choice of τ in (a).] Results are clearly improved with
the larger number of memory kernels.
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where the variable x represents microstates of X(t).
Under mild assumptions,48,49

∥ηI − P(X(t) ∈ ⋅ ∣X(s) ∈ I, s ≤ t)∥ ≤ cIδt
I , (9)

where cI and δI < 1 are constants, and the norm is the total variation
of measures. Informally, given that X(t) remains in macrostate I, it
converges to ηI at a geometric rate.

In Theorem A.1 of Appendix A, we show that

T (s, t) = O(tδσ) + ∑
0<r≤t

P(r)T (s, t − r) + F(t), (10)

where P(t) is the jump probability matrix of a Markov renewal
process, F IJ(t) = δI=J∑L∑s>t PIL(s), and δ = maxI δI , σ = minI τI .
It follows that the transition matrices T (s, t) converge to the transi-
tion matrices of a Markov renewal process defined by the jump time
distribution P(t) at a geometric rate in terms of the decorrelation
times.

V. NUMERICAL RESULTS
To demonstrate the potential of our method, we apply it to

alanine dipeptide, using an MD trajectory39 of length about 70 ms.
Positions in ϕ–ψ space were saved at every 2 ps. The macrostates
are either chosen by using PCCA (Perron-Cluster Cluster Analy-
sis) or by dividing ϕ–ψ space into four equal rectangles. While the
PCCA states are highly metastable, the rectangular states are not. A
finite spatial discretization limits the accuracy of Markov models, as
seen in Fig. 2, which shows that a Markov model does not accurately
represent the discretized alanine dipeptide dynamics, except at long
timescales.

We use a decorrelation time τI = τ ps that is the same for all
states I = 1, 2, 3, 4. These decorrelation times were chosen to be large
enough to obtain good numerical accuracy of the renewal Eq. (2);
see Fig. 5. Then, we construct a trajectory R(t) as described in Sec. II
(see also Fig. 1) and apply our method. The alanine MD trajectory
was split in half into a training set and a test (or reference) set. We
use the former to create our model of R(t) and the latter to create
reference results.

To assess our method, we compare it with a reference that uses
the indicated value of τ. The reference results are based on sim-
ple counts of transitions. Figure 3 compares reference counts with
our method’s estimates of T (t). Figure 4 shows the error in P(t).
To mitigate noise effects from finite sampling, we use the error
measurement

Error =∑
I,J
∫

∞

0
(∫

t

0

[PIJ(s) − P̂ IJ(s)]
ZIJ

ds)
2 PIJ(t)

ZIJ
dt, (11)

where ZIJ = ∫
∞

0 PIJ(t) dt and where P̂(t) is our estimate on train-
ing data, with P(t) being the reference. This is a slight variation
on the Cramer–von Mises criterion.50 Figures 3 and 4 show that
the approach outlined in Sec. III gives good agreement with the
reference, with just a few memory kernels.

A. Practical considerations
Our method requires a choice of macrostates and of scalar

parameters τ, tmem, and tmax. Here, we discuss how these para-
meters might be chosen. Briefly, the microstates should be chosen

FIG. 4. The error in our method vs the number of memory kernels. Memory kernels
are estimated at multiples of τ, and the error is defined by (11). The cutoff times, (a)
tmax = 120 ps and (b) tmax = 900 ps, are chosen by applying the rule tmem = 0.5
× tmax to the largest tmem pictured [for instance, in (b), tmem = 450 ps, correspond-
ing to 15 memory kernels]. (a) PCCA states, τ = 8 ps. (b) Rectangular states,
τ = 30 ps.

as metastable states associated with timescales of interest; the para-
meter τ should be large enough for the Markov property to (nearly)
hold, but no larger; and tmem and tmax should be as large as needed to
accurately parameterize the model, given constraints on how much
data are available. We discuss all this in more detail below. In this
discussion, as in the numerical simulations, we assume that all the
decorrelation times equal τ, that is, τI = τ for each macrostate I.
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FIG. 5. Verifying that R(t) is approximately a MRP for large enough decorrelation times, for PCCA states. Plotted are reference transition probabilities computed from simple
counts of R(t), for τ = 2 ps in (a) and τ = 8 ps in (b), compared to probabilities computed from the renewal equation [Eq. (2)]. (In the renewal equation, the jump probability
matrix, P, is similarly computed from simple counts.) The (constant) decorrelation time must be chosen long enough to allow local equilibration within the macrostates. There
is significant disagreement using τ = 2 ps in (a), while the larger value, τ = 8 ps, in (b) gives good agreement without being unnecessarily large. (a) τ = 2 ps. (b) τ = 8 ps.
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We first consider τ, tmem, and tmax. With enough data, increas-
ing τ, tmem, and tmax will systematically improve results; in practice,
though, there are tradeoffs. (Caveat: a too large τ causes model-
ing problems; see below.) Clearly, there need to be enough sampled
transitions at each time lag. That is, we need enough samples of
T IJ(t) for each I, J and t ≤ tmax. Hence, for example, if data come
in the form of many short trajectories of X(t), then increasing tmax
lowers transition counts and can improve model fidelity only to
the extent that the number of sampled transitions does not get too
low. The parameter tmem defines the number of memory kernels,
and we found good results when pairing it to tmax using the rule
tmem ≈ 0.5 × tmax. In practice, tmax (and/or tmem) could be chosen
with standard techniques, such as cross-validation.

The macrostates and the parameter τ are more fundamental
(though they are also subject to similar considerations concerning
transition counts). Unlike tmem and tmax, which are parameters used
to obtain the memory kernels that generate an approximation of
R(t), the macrostates and τ actually define R(t). They must be cho-
sen carefully to yield good results. For a given set of macrostates, a
minimum value of τ is set by the requirement that R(t) is approx-
imately a MRP; the required value can be found empirically by
using a plot as in Fig. 5 (we simply chose one “by eye” from such
plots). Good macrostates are ones in which decorrelation occurs on
a time scale much smaller than the typical escape time, i.e., good
macrostates are metastable.36 In practice, they could be chosen by
standard techniques, such as PCCA.29

A bad choice of macrostates cannot be rescued by a good choice
of τ. Indeed, R(t) does not retain any events that occur on timescales
smaller than τ. As a result, if τ is close to or larger than typical
transition times between macrostates, then R(t) can miss such tran-
sitions (as shown in Fig. 1), resulting in a potentially accurate but
uninformative model. A good choice of both the macrostates and
of τ is, therefore, important. For the purposes of this article, we
think of the macrostates as already being given, and we choose τ
by looking at plots such as Fig. 5, increasing τ until we find a good
match.

Figure 2 shows an ordinary Markov model based on PCCA
states. These PCCA states are the same as in Ref. 39. A lag of
1500 ps is needed for accuracy comparable to our methods. [Com-
pare with Fig. 3(a).] This lag is on the order of the longest mean
transition time, roughly 1000 ps. Particularly for macrostates 1 and
2, this lag sacrifices knowledge of shorter timescale (but still phys-
ically relevant) state-to-state transitions. Although these states are
considered very good (Markovian) states, our methods still pro-
vide significant improvement over Markov models, as illustrated
in Fig. 3.

Figure 3(a) shows results from our methods when using the
PCCA states. There, we use a decorrelation time τ = 8 ps. This serves
as the fundamental time step of our coarse-grained model and is
small enough that few transitions are missed. To build our model, we
use many short trajectories of length 112 ps, smaller than the shortest
mean transition time of 175 ps. (This trajectory length corresponds
to using τ = 8 ps, with tmem = 7 memory kernels and tmax = 2 × tmem.)
In contrast, a similarly accurate Markov model in Fig. 2 requires tra-
jectories of length 1500 ps. Recall that the longest mean transition
time is around 1000 ps. In sum, the renewal model requires signif-
icantly shorter trajectories and is more accurate than the Markov
model on all timescales.

Figure 3(b) shows analogous results for unphysical macrostates
(defined as equal rectangles in ϕ-ψ coordinates, divided by the
lines ϕ = 0,±π and ψ = 0,±π). Although these states are no longer
metastable, results are similar to Fig. 3(a). (In this case, τ needs
to be larger, however, resulting in our model missing some transi-
tions, as discussed above.) We find good accuracy when τ = 30 ps,
tmem = 15 memory kernels, and trajectories have length 900 ps. A
Markov model would require a lag of 5000 ps for similar accuracy.
Smaller Markov model lags of ∼1000 ps result in widely inaccurate
estimates for even a few time steps’ prediction.

VI. DISCUSSION
The methodology introduced in this paper allows for the sys-

tematic exploitation of a rich set of trade-offs between compactness,
expressiveness, and accuracy. It is particularly well suited to cases
where the system contains a relatively small number of metastable
states, but where metastability is insufficient for a Markovian
assumption to be accurate. In contrast to conventional approaches,
such as Markov state models, where accuracy can be improved by
increasing the number of states at the cost of interpretability, the
accuracy of the approach proposed is, instead, controlled by increas-
ing the decorrelation time to ensure the convergence to a MRP.
Doing so, however, comes with its own trade-off, as the expres-
siveness of R(t) decreases when the decorrelation time exceeds
the shortest transition time. However, the geometric convergence
rate to an MRP makes this trade-off particularly advantageous as a
small increase in decorrelation time yields a large increase in accu-
racy. Therefore, even for modestly metastable systems, it should be
possible to produce very accurate MRPs using decorrelation times
that are short compared to typical transition times, hence mini-
mizing the loss of kinetic information. In this situation, the MZ
approach described above will also yield a compact representation
in terms of a limited number of kernel matrices. As shown above,
this approach allows one to obtain compact and accurate models
even with sub-optimal state definitions, which is very useful, given
that optimizing state definitions in high dimension is generally diffi-
cult. That being said, the approach cannot fix state definitions where
most of the states are not at least somewhat metastable, as accu-
racy would demand very long decorrelation times, which would then
entail low expressiveness. It is arguable, however, that no represen-
tation in terms of jump processes would be appropriate in such a
scenario.
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APPENDIX A: CONVERGENCE TO A MARKOV
RENEWAL PROCESS

We begin by introducing some notation. Let

EIJ(s, t) = {R(s + t) = J, R(s′) = I, s ≤ s′ < s + t}

be the event of switching to from I to J after a time t, starting from
time s. Let

EJ(t) = {R(t) = J}, Ec
J(t) = {R(t) ≠ J}

be the events that R(t) = J and R(t) ≠ J, respectively.
We use ∼ to indicate equality in distribution, for example,

X(s) ∼ ηI indicates that X(s) is distributed as ηI .
The following result demonstrates convergence in distribution

of R(t) to a Markov renewal process as the decorrelation times grow.

Theorem A.1 (exactness of the renewal equation). Assume
that each macrostate I has a QSD ηI, and assume that (9) holds.
Define

T IJ(t) = P(EJ(s + t)∣EI(s), X(s) ∼ ηI). (A1)

Then, T (s, t) defined by (1) converges to T (t) defined by (A1) as
minIτI→∞. Moreover, the limit T (t) is the unique solution to the
renewal equation (2) when P is defined by

PIJ(t) = δI≠JP(EIJ(s, t)∣EI(s), X(s) ∼ ηI). (A2)

Proof. Using the law of total probability,

T IJ(s, t) = P(EJ(s + t)∣Ec
I(s−), EI(s))

=∑
K≠I
∑

0<r≤t
P(EJ(s + t)∣Ec

I(s−), EIK(s, r))

× P(EIK(s, r)∣Ec
I(s−), EI(s))

+ δI=JP(EII(s, t)∣Ec
I(s−), EI(s)). (A3)

Let σ = minIτI , and in the notation of (9), define

c = max
I

cI , δ = max
I
δI.

Using (9), (A1), and the Markov property of X(t),

T IJ(s, t) = P(EJ(s + t) ∣ Ec
I(s−), EI(s))

= ∫ P(EJ(s + t) ∣ Ec
I(s−), EI(s), X(s) = x)

×P(X(s) ∈ dx ∣ Ec
I(s−), EI(s))

= ∫ P(EJ(s + t) ∣ EI(s), X(s) = x)ηI(dx) + εI

= T IJ(t) + ε,

(A4)

where ∣ε∣ ≤ cδσ . Similar calculations show that

δI≠KP(EJ(s + t)∣Ec
I(s−), EIK(s, r)) = T KJ(t − r) + ε,

δI≠KP(EIK(s, r)∣Ec
I(s−), EI(s)) = PIK(r) + ε,

P(EII(s, t)∣Ec
I(s−), EI(s)) = F II(t) + ε,

where each ε is different but ∣ε∣ ≤ cδσ , and

F IJ(t) = δI=JP(EII(s, t)∣EI(s), X(s) ∼ ηI)

= δI=J∑L∑s>t PIL(s).

Combining the previous three displays with (A3),

T (s, t) = O(tδσ) + ∑
0<r≤t

P(r)T (s + r, t − r) + F(t). (A5)

Now, from (A4), we conclude that T (s, t) converges to T (t) as
σ →∞. Meanwhile, using (A5), it is readily shown from a standard
renewal equation representation38 (Proposition 4.2) that T (t) is the
unique solution to Eq. (2). ◻

The proof shows that the convergence rate is geometric in σ on
finite time intervals, suggesting that large decorrelation times are not
needed in order to model R(t) as a Markov renewal process at least
for reasonably defined states.

APPENDIX B: ACTIONS OF PROJECTOR
AND MARKOV KERNELS

Below, we introduce another process C(t) that counts the con-
secutive time that X(t) has spent in its current macrostate, where the
count stops at τJ if X(t) ∈ J.

To develop the Mori–Zwanzig theory, we introduce the aug-
mented Markov chain [X(t), R(t), C(t)] on augmented states
(x, I, s), where x and I represent the current values of X(t) and R(t)
and s is the consecutive time that X(t) has spent in the macrostate in
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which it currently resides up to the decorrelation time. This Markov
chain has time step τ.

Below, let Px,I,s denote the probability for the augmented
Markov chain that starts at (X(0), R(0), C(0)) = (x, I, s). Let T be
the Markov kernel of this augmented chain,

T(x, I, s; dy, J, t) = Px,I,s
[(X(τ), R(τ), C(τ)) = (dy, J, t)]. (B1)

We will also make use of more broadly defined kernels
S(x, I, s; dy, J, t) by relaxing the nonnegativity and unit normaliza-
tion properties of T. Specifically, such a kernel acts on functions
f = f (x, I, s) of augmented space according to the rule

S f (x, I, s) = ∫ ∑
J,t

S(x, I, s; dy, J, t) f (y, J, t).

We define a projector P on functions f = f (x, I, s) of aug-
mented states, that is, a mapping satisfying P2

= P, by

P f (x, I, s) = ∫ ηI(dz) f (z, I, τI). (B2)

APPENDIX C: PRINCIPAL AND ORTHOGONAL
DYNAMICS AND MARKOVIAN CASE

The Mori–Zwanzig theory is characterized by a principal and
orthogonal dynamics. The principal dynamics is driven by PT,
defined by

PT(x, I, s; dy, J, t) = ∫ ηI(dz)T(z, I, τI ; dy, J, t).

The orthogonal dynamics is driven by QT, where Q = Id − P and Id
is the identity operator, that is, QT = T − PT.

We consider a special Markovian case, in which the underlying
dynamics instantaneously reaches the QSD in whatever macrostate
it resides in, with associated decorrelation times τI = 0 for all I. In
this case, T = PT, so the orthogonal dynamics vanish, QT = 0, and
all but one of the memory kernels is zero; see Appendix D.

APPENDIX D: DERIVATION OF THE MORI–ZWANZIG
EQUATION

The following lemma applies to any transition kernel T and
projector P, although we have in mind the Markov kernel T in (B1)
and the projector P in (B2).

Lemma D.1. For any projector P and its complementary
projector Q = Id − P, where Id is the identity mapping, we have

PTn
=

n

∑
m=1

K(m)PTn−m
+ F(n), (D1)

where K(n) = PT(QT)n−1 and F(n) = PT(QT)n−1Q.

Proof. Start with the self-evident equations,

PTn+1
= PTPTn

+ PTQTn, (D2)

QTn+1
= QTPTn

+QTQTn. (D3)

Using induction in (D3),

QTn
=

n

∑
m=1
(QT)mPTn−m

+ (QT)nQ.

Plugging this back into (D2) yields the result. ◻

Below, we will make use of functions χJ defined by

χJ(x, I, s) = δI=J.

Theorem D.2 (exactness of the MZ equation). Let K(n) be as
in Lemma D.1, where P is the projector from (B2) and T is defined in
(B1). Define

KIJ(nτ) ∶= K(n)χJ(x, I, s). (D4)

Then, with T (t) as in (A1),

T (nτ) =
n

∑
m=1

K(mτ)T ((n −m)τ). (D5)

Proof. Multiply (D1) on the right by χJ(x, I, s). Note that
PχJ = χJ so that QχJ = 0 and F(n)χJ(x, I, s) = 0. Thus,

PTnχJ(x, I, s) =
n

∑
m=1

K(m)PTn−mχJ(x, I, s). (D6)

Recalling T (t) defined in (A1), we compute

PTnχJ(x, I, s) = ∫ ηI(dx)TnχJ(x, I, τI)

= ∫ ηI(dx)Ex,I,τI [χJ(X(nτ), R(nτ), C(nτ))]

= ∫ ηI(dx)Px,I,τI [R(nτ) = J]

= T IJ(nτ).

Below, write Sm = T(QT)m−1, and note that PTn−mχJ(y, L, t) does
not depend on y or t. Thus,

∑
L

KIL(mτ)T LJ((n −m)τ)

=∑
L

K(m)χL(x, I, s)PTn−mχJ(y, L, t)

=∑
L
∫ ηI(dz)[∫ ∑

t
Sm(z, I, τI ; dy, L, t)]PTn−mχJ(y, L, t)

= ∫ ηI(dz)[∫ ∑
L,t

Sm(z, I, τI ; dy, L, t)PTn−mχJ(y, L, t)]

= K(m)PTn−mχJ(x, I, s).

Combining the last two displays with (D6) gives (D5). ◻

Next, we show that all but one of the memory kernels vanishes
in the case where R(t) is Markovian.

Theorem D.3. Suppose that τI = 0 for all I and that

T(x, I, s; dy, J, t) = ∫ ηI(dz)T(z, I, τI ; dy, J, t).
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Then, K(nτ) = 0 for n > 1.

Proof. The assumption on T implies that PT = T, so QT = 0
and the result follows from the formula

KIJ(nτ) = PT(QT)n−1χJ(x, I, s). ◻

APPENDIX E: MINIMIZING THE LOSS FUNCTION

The gradient of the loss function (4) is

1
2
∇K(t)L(K) =∑r≤tmax

T (r)T (r − t)T

−∑0<s≤tmem
K(s)∑r≤tmax

T (r − s)T (r − t)T ,

where by definition T (s) = 0 for s < 0.
This immediately leads to the linear system reported in (5).
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