Bad Old Ciphers: Shift Cipher

A shift cipher encrypts by shifting each
plaintext letter forward by an amount

(the key) known only to the sender and
authorized recipient. Characters shifted off
the end are wrapped around.

Use the standard 26-letter English alphabet
as main example:
abcdefghijklmnopqgrstuvwxyz

For example, shift the plaintext
my dog has fleas

forward by 2 to obtain ciphertext
OA FQI JCU HNGCU

Note that the y got pushed off the end and
wrapped back to become a.

It is common practice to show plaintext in
lower-case, ciphertext in upper-case.

An unauthorized attempt at decryp-
tion is called an attack.

That is, an attempt to either get the key
or decrypt without the key is an attack.

Leaving punctuation and word-breaks in is
bad, because it makes attacks easier.

To decrypt knowing the key, simply shift
the ciphertext backward by the key amount,
wrapping around if letters shift off the front
of the alphabet.

For example, if the key is 5 and the
ciphertext received is

MJQQT, BTWQI
decrypt by shifting each letter backward by
5 to get

hello, world

Note that the B shifted off the front of the
alphabet and wrapped around to become w.

Attacking the shift cipher

The shift cipher is bad because it has only
25 possible keys, and 25 is a too-small
number. In other words, the keyspace is
too small.

An attacker can easily do the decryption
operation with all 25 possible keys, and
choose the decryption which makes sense.

This works only if the plaintext is in

a natural language, such as English.
Unrecognizable language cannot be decrypted
this way.

For example, if we intercept ciphertext
YUNWCHXOBDWBQRWNJUUMJH
we try shifting backward by 1, 2, ...
by 1: xtmvbgwnacvapqvmittlig
by 2: wsluafvmzbuzopulhsskhf
by 3: vrktzeulyatynotkgrrjge
by 4: uqjsydtkxzsxmnsjfqqifd
by 5: tpirxcsjwyrwlmriepphec
by 6: sohqwbrivxqvklghdoogdb
by 7: rngpvaghuwpujkpgcnnfca
by 8: gqmfouzpgtvotijofbmmebz
by 9: plentyofsunshineallday
and the last one makes sense in English.

In fact, we did too much work in this
attack.

In that example, one could tell that the
incorrect decryptions were incorrect by just
looking at the first few letters.

It was a waste of effort to decrypt the
whole line when the first 6 characters
were not likely to be English.

Of course, one might be too conservative

in assessing this, and generate false
negatives, but this is not terrible. You can
always go back...

So in trying to decrypt
YUNWCHXOBDWBQRWNJUUMJH
we should have shifted backward just the
first few characters by 1, 2,
1: Xtmvbg
: wsluaf
: vrktze
: uqjsyd
: tpirxc
: sohqwb
: rngpva
: qmfouz
9: plenty
and then finish the last one since it looks
promising.

O NO O WIN

The shift cipher is broken: we can verify
that a successful hostile attack takes just
slightly more effort than the authorized
decryption.

For an N-character plaintext, the
authorized decryptor does N shifts to
decrypt.

The attacker on the average would do about
13 = 26/2 shifts of the first 6 characters

before finding the key, and then do IV shifts.
Thus, the attacker does about N + 78 shifts.

For N large, this is a tiny difference.

The workload for an attacker must vastly
greater than for authorized encryptor and
decryptor!

Letters as Numbers

A fundamental point is that we should
translate or encode letters and any other
characters as numbers to better understand
the manipulations involved in encryption
and decryption.

For alphabet abc. . .yz translate
a— 0
b—1
c — 2
y — 24
zZ — 25

In principle, it doesn’t matter whether we
start at 0 or at 1, but we’ll start at O.

Reduction modulo m

The shift-with-wrap-around operation
translates nicely into mathematics.

The reduction modulo m operation
x % m

is the operation of dividing-with-remainer
x by m, throw away the quotient, and keep
only the remainder.

For example,

T % 3 =1
19 % 7 5
21 % 7T =0
39 % 9 = 3
103 % 10 3
120 % 10 = 0

10

Then shifting a character x forward by &
translates into

z — (z + k) %26

For example, to shift t forward by 11, since
t encodes as 19, translates into

t— 19— (194+11)%26 =4 — ¢

11

It is a question of convention how to
divide negative dividends. Our convention
is: to divide x by m gives a remainder r
and quotient g with

0<7r<|m|

and
r=q-m-+r

Thus, for negative = (m positive)

m—(|z| % m) (|z|%m 7 0)

x%m:{ 0 (|x| %om = 0)

Example:
(—11)%3=3—-(11%3)=3-2=1

since 11 % 3 # 0.

12

Inverses modulo m
A (multiplicative) inverse of r modulo

m (both integers) is an integer y (if it
exists) such that

(z-y)%om=1

For example, 3 is a multiplicative inverse of
2 modulo 5 because

(2-3)%5=6%5=1

For example, 7 is a multiplicative inverse of
3 modulo 10 because

3-1)%10=21%10=1

13

Also —3 is a multiplicative inverse of 3
modulo 10 because

(3-—3)%10=—-9%10 = 1

Also 17 is a multiplicative inverse of 3
modulo 10 because

(3-17)%10=51%10 = 1

Also 27 is a multiplicative inverse of 3
modulo 10 because

(3-27) %10 =81%10 = 1

How do we find these multiplicative
inverses?

14

Eventually we will use the Euclidean
algorithm, but for now we do this to

illustrate brute force: to find the

multiplicative inverse of 3 modulo 7:

Try 1:
Try 2:
Try 3:
Try 4:
Try 5:

3-1)%7=3+#1
(3-2)%7=6+#1
(3-3)%7=2#1
(3-4)%7T=5+1
(3-5)%7 =1

no
no
no
no
yes

That is, just proceeding systematically but
unimaginatively we will inevitably find a
multiplicative inverse.

15

Functions versus formulas

The encoding of letters as numbers is an
example of a function that is not really
given by a formula.

Standard notation is that
f:A— B

means f is a function from a set A to a set
B, like our encoding

f:{a,b,...,z} —{0,1,...,25}

That notation by itself does not tell us how
to compute f, however. A computational
description could be by a formula or by a
look-up table.

16

Recall that a set i1s an unordered collection
of things.

A set can be described as a comma-
separated list enclosed by braces (though
the apparent ordering is not intrinsic), like

{1,2,3}
Since order does not matter,
{1,2,3} =43,1,2} = {2,1,3} = etc.

Also, repeating an element does not do
anything:

{1,2,3} ={1,1,1,2,2,3,2}

17

The things x in a set S are the elements
of the set. Notationisz € Sor S > =x.
Examples:

1e€{1,2,3}
{1,2,3} 53
4¢{1,2,3}

The union A U B of two sets consists of the
elements lying in either set. Example:

{1,2,3YU{3,4,5} = {1,2,3,4,5}

The intersection A N B of two sets consists
of the elements lying in both. Example:

{1,2,3} N {3,4,5} = {3}

18

Two sets A, B are disjoint if they have
no elements in common, that is, if their
intersection is the empty set

¢ =1}

Sets can have elements which are themselves
sets. Example:

11,2,3,{1,2},{{1}}}

has elements

1,2,3,{1,2},{{1}}

19

A look-up table for a function f : A — B
is a list of outputs for all possible legal
inputs of f.

(A function f : A — B must: accept as
input every element of the set A, produce
the same output for the same input, produce
inputs in the set B, and not fail to produce
an output.)

Example: to describe a function

f:{1,2,3} — {7,8}

we must tell exactly 3 things, namely f(1),
f(2), and f(3). We do not have to give a
formula. For example,

f) =7 f@)=7 f(3)=8

is a legitimate description of one particular
function f.

20

We can list all functions

f:41,2,3} — {7,8}

by telling, in each case, the output for every
input:

case 1: f(1)=7 f(2)=7 f(3)="7
case 2: f(1)=T7 f(2)=7 f(3)=8
case 3: f(1)=T7 f(2)=8 f(3)=7
case 4: f(1)=7 f(2)=8 [f(3)=8
case 5: f(1)=8 f(2)=7 f(3)="7
case 6: f(1)=8 f(2)=7 f(3)=8
case 7: f(1)=8 f(2)=8 f(3)=7
case 8: f(1)=8 f(2)=8 f(3)=8

(The chosen ordering of these 8 functions is
lexicographic (‘alphabetic’) in terms of the
outputs.)

21

A function f: A — B is surjective (=onto)
if every element of the target set B is hit by
some element of the source set A. That is,
for every b € B there is a € A such that

fla) =b.

Example: the function f : {1,2,3} — {4,5}
given by

f(1) =4 f(2) =4 f(3) =5

1§ surjective because both elements of the
target are hit. But

is not surjective because the element 5 in
the target is missed.

22

A function f : A — B is injective (=one-
to-one) if every element of the target set B
is hit by at most one element of the source
set A. That is, for a;,a9s € A we have

f(a1) = f(az) only when a1 = as.

Example: the function f : {1,2} — {4,5,6}
given by
1) =4 f2)=6

1$ injective because no two elements of the
source hit the same element of the target.
But

F1) =4 f(2) =4

is not injective because the element 4 in the
target is hit twice.

23

Counting without listing

We can count the number of functions
f : A — B from one set A to another set
B without listing them all.

To refer to them, order the elements of
A, so can speak of first, second, etc. For

example, suppose A has 4 elements and B
has 7.

There are 7 possible outputs (in B) for the
first input from A.

For each choice of output for first input,
there are 7 possible outputs for the second
input from A.

24

For each choice of outputs for first and
second inputs, there are 7 possible outputs
for the third input from A.

And for each choice of outputs for first,
second, and third inputs, there are 7 choices
for the output for the 4 input.

Thus, altogether, there are

Z><7><7><Z:74
4

functions from a 4-element set to an 7-
element set.

25

We can count the number of injective
functions f : A — B from one set to another
without listing them all. Again suppose A
has 4 elements and B has 7.

There are 7 possible outputs (in B) for the
first input from A.

For each choice of output for first input,
there are 7 — 1 possible outputs for the
second input from A, since the output for
the second input must be different from the
output for the first input.

26

For each choice of outputs for first and
second inputs, there are 7 — 2 possible
outputs for the third input from A, since
it must be different from both the first and
second outputs (which are not the same as
each other).

And for each choice of outputs for first.
second, and third inputs, there are 7 — 3
choices for the output for the 4*" input since
it must different from the first three outputs
(which are all different).

Thus, altogether, there are
TX(7T—1)x (7T—2)x(7—3)

injective functions from a 4-element set to
an 7-element set.

27

Count the number of orderings of a 4-
element set. (without listing them).

There are 4 choices for the first element of
the subset.

For each choice of first element there are
4 — 1 remaining choices for second element,
since we can’t re-use the first choice.

For each choice of first and second elements
there are 4 — 2 choices for third element,
since we can’t re-use the first two (different)
choices.

And just 4 — 3 choices for the last element.
So, altogether,

4x (4—1)x(4—2)x(4-3)

orderings of a 4-element set.

28

The factorial function and notation is
convenient: for non-negative integer n

nl=nn—-1)n-2)...4-3-2-1

By convention
ol=1

So the number of orderings of a set with n
elements is n!

The binomial coefficients are

n n!
(k) = Bl (n — k)1 — n choose k

29

Count the 3-element subsets of a 7-element
set, (not listing).

There are 7 choices for the first element of
the subset.

For each choice of first element there are
7 — 1 choices for second element of the
subset, since we can’t re-use the first choice.

For each choice of first and second elements
there are 7— 2 choices for third element of
the subset, as we can’t re-use the first two
(different) choices.

But this approach imparts a fictitious
ordering to the subset, and we must
compensate.

30

We must divide by the number of possible
orderings of 3 things, namely 3! from above.

Thus, the number of 3-element subsets of a
7-element set is

31

Count the number of surjective functions
f:4{1,2,3} — {4,5}. Look at all functions
to see how a function might fail to be
surjective:

case 1: f(1)=4 f(2)=4 f(3)=4
case 2: f(1)=4 f(2)=4 f(3)=5
case 3: f(1)=4 f(2)=5 f(3)=4
case 4: f(1)=4 f(2)=5 f(3)=5
case b: f(1)=5 f(2)=4 f(3)=4
case 6: f(1)=5 f(2)=4 f(3)=5
case 7: f(1)=5 f(2)=5 [f(3)=4
case 8: f(1)=5 f(2)=5 f(3)=5

To miss one or the other target element
(cases 1, 8) all inputs go to a single output.
There are two choices of this. functions so
the number of surjections is

(no. all) - (no. failures) = 2° — 2

32

'To count surjections
f:41,2,3,4,5} — {8,9}

again the only failures are functions which
have a single output for all inputs, since the
target set has just two elements.

The number of surjections is thus
(no. all) - (no. failures) = 2° — 2

since (as above) the number of all functions
is 2°.

33

'To count surjections
f:41,2,3,4,5} — {6,7,8,9}

take a different approach.

Since the target set has just one fewer than
the source set, a surjective function can
send just two inputs can be sent to the
same output, and all others must go to
different outputs.

So we count the number of 2-element
subsets of {1,2,3,4,5}, and for each such
choice there are 4(4 — 1)(4 — 2)(4 — 3)
choices of outputs.

34

Thus, the number of surjections from 5-
element to 4-element set is

(no. 2-element subsets of source) x 4!

()¢

35

