More counting

Without listing them, count the pairs of
disjoint 3-element and 5-element subsets of
a 12-element set.

There are 12 choices for the first element of
the first set, 12 — 1 for the second, 12 — 2
for the third, so there are 12(12 — 1)(12 — 2)
choices for an ordered subset of 3 elements.
But this style of choosing artificially orders
the chosen elements. To take this into
account, divide by 3!, the number of ways
to order a set with 3 elements. (As earlier)
there are

12(12 — 1)(12 — 2) /3! = (132)

choices for a 3-element subset of a 12-
element set.



From the remaining (12 — 3)-element subset,
there are (12 — 3) choices for the first
element of the second set, (12 — 3) — 1
choices for the second element of the second
set, and so on. Divide by 5! to discount the
artificial ordering. So for each choice of the
first set there are

(12-3)(12—3—-1)...(12—3—-5+1)/5!
Thus, altogether there are

12! (12 — 3)!
(12—3)13! (12—3—5)!5!

12!
(12— 3 —5)!3!5!

choices of 3-element and 5-element subsets
of a 12-element set.

Note that we get the same answer if
the roles of 3 and 5 are reversed in the
derivation.



One more counting problem

Count the number of sets of 3 disjoint 2-
element subsets of a 12-element set.

As above, there are (122) choices for the first

(?!) subset, (*% %) choices for the second,

and (12_22_2) choices for the third. But
there is no ordering on the set of 2-element
subsets, so our choice procedure will choose
the same thing several times (unlike the

case where the disjoint subsets are different

sizes)! For example,
{{1,2},{7,8},{3,4}}
would be chosen separately as

117,8},13,4},11,2}}

and altogether 3! ways. Thus, we must
divide by 3!, the number of ways to order
3 things, getting the final count

(00
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More Bad Old Ciphers: Affine Cipher

Shift ciphers use addition and reduction
modulo 26, but the keyspace is too small.

An obvious attempt to make a more
complex (bigger keyspace) version of a
shift cipher, using natural mathematical
manipulation of letters abc...xyz encoded
as numbers 0,1,2,...,23,24,25 is to use
multiplication as well as addition.

An affine cipher has keys (a,b) where a is
an odd integer not divisible by 13 and b is
any integer. The encryption step is

E.p(z) = (a-z+b) %26

When a = 1 this is just a shift cipher. For
example, with key (5,11), the character t
encrypts as

t— 19— (5-19+ 11) % 26 = 106 % 26

=2 —>cC



It may not be apparent, but decryption

is of the same form. Let a~! be the
multiplicative inverse of ¢ modulo 26.
Then for a key (a,b) the decryption step is

t— ((a'-2)—(a b)) %26

Of we pretend that the reduction modulo
26 is simply not there, then verification that
this does really decrypt is easy:

a Hax+b)—atb=x4+ab—ab=2x

The fact that reduction modulo m allows an
essentially idential computational style is
not obvious, but s critical.



Reduction versus arithmetic

It is not obvious, but is true, and will

be proven later, that addition and
multiplication interact well with reduction
modulo m:

((%m) + (y %om)) %om
= ((z%m)+y)%m=(z+y)%m

and
((z%m) - (y%m)) = ((x7%m) - y)%m
=((z7%m)-y)%om=(z-y)%m

In other words, we can reduce or not
modulo m at any point in a computation,
as long as we reduce modulo m at the end.



Attacks on affine ciphers

From a human viewpoint, the ciphertext-
only attack, meaning getting a message
without knowing either the key or anything
about the message, is harder than for the
shift cipher, because of the bulk of trial
decryptions to look through: even if we
only trial-decrypt the first few characters...
Running an outer loop over a and an
inner loop over b, with a = 1,3,5,7 and
0 < b < 25, from ciphertext
CRIITFTEIWCTFLERVTP
we get nine-character strings

criitftei, dsjjugufj, etkkvhvgk,
fullwiwhl, gvmmxjxim, hwnnykyjn,
ixoozlzko, jyppamalp, kzqgqbnbmq,
larrcocnr, mbssdpdos, nctteqept,
oduufrfqu, pevvgsgrv, qfwwhthsw,
rgxxiuitx, shyyjvjuy, tizzkwkvz,
ujaalxlwa, vkbbmymxb, wlccnznyc,



xmddoaozd,
apggrdrcg,
hazzgqgnz,
kdccjtjqc,
ngffmwmtf,
qj1ipzpwi,
tmllscszl,
wpoovivco,
zsrrylyfr,
cvuublbiu,
fyxxeoelx,
mjqqtbtwq,
pmttwewzt,
spwwzhzcw,
vszzckcfz,
yvccfnfic,
byffiqilf,
ebiiltlo1l,
helloworl,
opeedjdce,
rshhgmgth,
uvkkjpjik,

yneepbpae,
bghhsesdh,
ibaahrhoa,
leddkukrd,
ohggnxnug,
rkjjgqagxj,
unmmtdtam,
xqppwgwdp,
atsszjzgs,
dwvvcmcjv,
khoorzruo,
nkrrucuxr,
gnuuxfxau,
tqxxailadx,
wtaadldga,
zwddgogjd,
czggjrjmg,
fcjjmumpj,
ifmmpxpsm,
pqffekedf,
stiihnhgi,
vwllkqgkjl,

zoffqcqgbtf,
gzyyfpimy,
jcbbisipb,
mfeelvlse,
pihhoyovh,
slkkrbryk,
vonnueubn,
yrqqxhxeq,
buttakaht,
exwwdndkw,
lippsasvp,
olssvdvys,
rovvygybv,
uryybjbey,
xubbemehb,
axeehphke,
dahhksknh,
gdkknvnagk,
jgnnqyqtn,
qrggilieg,
tujjioihj,
wxmmlrlkm,



xynnmsmln, yzoontnmo, zappouonp,
abqqpvpoq, bcrrqwqgpr, cdssrxrqgs,
dettsysrt, efuutztsu, fgvvuautv,
ghwwvbvuw, hixxwcwvx, 1jyyxdxwy,
jkzzyeyxz, klaazfzya, 1mbbagazb,
mnccbhbac, noddcicbd

Oops! Looking back a little bit there is
helloworl which is, plausibly English.

This also illustrates human limitations.

How can we automate decryption, rather
than relying upon human recognition of a
natural language?



Review of linear systems of equations

Using ordinary numbers, a system of
equations
{ ari1 + b=y
axz + b= yo

can be solved for unknowns a, b given
x1,Y1, T2,y fairly easily. For example, to
solve

{a-5+b=5a-2+b=11

subtract the second equation from the first
to eliminate b

3-a=-—6
and
a= —2
Substitute a = —2 back into the first
equationa-5+b =5
—2:54+b=5

so b = 15. Solution is (a,b) = (—2,15).
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Non-semantic attack on affine ciphers

Example: An affine cipher with unknown
key (a,b) encrypts E,p(m) = j and
E,»(t) =m. Determine the key.

Of course, encode as numbers rather than
characters: a through z become 0 through
25, respectively, so m becomes 12, t becomes
19, j becomes 9, and m becomes 12. Thus,
the given relations are

(a-124b) %26 =9
(a-19 4 b) %26 = 12

Ezxcept for the reduction, it’s a system of two
linear equations in two unknowns.

Subtract the second equation from the first,
and use the fact that addition, subtraction,
and multiplication interact well with
reduction modulo 26:

(—7-a) %26 = —3 %26
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By brute force at worst, a multiplicative
inverse to —7 mod 26 is 11. Thus,

(11-(=7-a)) %26 = (11 - —3) % 26
Simplifying the left-hand side using the

good interaction of reduction with addition
and multiplication,

((11-=7)%26)-a%26 = (1-a) %26 = a % 26
Thus
a=(11--3)%26=-33%26=19

From the first equation, substituting back
and solving for b, (19-12+b) % 26 = 9 yields

b= (9—19-12) %26 = 15

Thus, the key is (19, 15).
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Non-semantic analysis/attacks

An insight of William Friedman (and
others) circa 1920 was that natural
languages have a probabilistic/statistical
nature that

(1) Can be used to automate attacks, not
requiring constant human supervision.

(2) Can be used to create attacks that do
not correspond to direct human intuition.

Even more amazing is that apparently
non-semantic but merely statistical
characterizations suffice for most purposes.

Ironically, current research efforts to
describe the structure of language seem

to do no better than just crude statistical
explanations. That is, semantic descriptions
are not as good as statistical ones!
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Basic ideas of probability

What s probability???

To say that the probability of something
happening is the chance or it happening, or
the likelihood, or any other synonym, does
not address the issue.

Can we measure it? This would be a
problem of applied statistics, and is a
profound and confusing issue in itself. We
will ignore it.

Can we make inferences about probability?

Yes, and without knowing what it truly is
and without worry about measuring it.

(By the way, the conversion between
chances-of and probability is that chances-
of is a percentage, while probability is a
number between 0 and 1. So 34% chance
is probability of 0.34)
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Example: fairness. A fair coin is a coin
with heads and tails equally likely. That

is,
P(heads) = P(tails)

It is merely a normalization that the sum of
the probabilities of all the possible outcomes
1s 1, so

P(heads) + P(tails) = 1

That is, we have a system of the form

L Y
r+y =1

which we solve (without knowing what
probability is)

1
P(heads) = P(tails) = 5

We have completed a numerical computa-
tion without being able to answer any philo-
sophical or other deeper questions.
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Example: urns.

Suppose there are 3 red balls and 9 green
balls in an urn, otherwise indistinguishable.

As with the coin, we infer that the
probabilities of drawing the 12 = 3 + 9
balls are all the same, and add up to 1, so

are all 1/12.

It is a small leap to infer that, since drawing
one of the balls precludes drawing any
other, that the probability of drawing a red
ball is

P(red) = P(redy) + P(redy) + P(reds)

_1+1+1_3 1 1
12 012 12 12 4

and that of drawing a green ball is,
similarly,

1 3
P — - — = —
(green) =9 5 = 1
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Example: independence. The apparent
fact that the outcome of one flip of a coin
has no effect on the outcome of another
flip of a coin is the independence of the two
events.

(This has nothing to do with the fairness or
not of the coin.)

That is, neither the coin nor the universe
remember prior flips, and do not try to
compensate or make up for too many heads
in the past, etc.

In a different world this could have been
otherwise.

(In contrast, a sequence of events in which
the outcome of the next event can be
affected by the previous one is (roughly) a
Markov process.)
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Not the definition of probability

It turns out not wise to define the
probability of an outcome of an event as

P(outcome)
I no. times outcome occurs
— 1m
trials— oo total no. trials

(Yet this statement is true, and is a
theorem, the Law of Large Numbers.)

Cannot do infinitely many tests.

Do not know how rapidly the result of a
finite number of tests approaches the limit.

Do not know that the limit exists in any
sense.

Might evaluate the limit on different days
and get different answers?

Different people might get different
approximations?
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Monty Hall Paradox

Or, in case elementary probability seems
all too easy, here is a popular example that
may seem less obvious.

In a game show Let’s Make a Deal in which
players were faced with 3 doors, behind one
of which was a prize. The player chose a
door, but the door was not opened. The
host Monty Hall (who knew where the prize
was) opened another door than the one
guessed by the player, but not the one with
the prize. The player was offered the chance
to change their guess. Should the player
change their quess?

Thus, the player was faced with one open
door with no prize, and two closed doors,
one of which was their original guess, and
behind one of which is the prize.

They should always change their guess.
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This may be counter-intuitive.

One way to explain this in colloquial terms
is to say that the probability of originally
guessing the correct door is 1/3, and that
does not change. Thus, the probability is

1 2
1— ===
3 3
that you’re wrong, and should change your
guess.

Among many incorrect arguments there is
the one that says that, not knowing what
else is going on, since there are two doors,
the probability is 1/2. This approach, in
which ignorance of facts is interpreted as
equal probability, was already disdained by
Laplace 300 years ago, and we should not
use 1t now.
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