
Basic probability

A probability space or event space is a set
Ω together with a probability measure P on
it. This means that to each subset A ⊂ Ω we
associate the probability

P (A) = probability of A

with 0 ≤ P (A) ≤ 1. The probability of the
whole space is normalized to be P (Ω) = 1, and
P (φ) = 0.

A subset A ⊂ Ω is called an event.

For an element ω ∈ Ω we may call ω an atomic

event, and write

P (ω) = P ({ω})
For a compound event A = {ω1, . . . , ωn} ⊂ Ω

P (A) = P (ω1) + . . . P (ωn)

For two disjoint subsets A and B of Ω, say that
A and B are disjoint events. For disjoint
events A and B we take an axiom

P (A ∪ B) = P (A) + P (B)
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Two events A,B are independent if

P (A ∩ B) = P (A) · P (B)

Union of events is ‘or’, and intersection of
events is ‘and’:

P (A or B) = P (A ∪ B)

P (A and B) = P (A ∩ B)

We do not try to say what probability is, nor
how to measure it.

Re-interpretation of real-life questions into this
formalism is a significant issue.
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[0.1] Example: The probability space for
flipping a fair coin is

Ω = {heads, tails}

with

P (heads) =
1

2
P (heads) =

1

2

Little is accomplished by the formalization in
this example.
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[0.2] Example: The probability space for
drawing (with replacement) a ball from an
urn containing 3 red balls and 4 green balls
(otherwise indistinguishable) is

Ω = {r1, r2, r3, g1, g2, g3, g4}

where the ris are the red balls and the gis are
the green ones. The probability measure P () is

P (any single ball) =
1

3 + 4
=

1

7

The probability of drawing some red ball is

P ({r1, r2, r3}) = P (r1) + P (r2) + P (r3)

=
1

7
+

1

7
+

1

7

since the (atomic) events r1, r2, r3 are disjoint.
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[0.3] Example: The probability space for
flipping a fair coin 3 times is

Ω = {HHH,HHT,HTH,THH,
HTT,THT,TTH,TTT}

The event

A = get an H on the first flip

is
A = {HHH,HHT,HTH,HTT, }

The event

B = get an H on the second flip

is
B = {HHH,HHT,THH,THT}
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The assumed independence of the different flips
says things like

P (H on first and second flip)

= P (H on first flip) · P (H on second flip)

=
1

2
· 1

2

and

P (HHH) = P (H on first, second, third)

= P (H on first) · P (H on first) · P (H on first)

=
1

2
· 1

2
· 1

2

The fairness and independence together imply
that

P (any 3-flip pattern of H’s and T’s) =
1

23
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[0.4] Example: What is the probability of
at exactly 2 heads in 3 flips of a fair coin? (Use
the previous set-up.)

P (exactly two H’s in 3 flips)

= P ({HHT,HTH,THH})

= P (HHT) + P (HTH) + P (THH) =
3

8

by disjointness.

But this explicit listing approach scales badly.

For example, the event space for the question of
the probability of getting exactly 17 heads in 30
flips of a fair coin has

230 ∼ 1, 000, 000, 000

elements.
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[0.5] Example: What is the probability of
getting exactly 17 heads in 30 flips of a fair
coin?

The independence and fairness together imply
that the probability of each single pattern of 30
H’s and T’s has probability 1/230.

The different patterns of 17 heads from among
an ordered list of 30 are counted as the number
of choices of 17 locations from among 30. There
are 30 choices for the location of the ‘first’ H,
30−1 for the second, etc. up to 30− (17−1) for
the 17th. And then divide by 17! since the order
of the selections does not matter, giving

number of patterns with 17 H’s =

(

30

17

)

Since each has probability 1/230 and they are
disjoint,

P (17 heads in 30) =

(

30

17

)

· 1

230
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[0.6] Example: What is the probability of
getting at least 4 heads in 6 flips of a fair coin?

The new idea here is to break the compound
event into convenient smaller disjoint ones

P (at least 4 in 6 flips)

= P (exactly 4) + P (exactly 5) + P (exactly 6)

Then, as in the previous example, this is

(

6

4

)

· 1

26
+

(

6

5

)

· 1

26
+

(

6

6

)

· 1

26

=
15 + 6 + 1

64
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Example: There are 3 blue balls and 2 red
balls in an urn. What is the probability of
drawing at exactly 4 blue balls out of 7 draws
(with replacement)?

As usual, we assume that the different draws are
independent. The probability of drawing a blue
ball in a single draw is 3/5, and the probability
of drawing a red ball in a single draw is 2/5,
since the total number of balls is 5 = 3 + 2
and we assume that they are have the same
probability of being drawn.

The independence means that the probability
of any pattern of colors is the product of the
individual probabilities. For example,

P (RRB) = P (R) · P (R) · P (B)

P (RRBR) = P (R) · P (R) · P (B) · P (R)
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Thus, for any pattern with 4 B’s and 3 R’s,

P (BBBRRRR) = P (BBRBRRR)

= P (RRBBBRR) = . . . = P (B)4 · P (R)3

The number of ways to draw exactly 4 blue balls
in 7 draws is equal to the number of ways of
choosing 4 things from 7,

(

7

4

)

.

Together, the probability of drawing exactly 4
blue balls in 7 draws from an urn with 3 blue
and 2 red balls is

(

7

4

)

· P (B)4 · P (R)3 =

(

7

4

)

·
(

3

5

)4

·
(

2

5

)3
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Example: There are 3 blue balls and 2 red
balls in an urn. What is the probability of
drawing at least 7 blue balls out of 9 draws
(with replacement)?

We start where we left off in the previous
problem. To draw at least 7 blue balls means
to draw exactly either 7, 7 + 1, 7 + 2, which are
disjoint events, so the probability of their union
is the sum of their probabilities

P (at least 7 in 9)

= P (exactly 7) + P (exactly 8) + P (exactly 9)

The number of ways to draw exactly ℓ blue
balls in 9 draws is equal to the number of
ways of choosing ℓ things from 9, the binomial
coefficient

(

9

ℓ

)

.

As in the previous problem, the probability of
drawing exactly ℓ blue balls in 9 draws is

(

9

ℓ

)

(
3

5
)ℓ(

2

5
)9−ℓ

Adding up these probabilities of disjoint events,
the desired total probability is

P (at least 7 blue in 9)
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= P (exactly 7) + P (exactly 8) + P (exactly 9)

=

(

9

7

) (

3

5

)7 (

2

5

)9−7

+

(

9

8

) (

3

5

)8 (

2

5

)9−8

+

(

9

9

) (

3

5

)9 (

2

5

)9−9
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Conditional probability

The conditional probability that an event
A will occur given that an event B occurs is
defined to be

P (A|B) =
P (A ∩ B)

P (B)

[0.7] Example: The conditional probability
that at a fair coin comes up heads in at least 3
of 6 flips, given that the first two flips are tails,
is

P (at least 3 H’s in 6|first two T’s)

=
P (first two T’s and at least 3 H’s)

P (first two T’s)
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Birthday paradox

It may seem strange that in a set of at least 23

people the probability is ≥ 1/2 that two have the

same birthday.

Not 365/2, but more like
√

365.

For n things chosen at random with equal
probabilities (and independently) from N things
(with replacement), for

n >
√

2 ln 2 ·
√

N ∼ 17

10
·
√

N

the probability that two things are the same is
> 1

2
.

This possibly counter-intuitive fact is the basis
for a type of attack on ciphers, authentications,
and signature schemes. These attacks are called
birthday attacks.
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[0.8] Example: Suppose that the
authenticity of an electronic document is to
be proven by computing a certain hash function

of it.

A hash function or is a function that accepts
arbitrarily large inputs and computes a fixed-
size output in a manner that is essentially
irreversible. The intent is that, given an
output value of a hash function, it is virtually
impossible to contrive an input to yield that
value.

That is, it is intended that if the output of a
hash function is t bits, allowing 2t different
output values, then to create an input with a
pre-specified output would take on the average
2t/2 guesses.

But in some circumstances there is a birthday

attack.
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Suppose that your adversay, with whom you
will sign a contract, prepares a genuine contract
and a bad one (in which you give the adversary
everything).

A birthday attack consists of the adversary
making (automated) changes of spacing,
punctuation, and other inessentials in both the
genuine and the fake, until one of the genuine
ones matches one of the fakes.

For a t-bit hash function, instead of taking ∼ 2t

documents, because of the birthday paradox
principle, it will take more like ∼

√
2t real

documents and ∼
√

2t fakes.

For example, with a 32-bit hash function,
instead of a scam requiring

∼ 232 > 4, 000, 000, 000

alternative documents to be prepared, the
attacker needs only roughly

∼ 2 · 216 ∼ 130, 000
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Computation for birthday paradox

We compute the probability that no two

outcomes are the same, and subtract this result
from 1 to obtain the desired result.

After two trials, there is 1/N chance that the
second outcome was equal to the first one, so
the probability is 1 − 1

N that the outcomes of
two trials will be different.

After 3 trials, given that the first two outcomes
are different, the conditional probability is 2/N
that the third trial would give an outcome equal
to one of the first two. Thus, given that the
first two outcomes are different, the conditional
probability that the third will differ from both
is 1 − 2

N . Since the probability that the first
two were different was 1 − 1

N , the formula above
gives

P (first 3 different) = (1 − 1

N
) (1 − 2

N
)

After 4 trials, given that the first two outcomes
are different, the conditional probability is 3/N
that the third trial would give an outcome equal
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to one of the first two. Thus, given that the
first two outcomes are different, the conditional
probability that the third will differ from all of
the first 3 is 1− 3

N . Using the previous step, and
the formula above,

P (first 4 different) = (1 − 1

N
) (1 − 2

N
) (1 − 3

N
)

Continuing, we get

P (n trials all different)

= (1 − 1

N
) (1 − 2

N
) (1 − 3

N
) . . . (1 − n − 1

N
)
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The logarithm of the probability that they’re all
different is

ln(1 − 1

N
) + ln(1 − 2

N
) + · · · + ln(1 − n − 1

N
)

The first-order Taylor expansion for ln(1−x) for
|x| < 1

ln(1 − x) = −(x +
x2

2
+

x3

3
+

x4

4
+ · · ·)

In particular for 0 < x < 1

ln(1 − x) ≤ −x

so

ln(1 − 1

N
) + ln(1 − 2

N
) + · · · + ln(1 − n − 1

N
)

≤ −(
1

N
+

2

N
+ · · · + n − 1

N
)
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Recall

1 + 2 + 3 + 4 + · · · + (k − 1) + k =
1

2
k(k + 1)

Then

ln (P (n trials all different)) ≤ − 1

2
(n − 1)n

N

As n gets larger and larger, the expression
(n − 1)n is for practical purposes n2. Thus, we
have an approximate formula

ln (P (n trials all different)) ≤ − n2

2N

or
P (n trials all different) ≤ e−n2/2N

P (2 of n trials the same) ≥ 1 − e−n2/2N
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The probability that some two will be the same
is therefore bigger than or equal 1/2 when the
probability that no two are the same is less

than 1/2. Thus, for given N we solve to find
the smallest n so that

− n2

2N
< ln

1

2

which gives the formula

n ≥
√

2 · ln 2 ·
√

N ∼ 1.17

10
·
√

N

for the size of n to assure that the probability is
bigger than 1/2 that two choices are the same.
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