
Fixed points of permutations

Let f : S → S be a permutation of a set S. An
element s ∈ S is a fixed point of f if f(s) = s.
That is, the fixed points of a permutation are
the points not moved by the permutation.

For example,

f =

(

1 2 3 4 5 6
1 3 2 6 5 4

)

has fixed points {1, 5}, since f(1) = 1 and
f(5) = 5 and everything else is sent to
something different.

We might be interested in whether a random
permutation has fixed points, or not, or how
many we should expect it to have, and such
things.

This is a good exercise in counting, as well as
informative about random choices of mixing
functions.

1



Thinking of a (block) cipher as a permutation
(depending on the key) on strings of a certain
size, we would not want such a permutation to
have many fixed points.

Information about typical behavior of
permutations may shed light on how hard we
might expect to have to work to achieve a whole
family of good mixing effects, parametrized by
the key.

In symmetric ciphers such as DES, AES
(Rijndael), as opposed to asymmetric
(public-key) ciphers such as RSA, the whole
cipher is usually put together from smaller
pieces (S-boxes) that do the critical and
hopefully very tricky mixing.

2



To count permutations of {1, . . . , 10}
having at least one fixed point:
at least 3 approaches: an inclusion-exclusion
approach (maybe most intuitive), a recursive
approach (slicked-up version of inclusion-
exclusion), and a cycle-structure approach
with the virtue that it gives a sort of formula,
though not so useful for numerical evaluation.

Try to count permutations having at least one
fixed point

no. fixing ‘1’ + no. fixing ‘2’

+no. fixing ‘3’ + . . . + no. fixing ‘10’

=

(

10

1

)

· (10 − 1)!

since there are
(

10

1

)

choices of single-element
subset to be fixed, and for each choice there
are (10 − 1)! permutations altogether of the
remaining 10 − 1 elements.

3



But this definitely overcounts: a permutation
that fixes more than one element occurs in more
than one of the summands.

Try to compensate by subtracting from the
previous count the quantity

no. fixing ‘1’ and ‘2’

+ no. fixing ‘1’ and ‘3’

+ . . . + no. fixing ‘1’ and ‘10’

+ no. fixing ‘2’ and ‘3’

+ . . . + no. fixing ‘9’ and ‘10’

=

(

10

2

)

· (10 − 2)!

with
(

10

2

)

choices of two-element subset to be
fixed, and for each choice (10 − 2)! permutations
of the remaining 10 − 2 elements.

4



So far we’ve approximated the number of
permutations with at least one fixed point as

(

10

1

)

· (10 − 1)! −

(

10

2

)

· (10 − 2)!

But now we’ve have over-counted or under-
counted permutations fixing at least 3 elements.

Indeed, if a permutation P fixes exactly 3
elements it will have been counted

(

3

1

)

times in
the first summand in that last expression, once
for each 1-element subset of the 3 elements, and
(

3

2

)

times in the second summand, once for each
2-element subset of the 3 elements. Thus, the
net count so far of such a permutation is

(

3

1

)

−

(

3

2

)

= 3 − 3 = 0

But we want the net count to be 1.

5



To compensate for this miscount we add

no. perms fixing 1,2,3

+ no. perms fixing 1,2,4

+ . . . + no. perms fixing 8,9,10

=

(

10

3

)

· (10 − 3)!

Thus, so far, the attempted count would be

(

10

1

)

· (10 − 1)! −

(

10

2

)

· (10 − 2)!

+

(

10

3

)

· (10 − 3)!

The net count of permutations fixing exactly 4
things so far is

(

4

1

)

−

(

4

2

)

+

(

4

3

)

= 4 − 6 + 4 = 2

6



So we’ve overcounted by 1 permutations fixing 4
elements so far, so subtract

no. fixing 1,2,3,4

+ no. fixing 1,2,3,5

+ . . .

+ no. fixing 7,8,9,10

=

(

10

4

)

· (10 − 4)!

Net count of permutations fixing exactly 5
things:

(

5

1

)

−

(

5

2

)

+

(

5

3

)

−

(

5

4

)

= 5 − 10 + 10 − 5 = 0

We’ve undercounted by 1 permutations fixing 5
so far,

7



so add
no. fixing 1,2,3,4,5

+ no. fixing 1,2,3,4,6

+ . . .

+ no. fixing 6,7,8,9,10

=

(

10

5

)

· (10 − 5)!

The net count of permutations fixing exactly 6
things: it would be

(

6

1

)

−

(

6

2

)

+

(

6

3

)

−

(

6

4

)

+

(

6

5

)

= 6 − 15 + 20 − 15 + 6 = 2

So we’ve overcounted by 1 so far,

8



so subtract

no. perms fixing 1,2,3,4,5,6

+ . . . + no. perms fixing 5,6,7,8,9,10

=

(

10

6

)

· (10 − 6)!

Look at the net count of permutations fixing
exactly 7 things: it would be

(

7

1

)

−

(

7

2

)

+

(

7

3

)

−

(

7

4

)

+

(

7

5

)

−

(

7

6

)

= 0

So we’ve undercounted by 1 so far, so add

no. perms fixing 1,2,3,4,5,6,7

+ . . . + no. perms fixing 4,5,6,7,8,9,10

=

(

10

7

)

· (10 − 7)!

9



The net count of permutations fixing exactly 8
things so far is

(

8

1

)

−

(

8

2

)

+

(

8

3

)

−

(

8

4

)

+

(

8

5

)

−

(

8

6

)

+

(

8

7

)

= 8 − 28 + 56 − 70 + 56 − 28 + 8 = 2

(Has anyone started wondering why we’ve been
so lucky that we’ve always either over-counted or
under-counted by 1, and in alternating cases?)

We’ve overcounted by 1 so far, so subtract

no. fixing 1,2,3,4,5,6,7,8

+ . . . + no. fixing 3,4,5,6,7,8,9,10

=

(

10

8

)

· (10 − 8)!

The net count of permutations fixing exactly 9
things is would be

(

9

1

)

−

(

9

2

)

+

(

9

3

)

−

(

9

4

)

+ . . .+

(

9

7

)

−

(

9

8

)

= 0

10



(For odd k such as k = 9, as in the odd case,
we can use the fact that

(

k

i

)

=
(

k

k−i

)

and
the opposite signs that occur in the net count
expression to see that we’ll get a net count of 0,
but why do we always get a net count of 2 in the
even case?)

We’ve undercounted by 1 so far, so add

no. fixing 1,2,3,4,5,6,7,8,9

+ . . . + no. fixing 2,3,4,5,6,7,8,9,10

=

(

10

9

)

· (10 − 9)!

The net count of permutations fixing exactly 10
things is

(

10

1

)

−

(

10

2

)

+

(

10

3

)

−

(

10

4

)

+

(

10

5

)

−

(

10

6

)

+

(

10

7

)

−

(

10

8

)

+

(

10

9

)

= 10− 45+120− 210+252− 210+120− 45+10

= 2

11



We’ve overcounted by 1 so far, so subtract

no. perms fixing 1,2,3,4,5,6,7,8,9,10

=

(

10

10

)

· (10 − 10)! = 1

Thus, in summary, the number of permutations
of 10 things fixing at least one element is

(

10

1

)

(10 − 1)! −

(

10

2

)

(10 − 2)!

+

(

10

3

)

(10 − 3)! −

(

10

4

)

(10 − 4)!

+

(

10

5

)

(10 − 5)! −

(

10

6

)

(10 − 6)!

+

(

10

7

)

(10 − 7)! −

(

10

8

)

(10 − 8)!

+

(

10

9

)

(10 − 9)! −

(

10

10

)

(10 − 10)!

12



How to evaluate this nicely? Not clear yet.

And what about that little point about why we
were so lucky as to be off by only ±1 in the net
count?

The Binomial Theorem asserts

(x + y)n =
n

∑

i=0

(

n

i

)

xi yn−i

In particular, with x = 1 and y = −1,

0 = (1 − 1)n

= 1 −
n−1
∑

k=1

(−1)k

(

n

k

)

+ (−1)n

Rearrange to

n−1
∑

k=1

(−1)k

(

n

k

)

= 1 + (−1)n =

{

2 (n even)
0 (n odd)

13



Recursive approach

Let f(n) be the number of permutations of n
things with no fixed point.

And

no. perms of n fixing at least one

=
n

∑

k=1

(no. perms fixing exactly k elts)

=

n
∑

k=1

(

n

k

)

· f(n − k)

since there are
(

n

k

)

k-element subsets of n things
to choose as the exact fixed-point set, and
f(n − k) counts the number of permutations
of the remaining n−k which do move every one.

14



Then

no. perms of n fixing at least one

= no. all perms of n things

−no. perms of n things fixing none

= n! − f(n)

Sticking these two relations together, we get the
recursive relation

f(n) = n! −

n
∑

k=1

(

n

k

)

· f(n − k)

which expresses each f(n) in terms of f(`) with
` < n.

Note that this requires the perhaps-surprising
convention that f(0) = 1.

15



Thus, counting the number of permutations of n
things with no fixed points, for n = 0, 1, 2, . . .:

f(0) = 1
f(1) = 1! −

(

1

1

)

· f(0) = 1 − 1 = 0

f(2) = 2! −
(

2

1

)

· f(1) −
(

2

2

)

· f(0)
= 2 − 2 · 0 − 1 · 1 = 1

f(3) = 3! −
(

3

1

)

f(2) −
(

3

2

)

f(1) −
(

3

3

)

f(0)
= 6 − 3 · 1 − 3 · 0 − 1 = 2

f(4) = 4! −
(

4

1

)

· f(3) −
(

4

2

)

· f(2)

−
(

4

3

)

· f(1) −
(

4

4

)

· f(0)
= 24 − 4 · 2 − 6 · 1 − 4 · 0 − 1 = 9

f(5) = 5! −
(

5

1

)

f(4) −
(

5

2

)

f(3)

−
(

5

3

)

f(2) −
(

5

4

)

f(1) −
(

5

5

)

f(0)
= 120 − 5 ·9 − 10 ·2 − 10 ·1 − 0 − 1

= 44
f(6) = 6! −

(

6

1

)

f(5) −
(

6

2

)

f(4)

−
(

6

3

)

f(3) −
(

6

4

)

f(2) −
(

6

5

)

f(1) − 1
= 720 − 6 ·44 − 15 ·9 − 20 ·2

−15 ·1 − 0 − 1 = 265

This is no picnic for large values of n.

16



Cycle-structure approach

We can determine the number f(n) of
permutations of n things without fixed points in
another way, by counting the possible disjoint-
cycle decompositions that would give such a
permutation.

That is, we count the number of products of
disjoint cycles such that every element of the set
{1, . . . , n} occurs in some cycle of length 2 or
more.

That is, we sum over 2 ≤ k1 ≤ k2 ≤ . . . , kt with
variable t and with

k1 + k2 + . . . + kt = n

and count the number of products of disjoint
k1-cycle, k2-cycle, . . ., kt-cycles.

For very large n this is again not feasible, but...

17



To compute f(5):

Since 2 ≤ ki with k1 at its smallest possible
value k1 = 2, k2 can be either 2 or 3, but must
be k2 = 3 because of the condition

∑

i
ki = 5.

(There is no room for a k3 in any case.) Thus,
we have products of disjoint 2-cycles and 3-
cycles.

The number of disjoint products of 2-cycles and
3-cycles is

5 · 4

2
·
3 · 2 · 1

3
= 20

because we have 5 choices for the first element
in the 2-cycle, then 4 choices for the second,
but then must divide by 2 since there are two
ways to write the same 2-cycle. Similarly, for
each such choice there are 3 choices for the first
element of the 3 cycle, 2 for the second, and 1
for the third, but divide by 3 because each 3-
cycle can be written 3 ways.

18



If k1 > 2 then there is no room for any more
kis and we conclude that k1 = 5. And indeed 5
cycles have no fixed points.

The number of 5-cycles is

5 · 4 · 3 · 2 · 1

5
= 24

since we have 5 choices for first element, etc.,
but divide by 5 since each 5 cycle can be
written 5 ways.

Altogether there are

f(5) = no. disjoint 3-cycles and 2-cycles

+no. 5-cycles

= 20 + 24 = 44

matching the recursive result.

19



For f(6):

The possible sets of cycle lengths are 2,2,2
and 2,4 and 3,3 and 6, obtained as follows, by
looking down a list of candidates in a sort of
recursive lexicographic order.

For the smallest value k1 = 2, we have 2 ≤ k2 ≤
. . . and k2 + . . . = 4. With the smallest value
k2 = 2, there is only one choice k3 = 2. With
k2 = 3 we fail. With k2 = 4 we again succeed.

With k1 = 3, 3 ≤ k2, leavning one choice k2 = 3.

Values k1 = 4, 5 fail since we cannot hit the sum
6, but k1 = 6 is ok by itself.

20



The number of disjoint products of 2-cycle, 2-
cycle, 2-cycle is

6 · 5

2
·
4 · 3

2
·
2 · 1

2
·

1

3!
= 15

Divide by 3! since we will have chosen the same
permutation 3! different ways: disjoint cycles
can be written in any order. (They commute.)

Disjoint products of 2-cycle, 4-cycle is

6 · 5

2
·
4 · 3 · 2 · 1

4
= 90

Disjoint products of 3-cycle, 3-cycle is

6 · 5 · 4

3
·
3 · 2 · 1

3
·

1

2!
= 40

And 6-cycles

6 · 5 · 4 · 3 · 2 · 1

6
= 120

Total = 15 + 90 + 40 + 120 = 265(matches!)

21



Approximation for large n

Ironically, the first approach gives an
approximate value for large n.

f(n) = n! −

n
∑

k=1

(−1)k−1

(

n

k

)

(n − k)!

= n! −

n
∑

k=1

(−1)k−1 n!

k!

= n!
n

∑

k=0

(−1)k
1

k!

−→ n! · (e−1) ∼ 0.368 · n!

since
∞
∑

k=0

xk

k!
= ex

That is, among the n! permutations of n things,
about 1/3 have no fixed point.

22



In fact, the nearest integer to n!/e is exactly
the number of permutations with no fixed point.

This is because the exact expression above
differs from the infinite series for n!/e by terms
whose sum is much less than 1.

That is, (with f(n) the fixed-point-free ones)

n! · e−1 − f(n)

(−1)n+1 n!

(n + 1)!
+ (−1)n+2 n!

(n + 2)!
+ . . .

= (−1)n+1

[

1

n + 1
−

1

(n + 1)(n + 2)
+ . . .

]

Estimating that series by a geometric series

1

n + 1
·

∞
∑

n=1

4−n =
1

n + 1
·

1/4

1 − 1/4
=

1

3
·

1

n + 1

so

∣

∣

∣

∣

n!

e
− f(n)

∣

∣

∣

∣

<< 1

23



The One-Time Pad

If used correctly, the OTP or Vernam cipher is
provably perfectly secure, and is currently the
only known provably secure cipher.

However, it is nearly impossible to use correctly.

If the key is ever re-used an OTP degenerates
into a Vigenere cipher, which is broken (later).
So key distribution is a critical problem.

If the key is not random in a strong-enough
sense, again it degenerates into a sort of
Vigenere cipher, and is broken. Making many
high-quality random numbers is not so easy.

OTPs are used to protect nuclear weapons
launch codes and high-level diplomatic traffic,
but there key distribution is solved by couriers
with sealed diplomatic pouches.

24



The operation of an OTP is straightforward. To
encrypt a message of N characters, we use a key
of length N , encode characters as integers 0−25,
and (for example)

ith character of ciphertext

= (ith char of plaintext

+ ith char of key )%26

Decryption is by the corresponding subtraction
and reduction modulo 26. That is, we add the
key to the plaintext like vector addition modulo
26.

For example, with plaintext

homefortheholidays

and key
pazxqrasdfyipheakl

the ciphertext is

WOLBVFRLKJFWAPHAID

25



The proof of security is as follows.

The specific claim is that the conditional
probability that a character of the plaintext
is a particular thing given knowledge of the
ciphertext is equal to the probability that that
character is that particular thing (without
knowing the ciphertext).

That is, knowing the ciphertext gives us no
information about the plaintext.

This assumes that the key has never been used
before and will not be used again, and that the
key is random in a strong sense.

For example,

P (plaintext is horse|ciphertext XWTHG)

=
P (plaintxt horse & ciphertxt XWTHG)

P (ciphertext XWTHG)

26



=
P (plaintxt horse & key is XWTHG-horse)

P (key is XWTHG-horse)

subtracting length 5 vectors modulo 26.

The randomness assumption is that any key is
equally likely, and certainly is independent of
the plaintext, so this is equal to

P (plaintxt horse) · P (key XWTHG-horse)

P (key is XWTHG-horse)

= P (plaintxt horse)

by cancelling.

Again, the formalized version of this says that
the conditional probability that the plaintext
is any particular thing given the ciphertext is
the same as the probability that the plaintext is
that thing.

27



Randomness

Old or new ciphers are essentially worthless
without a good source of random numbers to
choose keys, etc.

On linux/unix, /dev/random and /dev/urandom

are processes that attempt to distill good
random bytes from processes, keyboard activity,
etc.

Even very good pseudorandom number
generators (Blum-Blum-Shub, Naor-Reingold)
fail in the sense that they can be no better than
the random seed and other initial data they use.

Even the very definition of random is
problemmatical.

Elementary probability does not suffice to define
randomness.

28



For example, the bit string

1100110011001100110011

is intuitively not random, while maybe

1111010010000110101001

is more random.

Yet, if we generate sequences of bits via a fair
coin with values 1 and 0 repeatedly (assuming
independence) then every sequence of length
22 is equally likely, with probability 1/222.

That is, the above two strings are equally likely,
even though one seems to us to have a pattern
and the other perhaps does not.

29



Among many attempts to make rigorous
the notion of randomness, the notion of
Kolmogorov complexity is more successful
than most.

Very roughly, in that setting, a thing is random
if it has no shorter description than itself.

A paraphrase: a thing is random if it is not
compressible.

There is the danger here of subjectivism or
relativism, in that the descriptive apparatus
and/or the compression apparatus may change.

But a suitably careful formulation of the idea in
fact allows proof that a subtler version of this is
really well-defined.

30



For cryptographic purposes, an essentially
equivalent intuitive notion is that the next bit
should not be predictable from the previous ones.

But what does predictable mean?

If the sequence is produced by a deterministic
process, then it must be predictable by the
process computing it.

Maybe the idea would be that lacking a
secret (key) the bits are unpredictable, even if
produced by a known deterministic process.

But does it seem possible that zillions of
unpredictable bits could be produced from a
secret that might consist of just 128 bits?

Shouldn’t there be some conservation of
randomness?

31


