
The context now is that we will give more of the
mathematical background for W. Friedman’s
decisive attack on the Vigenere cipher.

This attack illustrates that single-letter
frequencies in natural languages combined with
some maybe-not-so-intuitive mathematical
manipulations can be used to break ciphers.

Kasiski has also broken Vigenere, about 1880.

Strangely, Vigenere was still believed to be
unbreakable in the early 20th century.

And keep in mind that a mis-used OTP
degenerates into Vigenere, so a mis-used OTP
is also completely broken.
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Random variables

A random variable X is really just a real-
valued function on a probability space Ω (which,
recall, is basically a set with a probability
measure on its subsets).

For a real number x, the probability that X
takes value x is denoted P (X = x), and by
definition is

P (X = x) = P ({ω ∈ Ω : X(ω) = x})
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For example, if Ω = {H,T} is the sample
space for flipping a fair coin, we could define
a random variable X for ω ∈ Ω by

X(ω) = no. heads when ω occurs

Yes,
X(H) = 1 X(T) = 0

For Ω the set of outcomes ω of 4 flips of a fair
coin we could similarly define

X(ω) = no. H’s occuring in ω

In this example, the notation means

P (X = 0) = P (zero Hs in 4 flips)
P (X = 1) = P (exactly one H in 4 flips)
P (X = 2) = P (exactly two Hs in 4 flips)
P (X = 3) = P (exactly three H in 4 flips)
P (X = 4) = P (exactly four H in 4 flips)

For any other real value x, P (X = x) = 0, since
we can’t get any other number of Hs in 4 flips.
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Expected values

The expected value E(X) or EX of a random
variable X on a probability space Ω is a kind
of weighted average of the values of X, with the
weights being the probabilities of the different
inputs/outputs. The precise definition is

expected value of X = E(X)

=
∑

ω∈Ω

P (ω) · X(ω)

We can group the inputs according to the
output value produced, so this is also equal to

E(X) =
∑

values x of X

P (X = x) · x

where (again) the notation P (X = x) means the
probability that X takes value x:

P (X = x) = P ({ω ∈ Ω : X(ω) = x})
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About notation

Yes, the notation and terminology for random
variables is different from, and in conflict with,
the kind of notation used for functions and their
values in calculus and differential equations.

First, and most importantly, yes, random
variables are actually functions.

Yes, the random variable’s name is often X,
unlike the f or g in calculus.

Yes, usually the input to a function is called x,
not the output, as in X(ω) = x.
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Examples of expected values

With X being the random variable counting Hs
in a single flip of a fair coin,

E(X) =
∑

values x of X

P (X = x) · x

= P (X = 0) · 0 + P (X = 1) · 1

=
1

2
· 0 +

1

2
· 1 =

1

2

Note that we will never actually get 1/2 head in
a flip of a fair coin.

But, as with many averages, the average or
weighted average of integer values may be a
non-integer.

That’s ok.
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With X being the random variable counting Hs
in 3 flips of a fair coin,

E(X) =
∑

values x of X

P (X = x) · x

= P (X = 0) · 0 + P (X = 1) · 1

+ P (X = 2) · 2 + P (X = 3) · 3

=

(
3

0

)

2−3 · 0 +

(
3

1

)

2−3 · 1

+

(
3

2

)

2−3 · 2 +

(
3

3

)

2−3 · 3

=
0 + 3 · 1 + 3 · 2 + 1 · 3

8
=

3

2

This may be an intuitively appealing answer, if
we imagine that we get an average of 1/2 head
per flip in 3 flips.

But notice that the definition hands us an
expression whose value is not obviously the
answer what we expect, though it turns out to
be so.
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Sums and products of random variables

The sum random variable X + Y made
from two random variables X,Y defined on the
same probability space Ω is defined, reasonably
enough, to be the function whose values are
the sum of the values of X and Y . That is, for
ω ∈ Ω

(X + Y )(ω) = X(ω) + Y (ω)

Similarly, the product random variable X · Y
is

(X · Y )(ω) = X(ω) · Y (ω)
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The basic theorem on expected values

Our intuition about certain examples (like
flipping a coin several times) is justified by the
basic theorem about expected values:

Theorem: Let X1, . . . ,Xn be random variables
on a common probability space Ω. Then

E(X1 + . . . + Xn) = E(X1) + . . . + E(Xn)

That is, the expected-value function E is
additive (or linear).

Most functions do not have the additive
property, though naive presumption of
additivity (or linearity) is common. For
example, despite many errors by novices,
generally

sin(a + b) 6= sin a + sin b

√
a + b 6=

√
a +

√
b

(a + b)2 6= a2 + b2
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For example, to compute the expected number
of Hs in 10 flips of a fair coin, let X be the
random variable on the probability space of all
possible outcomes of 10 flips. The definition of
expected value of X is what we want, namely

expected no. Hs in 10 flips = E(X)

=

10∑

k=0

P (X = k) · k =

10∑

k=0

(
10

k

)

· 2−10 · k

[1 · 0 + 10 · 1 + 45 · 2 + 120 · 3

+ 210 · 4 + 252 · 5 + 210 · 6 + 120 · 7

+ 45 · 8 + 10 · 9 + 1 · 10] /1024

= (amazingly)5

It is completely not obvious that this big
computation will yield the intuitively suggested
answer

10 · 1

2
= 5 expected Hs in 10 flips
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Invocation of the Theorem allows us to
legitimize our intuition here. Define random
variables X1, . . . ,X10 by

Xi = no. Hs on the ith flip of 10

Note that these are all defined on the same
probability space. Then

X = X1 + . . . + X10

By the theorem,

E(X) = E(X1) + . . . + E(X10)

We evaluate each E(Xi) via the definition

E(Xi) =
∑

values k P (Xi = k) · k

= P (Xi = 0) · 0 + P (Xi = 1) · 1
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Since the flips are independent and the coin
is fair, for any index i the probability that H
appears on the ith flip is 1/2, so this is

E(Xi) =
1

2
· 0 +

1

2
· 1 =

1

2

Then

E(X) = E(X1) + . . . + E(X10)

=
1

2
+ . . . +

1

2
︸ ︷︷ ︸

10

= 10 · 1

2
= 5

It bears repeating that this is not the definition
of expected value, is not obviously correct.
Happily, it is intuitively correct and in the end
our intuition (in this case) is vindicated by the
Theorem.

Beware, though, that not all functions are

additive or linear.
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Evaluation by generating functions

But, even though it turns out that we do not
need it in the above example, we might also
want to be able to evaluate expressions such
as

n∑

k=0

(
n

k

)

pk(1 − p)n−k · k

directly. This is possible, and the methodology
has many applications.

Recall the Binomial Theorem

(x + y)n =
n∑

k=0

(
n

k

)

xk yn−k

Partial differentiation with respect to x gives

n(x + y)n−1 =
n∑

k=0

(
n

k

)

kxk−1 yn−k
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Anticipating that we’ll let x = p and y = 1 − p
eventually, we see we’re missing a factor of x on
the right in that equality

n(x + y)n−1 =

n∑

k=0

(
n

k

)

kxk−1 yn−k

so multiply through by x:

nx(x + y)n−1 =
n∑

k=0

(
n

k

)

kxk yn−k

Letting x = p and y = 1 − p gives

p · n =
n∑

k=0

(
n

k

)

pk(1 − p)n−k k

In the simple case p = 1/2 we get the same
conclusion as we got earlier via the Theorem.
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Just fooling around, differentiating

n(x + y)n−1 =
n∑

k=0

(
n

k

)

kxk−1 yn−k

once more gives

n(n − 1)(x + y)n−2 =
n∑

k=0

(
n

k

)

k(k − 1)xk−2yn−k

and letting x = y = 1 gives

n(n − 1)2n−2 =
n∑

k=0

(
n

k

)

k(k − 1)
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As a variation, if we multiply through

n(x + y)n−1 =
n∑

k=0

(
n

k

)

kxk−1 yn−k

by x before differentiating again, we get

d

dx

(
xn(x + y)n−1

)

=
d

dx

n∑

k=0

(
n

k

)

kxk yn−k

=
n∑

k=0

(
n

k

)

k2xk−1 yn−k

and letting x = y = 1 again

n(n + 1)2n−2 =
n∑

k=0

(
n

k

)

k2
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As another example, consider the problem of
how long we should expect to wait in flipping a

fair coin until we get an H.

That is, let X be the random variable which
counts the number of flips up to and including
the first flip which gives a H. Then

E(X) =
∞∑

k=0

P (X = k) · k

= P (H) · 1 + P (TH) · 2 + P (TTH) · 3

+ P (TTTH) · 4 + P (TTTTH) · 5 + . . .

= P (H) · 1 + P (T)P (H) · 2 + P (T)2P (H) · 3

+ P (T)3P (H) · 4 + P (T)4P (H) · 5 + . . .

by independence of flips. Without even thinking
about the fairness, let P (H) = p and P (T) = q,
where p + q = 1.
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Then we’re wanting to evaluate

∞∑

k=0

p qk−1 · k

The infinite series we know how to evaluate is
the geometric series

∞∑

k=0

qk =
1

1 − q

for |q| < 1. Differentiating both sides of this
with respect to q gives

∞∑

k=0

qk−1 · k =
1

(1 − q)2

This is missing a factor of p, so multiply both
sides by pq and using p + q = 1

∞∑

k=0

pqk−1 · k =
p

(1 − q)2
=

1

p
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In the identity

∞∑

k=0

pqk−1 · k =
1

p

let p = q = 1
2 to obtain

expected flips of fair coin to get a H

=

∞∑

k=0

1

2

(
1

2

)k−1

· k =
1

1/2
2

This might suggest that we should expect to get
a H on the second flip, so that we get a T on the
first flip? But the same discussion would say
that the expected number of flips to get a T is
also 2.

No, it’s just that we should not expect to get the

expected value, since it’s just an average.
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gcd’s and lcm’s

An integer d divides an integer n if
n% d = 0. And in that situation n is a
multiple of d. The notation is

d|n
In this notation the line is vertical, not slanted.

For example

5|10 35|105 2 6 | 5

where the last illustrates the slash to denote
does not divide.

Thus, to say d divides n is to say in more
colloquial terms that d divides n evenly, but
in mathematics that qualification is always
implied.

A proper divisor d of n is a divisor of n in the
range

1 < d < n
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The greatest common divisor gcd(x, y) of
two integers x, y is the largest positive integer
d which divides both x, y, that is, d|x and d|y.
For example,

gcd(3, 5) = 1 gcd(12, 18) = 6

gcd(49, 56) = 7 gcd(105, 49) = 7

The least common multiple lcm(x, y) of two
integers is the smallest positive integer m which
is a multiple of both x, y. For example,

lcm(3, 5) = 15 lcm(12, 18) = 36

lcm(49, 56) = 392 lcm(105, 49) = 735

Especially with the larger numbers, we should
admit that we cannot claim to directly intuit
the answer. We want a systematic procedure.

21



The intuitively fairly obvious approach
to computing lcms and gcds uses prime

factorization.

We grant for now the unique factorization of

integers into primes, meaning that for a given
positive integer n there is an expression

n = pe1

1 pe2

2 . . . pet

t

where the pi are distinct primes, and the
exponents ei are positive integers.

For example,

6 = 2 · 3
8 = 23

12 = 22 · 3
18 = 2 · 32

96 = 24 · 3
735 = 3 · 5 · 72

10205150 = 2 · 52 · 53 · 3851

22



If we have the prime factorization of both x and
y, then

The prime factorization of gcd(x, y) has prime
factors that occur in both factorizations, with
corresponding exponents equal to the minimum

of the exponents in the two.

The prime factorization of lcm(x, y) has prime
factors that occur in either factorization, with
coresponding exponents equal to the maximum

of the exponents in the two.

For example, with

x = 1001 = 7 · 11 · 13

y = 735 = 3 · 5 · 72

we have
gcd(1001, 735) =

= 3min (0,1) 5min (0,1) 7min (1,2) 13min (0,1)

= 30 50 71 130 = 7
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And still with

x = 1001 = 7 · 11 · 13

y = 735 = 3 · 5 · 72

we have
lcm(1001, 735) =

= 3max(0,1) 5max(0,1) 7max(1,2) 13max(0,1)

= 31 51 72 131 = 9555

This approach is acceptable for relatively
small number, or in any case if we have prime

factorizations or can obtain them readily.
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Trial division

The basic method to obtain the factorization of
smallish integers into primes is trial division.

This is basically a brute force search for proper
divisors, but knowing when we can stop. Note
that, if d < N and d|N and d >

√
N , then N

d

is also a divisor of N and 1 < N
d

≤
√

N . Thus,
in looking for proper divisors it suffices to stop
looking at

√
N if we haven’t found any by that

point!

Recall that N is prime if N has no proper
divisor and if N > 1. That is, N is prime if
there is no d|N with 1 < d < N and N > 1. (It
is a good convention that 1 is not prime.)

Non-prime numbers bigger than 1 are called
composite. The number 1 is neither prime nor
composite, evidently.
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Thus, for example, to test whether N is prime

Compute N %2
If N %2 = 0, stop, N composite
Else if N %2 6= 0, continue
Initialize d = 3.
While d ≤

√
N :

Compute N % d
If N % d = 0, stop, N composite
Else if N % d 6= 0,

Replace d by d + 2, continue
If reach d >

√
N without termination,

N is prime

This takes at worst
√

N/2 steps to confirm or
deny the primality of N .
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For example, to test N = 53 for primality:

Compute 53%2 = 1
Since 53%2 6= 0, continue
Initialize d = 3.
While d ≤

√
53:

Compute 53% d
Compute 53%3 = 2
Since 53%3 6= 0,

replace d = 3 by d + 2 = 5, continue
Still d = 5 ≤

√
53, so continue

Compute 53%5 = 3
Since 53%5 6= 0,

replace d = 5 by d + 2 = 7, continue
Still d = 7 ≤

√
53, so continue

Compute 53%7 = 4
Since 53%7 6= 0,

replace d = 7 by d + 2 = 9, continue
But 9 >

√
53, so

53 is prime

This approach is infeasible for integers ∼ 1030

and larger.
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To achieve factorization into primes of an
integer N :

Initialize n = N
While 2|n, add 2 to list of prime factors

and replace n by n/2
Initialize d = 3
While d ≤ √

n:
While d|n, add d to list

and replace n by n/d
When d does not divide n

replace d by d + 2
When d >

√
n

If n = 1 the list of prime factors
of the original N is complete

If n > 1 then add n to the list

Note that the nature of the process assures that
the ds obtained are primes.
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For example, to factor 24750

Initialize n = 24750
2|n, so

put 2 on the list (just (2) so far)
replace n by n = 24750/2 = 12375

Now 2 does not divide n = 12375
Initialize d = 3
3|12375, so

put 3 on the list (now (2, 3))
replace n by n = 12375/3 = 4125

3|4125, so
put 3 on the list (now (2, 3, 3))
replace n by n = 4125/3 = 1375

Now 3 does not divide n = 1375, so
replace d = 3 by d = 3 + 2 = 5

. . .
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5|1375, so
put 5 on the list (now (2, 3, 3, 5))
replace n by n = 1375/5 = 275

5|275, so
put 5 on the list (now (2, 3, 3, 5, 5))
replace n by n = 275/5 = 55

5|55, so
put 5 on the list (now (2, 3, 3, 5, 5, 5))
replace n by n = 55/5 = 11

Now 5 does not divide 11, so
replace d = 5 by d = 5 + 2 = 7

Now 11 ≥
√

11, so 11 is prime

The product of prime factors, counting how
many times they appear, is

24750 = 2 · 3 · 3 · 5 · 5 · 5 · 11

The above process is trial division.
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